Rich--house.ru

Строительный журнал Rich—house.ru
84 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Зачем нужна технологическая карта прогрева бетона

Изучаем способы прогрева бетона при укладке смеси в зимнее время

Прогрев бетона — обязательная процедура в условиях низких температур. Необходимо обеспечить оптимальные условия, при которых бетон сможет нормально твердеть. В противном случае нарушается структура материала, и он начинает терять свои свойства. Опасно допускать замерзание смеси в период схватывания.

Зачем нужно прогревать

Прогрев бетона в зимнее время необходим, чтобы имеющаяся вода в растворе не превратилась в кристаллы льда. Иначе давление внутри пор цемента повысится, что приведет к разрушению материала, который уже затвердел. Он перестанет соответствовать требованиям высокой прочности.

Необходимость прогрева материала обусловлена и другими причинами, связанными с проходящими процессами в растворе:

  • при замерзании вода увеличивается в объеме на 10-15%, что приводит к разрушению краев пор, и материал становится рыхлым;
  • обледенение арматуры, вызванное воздействием низких температур, нарушает связь «металл — цемент», что ухудшает технические характеристики конструкции.

Чтобы предотвратить замерзание раствора, необходимо создать такую температуру, при которой бетон будет естественно затвердевать. Нежелательна и повышенная температура материала при прогреве, так как она приводит к ускоренному взаимодействию между бетоном и водой, а конкретнее к ее испарению.

Способы прогрева зимой

Избежать замерзания раствора в холодное время года можно с помощью специального оборудования. Все возможные способы прогрева материала установлены в СНиПе 3.03.01-87 (Несущие и ограждающие конструкции, раздел 7.57) и СНиП 3.06.04-91 (Мосты и трубы, раздел 6.37). К основным методам относятся: обогрев в опалубке, термос, использование электродов, нагревательных проводов, инфракрасных обогревателей и т.д. Каждый метод уникален и требует использования разного оборудования.

Прогрев электродами

Прогрев бетона электродами — самый распространенный метод. В разных местах залитой массы устанавливаются проводники электрического тока. Ток, проходящий по электрической цепи, выделяет тепло. Так осуществляется электропрогрев бетона.

Существует несколько вариантов подведения электродов к бетонной смеси. В каждом случае используемая схема подключения индивидуальна. При ее выборе учитывается, что электролиз в воде и в бетонном растворе вызывается постоянным током, а в процессе электропрогрева рекомендуется использовать трехфазный переменный ток.

Важно! При армировании бетона металлическими или железными прутьями использование напряжения в сети более 127В запрещено. Исключение составляют отдельные участки, для которых специально разработаны проекты.

Прогрев бетона может быть выполнен разными видами электродов:

  • струнные — используются для заливки, имеющей большую длину (колонны или сваи);
  • стержневые — применяются для мест стыка конструкций сложных конфигураций;
  • полосовые — используются для прогрева бетона с разных сторон конструкции;
  • пластинчатые — электроды, закрепленные на обратную сторону опалубки, подключаются к разным фазам, за счет этого образуется электрическое поле.

Использование провода

Для минимизации времени применяется специальный провод для прогрева бетона — ПНСВ. Он представляет собой стальную жилу, изолированную в полиэтилен или ПВХ.

При выборе этого способа не обойтись без трансформатора для прогрева бетона. Суть метода сводится к тому, что оборудование нагревает провода, а тепло от них передается бетонному составу. Благодаря высокой теплопроводности материала энергия быстро распределяется по массиву. Одна станция может прогреть до 80 м³ бетонной смеси. Этим способом обогревают монолитные конструкции в 30-градусные морозы.

Основное достоинство использования провода для обогрева — возможность регулировать температуру в зависимости от погодных условий. Кабель способен повышать температуру до 80 ºС. Трансформатор для прогрева бетона должен иметь несколько ступеней низкого напряжения. Это позволит осуществлять регулирование мощности нагревательных проводов и подгонять ее величину в соответствии с изменениями температуры воздуха.

Необходимость использования трансформатора для прогрева бетона значительно увеличивает стоимость строительства. Оборудование ТМО и ТМТО для прогрева бетона стоит дорого (90-120 тысяч рублей), аренда составляет 10-15% от стоимости. Для разовой заливки приобретать его нет смысла.

Чтобы осуществить прогрев бетона в зимнее время потребуется технологическая карта. Она разрабатывается энергетиком под каждый отдельный проект, хотя существуют и стандартные образцы этого документа.

На основании технологической карты рассчитывается количество трансформаторных станций, определяется их выгодное расположение, а также порядок размещения кабеля для прогрева бетона. В среднем для обработки 1 м³ раствора требуется до 60 метров кабеля. Чтобы осуществить равномерную нагрузку по фазам, необходимо провести тестирование провода.

Инструкция по обогреву нагревательным проводом

Для эффективного прогрева нагревательный провод должен иметь сечение не менее 1,2 мм, а рабочий ток ‒ не менее 12 А.

Электропрогрев бетона осуществляется следующим образом:

  • кабель для прогрева бетона размещается внутри конструкции таким образом, чтобы проводники не соприкасались друг с другом и не выходили за края бетона;
  • припаивание к греющему проводу холодных концов и вывод их за пределы зоны обогрева;
  • проверка собранной электрической цепи мегаомметром;
  • подача напряжения в собранную систему и обогрев конструкции.

Метод «термоса»

Это пассивный метод, ориентированный не на передачу тепловой энергии, а на ее сохранение. Его суть сводится к утеплению бетонной конструкции снаружи с помощью теплоизоляционных материалов.

С точки зрения экономии данный способ является самым выгодным, так как в качестве теплоизоляционных материалов можно использовать дешевые древесные опилки. Но не всегда утепления конструкции достаточно, чтобы создать естественные условия для затвердевания смеси. Потребуется дополнительное использование других методов.

Прогрев ИК-излучателями

Инфракрасные приборы обогрева отличаются низким уровнем электропотребления. Они направляются на обогреваемую зону, и в структуре бетона инфракрасные лучи преобразуются в тепло.

Основное преимущество способа — возможность осуществить прогрев отдельных участков конструкции. Однако при толстом бетонном слое обогрев осуществляется неравномерно, что может привести к снижению прочности строения.

ИК-излучатели нашли применение при обработке стыков или создании тонкостенных элементов.

Индукционный прогрев

Метод основан на явлении электромагнитной индукции. Энергия электромагнитного поля преобразуется в тепловую энергию, которая передается обогреваемой поверхности. Этот процесс происходит в стальной опалубке или на арматуре.

Индукционный обогрев возможен только для конструкций с замкнутыми контурами. Коэффициент армирования железными или стальными элементами должен быть не менее 0,5. Для создания индикатора следует обмотать всю конструкцию изолированным проводом. Пропускаемый по нему электрический ток создает электромагнитное поле, которое разогревает все металлические элементы. От них тепло передается бетону.

Обогрев с помощью пара

Суть метода сводится к пропуску пара по трубам, заранее установленным в конструкцию или между стенок опалубки. Если температура бетона в паронасыщенном состоянии при прогреве превышает 70 ºС, то материал за несколько дней наберет такую же прочность, что и за 10-12 суток.

Пар необходимо пускать за 30 минут до заливки бетонной смеси, чтобы прогреть конструкцию.
Этот способ отличается высокой эффективностью, но требует значительных затрат на осуществление.

Сколько стоит обогреть бетон?

Источником составления сметы расходов является технологическая карта. Чтобы рассчитать, сколько стоит электропрогрев, необходимо знать следующие параметры: объем бетона, расход материалов и длительность процесса.

Самыми экономичными являются прогрев смеси методом «термоса» или ИК-излучателями, использующими небольшое количество электроэнергии. Что касается эффективности, то у этих способов она ниже, чем при обогреве нагревательными проводами, электродами или паром.

Прогрев бетона электродами технология

Требования СНиП 3-03-01-87 устанавливают нормативы по прогреву бетона в зимнее время, который проводится при условии, что показатели суточной минимальной температуры воздуха составляют менее 0°С. Технологический прогрев бетона в зимнее время необходим для недопущения замораживания жидкого бетонного раствора и предотвращения появления льда в конструкции и вокруг арматурных стержней.

Схема расположения греющего кабеля в бетоне

Вода в растворе, как элемент реакции гидратации, в твердом состоянии не способна активировать и начинать ускорять затвердевание бетона. Скорее наоборот – лед начинает разрушать материал, так как увеличивает внутреннее давление в конструкции. При повышении температуры процесс гидратации продолжается, но качество бетонного элемента и его долговечность теряются. Поэтому были разработаны методы прогрева бетона, основы которых описаны ниже. Все способы прогрева бетона в зимнее время постоянно и активно эксплуатируются, но какой из них будет наиболее эффективен для конкретного строительного объекта, нужно выяснять на месте.

Прогрев ИФ излучением

Эта технология прогрева бетона основана на действии направленного инфракрасного излучения. То есть, подогреваемый материал обрабатывается именно в том месте, на которое направлены лучи. Оборудование устанавливается в месте, где будет осуществляться нагрев, опалубка при этом не мешает. Можно обогревать и саму поверхность бетона, а мощность излучения регулируется изменением расстояния между инфракрасной установкой и прогреваемым объектом. На практике инфракрасный прогрев бетона применяется на небольших объектах.

График воздействия инфракрасного излучения

Инфракрасный подогрев бетона – это высокоэффективная технология, оборудование просто в использовании, энергетические затраты небольшие. Также из достоинств следует отметить мобильность оборудования.

Недостатки – дороговизна оборудования, а также то, что одной установкой невозможно прогреть бетон зимой, если объект большой или объемный. То есть, может потребоваться несколько установок. Также при работе излучающего оборудования в осенний период влага слишком быстро испаряется, что отрицательно сказывается на качестве и надежности объекта. С этим явлением можно бороться, что вызывает дополнительные финансовые и временные затраты. Самый доступный и экономичный вариант — полиэтиленовая пленка.

Провод ПНСВ в строительстве

Технологический прогрев бетона проводом ПНСВ несложен. Перед заливкой раствора в опалубку или форму туда по рассчитанной заранее схеме укладывается греющий кабель ПНСВ. На схему от понижающего трансформатора подается напряжение питания, вследствие чего бетонная смесь равномерно и постоянно прогревается.

Такая схема прогрева бетона имеет свои преимущества: это не слишком высокий расход электроэнергии и низкая себестоимость способа – расходы идет только на провод пнсв и трансформатор. Например, схема подключения с трансформатором мощностью 80 кВт может прогреть площадь до 90 м 3 .

Схема подключения провода ПНСВ

Недостаток — длительная и трудозатратная подготовка к прогреву поверхности: необходимо правильно уложить (на нужной глубине) и подключить кабель (пример показан на схеме).

Прогрев электродами

Что значит прогрев бетона электродами? Провод ПНСВ заменяется проволочными или арматурными электродами Ø 8-12 мм. Такой прогрев бетона в зимнее время электродами подойдет только для заливки вертикальных или объемных объектов, так как электроды для прогрева бетона втыкаются в раствор вертикально, и на них так же, как и на схему из провода ПНСВ, подается напряжение от понижающего трансформатора. Расстояние между электродами — 0,6-1 м.

Схема подключения прогрева бетона электродами

Преимущества: простота монтажа. Недостатки: высокое энергопотребление и дороговизна схемы, так как все электроды остаются в конструкции.

Греющая опалубка (термос)

Метод греющей опалубки — это обогрев бетона специальными нагревательными элементами. Расчеты при таком обогреве показывают, что количество тепла в растворе должно быть не меньше количества тепловых потерь при остывании конструкции за все время, которое нужно для получения окончательной твердости бетона.

Схема греющей опалубки

Нагревательный элемент — электрический пленочный. Преимущества этого способа — возможность прогрева одновременно нескольких площадей или одной большой поверхности, низкое энергопотребление и мобильность. Недостаток греющей опалубки — высокая стоимость конструкции.

Индукционный прогрев

Такой электропрогрев бетона в зимний период основан на работе простой индукционной катушки. Метод индукции для прогрева используется в конструкциях с замкнутым контуром, где длина объекта больше размера его сечения. Индукционный прогрев должен проводиться с подключением понижающего трансформатора на 12-36 В.

Схема индуктора

Витки индуктора выкладываются заранее по шаблону, затем в проделанные в растворе пазы укладывается кабель, и заливается бетонная смесь. После подключения устройства температура бетона должна контролироваться, и по достижении максимального значения индуктор выключается. Если этого недостаточно, то дальнейший способ электропрогрева — метод термоса. Также можно переключить индуктор в импульсный режим.

Преимущества такого метода: равномерный прогрев всей конструкции, экономия на арматуре и электродах, низкое энергопотребление (расход электроэнергии на 1 м³ — до 150 кВт/ч).

Недостатки: маленькая площадь прогрева одним устройством. При увеличении размеров индуктора увеличивается потребление электроэнергии.

Прогрев термоматами

Способ, как прогреть бетон термоэлектроматами, хорош тем, что сам прибор работает автономно, и его работу не нужно контролировать. Тероматы потребляют очень мало электроэнергии – меньше, чем при методе прогрева проводом или индуктором, а результат лучше, так как при равномерном обогреве раствора нет локальных зон перегрева, образование которых может привести к появлению микротрещин в конструкции.

Схема термоэлектромата

Преимущества обогрева бетонного раствора термоэлектроматами — простота применения устройств, также легко подключаемый термомат – это многоразовое оборудование, которое может прослужить до 12 месяцев при активной постоянной работе. Следующее достоинство — высокое качество результатов вследствие большой глубины прогрева: за одну рабочую смену бетон достигает 70-80 % своей нормативной марочной прочности.

Недостаток – термомат дорого стоит, вследствие этого на рынок выбрасывается много поддельного некачественного оборудования.

Тепловой шатер

Этот способ известен давно, так как является самым первым из всех существующих методом прогрева бетона в зимнее время. Состоит он в том, что над бетонной конструкцией обустраивается каркас из любого материала, например, из деревянных брусков или металлических труб, и этот каркас обтягивается брезентом или другим рулонным материалом. Каркас можно сделать силами одного рабочего.

Схема теплового шатра

Внутри получившегося шатра устанавливается любое обогревательное устройство, например, газовая пушка. Это может быть также электрическая или дизельная пушка, и даже примитивный костер, который и будет обогревать объем сооруженного шатра.

Преимущества этого способа очевидны – дешевизна, эффективность, минимальные энергозатраты. Из недостатков – только один: таким способом можно прогреть небольшой объем бетона.

Расчет прогрева бетона

Чтобы рассчитать длину провода ПНСВ для одной секции, а также требуемое количество таких секций для определенной бетонной конструкции, учитываются технические характеристики самого провода и рабочее напряжение понижающего трансформатора. Например, при напряжении на трансформаторе 220В длина одной секции провода ПНСВ сечением 1,2 мм будет равна 110 метров. При уменьшении напряжения происходит пропорциональное сокращение длины отрезка кабеля в секции.

Если взять средний расход провода 50-60 м/м³ для одной обогревательной секции, то излучаемое тепло может прогреть бетонную массу до 80°С.

Схема размещения электродов в бетоне

Чтобы начать расчет эмпирической зависимости среднего значения температуры бетона при остывании от площади поверхности, необходимо учитывать следующие факторы и расчеты:

  1. Среднегодовой прогноз погоды на зимний период в регионе за несколько лет. Также берется в расчет прогнозируемое значение среднего температурного показателя воздуха за текущий зимний период.
  2. Рассчитывается модуль рабочей прогреваемой поверхности, и, исходя из этих расчетов, определяется соответствующая термосная выдержка раствора.
  3. По установленной формуле рассчитывается средняя температура конструкции за время ее охлаждения.
  4. Требуется информация о температуре доставляемой готовой бетонной смеси и ее экзотермических характеристиках. Эти данные можно узнать у завода-изготовителя.
  5. Согласно установленным формулам определяются тепловые потери при транспортировке смеси и ее разгрузке.
  6. Также необходимо определить температуру раствора с начала его укладки с учетом отдачи тепла на прогрев опалубки и арматуры.
  7. Опираясь на нормативные требования прочности бетона, рассчитывают время охлаждения раствора.

Такой способ расчетов работает при прогнозировании времени застывания бетона, учета тепловых потерь при заливке смеси, и излучения тепла с рабочей поверхности, но такие расчеты являются приблизительными.

Зачем нужна технологическая карта прогрева бетона

Большая часть территории России — регионы с ярко выраженными временами года. Есть зима с отрицательными температурами, теплое лето и межсезонье.

При осуществлении частной застройки строители планируют бетонные работы на начало осени, но в крупном строительстве допускать простои в работах длиной по полгода нерентабельно. Могут быть и другие причины бетонирования при неподходящих температурах:

  1. Работы на слабых грунтах, которые возможны только зимой.
  2. Сезонное снижение стоимости материалов и работ.
  3. Возможность без проблем подвозить материалы по замерзшим дорогам.

Поэтому разработаны меры по прогреву бетона.

Зачем необходим прогрев бетона в зимнее время

В СП 70.13330 указано, что производство работ по бетонированию при среднесуточных температурах наружного воздуха ниже +5° С или при минимальной суточной температуре воздуха ниже 0° С считается зимним бетонированием.

Почему особо выделяются эти температуры?

Основной компонент бетона — цемент. Его также называют вяжущим компонентом.

Цемент — это вяжущее водного твердения. Это означает, что для получения твердого и прочного бетонного камня необходимо, чтобы компоненты цемента вступили в химические реакции с водой, так называемые реакции гидратации.

Со стороны кажется, что цемент просто смешали с водой и заполнителями и высушили, но это не так. При реакции составляющих цемента, таких, как алит, белит, трехкальциевый алюминат и четырехкальциевый алюмоферрит, образуются новые соединения кристаллической структуры.

Процессы гидратации требуют времени; аллит, ферритная и алюминатная фазы вступают в реакцию быстро, белит реагирует медленнее. В общей сложности необходимо 28 суток, чтобы бетон набрал расчетную прочность.

Различают также критическую прочность бетона. Это прочность, по достижении которой бетону уже не страшны неблагоприятные условия окружающей среды; обычно это 30—50% от проектной прочности.

Оптимальными условиями отвердевания бетона являются:

  1. температура наружного воздуха 18—20° С;
  2. высокая влажность воздуха.

Что происходит, если температура воздуха опускается ниже?

С понижением температуры процессы химических реакций все более замедляются.

Впоследствии, если бетон согреть, он наберет прочность, но она будет ниже ожидаемой.

Если температура воздуха опускается до 0° С и ниже, вода которая не успела прореагировать с компонентами цемента, замерзнет. При замерзании она расширится и приведет к образованию пустот и трещин в бетоне, что негативно отразится на прочности готового изделия. Образование ледяной пленки вокруг арматуры будет способствовать ее отслаиванию.

Поскольку количество воды в бетонной смеси рассчитывается заранее, составляющим цемента не хватит воды для реакции, таким образом, гидратация пройдет не полностью, и это снизит прочность бетона.

Вот почему при зимнем бетонировании следует принимать определенные меры, обеспечивающие правильное протекание реакций гидратации.

Эти меры делятся на три вида:

  1. добавление особых компонентов в бетонный раствор;
  2. сохранение тепла;
  3. прогрев бетона.

У каждого из этих мероприятий есть свои плюсы и минусы. Решение принимается исходя из конкретной ситуации.

Существуют определенные стандарты на проведение любых прогревающих мероприятий, которые позволяют провести их наиболее эффективно и экономически целесообразно. Они отражены в технологических картах.

Применение специальных добавок для бетонных растворов.

Противоморозные добавки увеличивают скорость реакций и одновременно снижают температуру застывания воды в смеси, благодаря чему бетон отвердевает и при пониженных температурах.

Добавки-ускорители твердения способствуют быстрому набору критической прочности, после чего бетону уже не страшен холод.

Самый простой вариант противоморозных добавок — хлористые соли, но у их применения много ограничений, так как они совместимы не с любым видом портландцемента и работают только до температуры –10°С, кроме того, не рекомендованы к применению в армированных конструкциях, поскольку могут вызвать коррозию арматуры.

Другое дело — специальные добавки, например, CemFrio и HotIce от CEMMIX.

У этих добавок много преимуществ:

  1. низкие дозировки;
  2. простая процедура добавления;
  3. эффективная работа до температуры –20° С без прогревающих мероприятий;
  4. дополнительное пластифицирующее действие, позволяющее получать смеси повышенной удобоукладываемости;
  5. предотвращение расслаивания смеси;
  6. хорошая совместимость с любыми видами цементов и с арматурой;
  7. экономия цемента и воды;
  8. увеличение прочности готового изделия.

Сохранение тепла

При протекании реакций гидратации в бетонной смеси выделяется тепло. Если залитая конструкция имеет большой размер и достаточную толщину, тепла выделяется достаточно для того, чтобы не дать бетону замерзнуть. Нужно только сохранить его.

С этой целью применяют метод термоса:

  1. Бетон замешивают из прогретых материалов. Цемент прогревать нельзя во избежание «заваривания», а заполнители, арматуру и опалубку прогревают горячим воздухом, воду подогревают до температуры 70° С.
  2. Применяют утепленную опалубку.
  3. После укладки бетонной смеси ее температура должна быть не ниже +10° С.
  4. Заливку укрывают теплоизолирующими материалами. Иногда используют специальные прогревающие маты.
  5. Периферические части конструкций могут дополнительно прогреваться электродами.
  6. Дополнительно применяют противоморозные добавки для бетона.
Читать еще:  Как собрать реечный потолок своими руками: инструкция по монтажу

Метод термоса эффективен для крупных конструкций, но его недостаточно, если у заливки большая площадь охлаждения, либо температуры слишком низкие (ниже –10° С).

Прогрев бетона

Есть несколько способов прогрева бетона:

  1. тепляки;
  2. электродный прогрев;
  3. инфракрасный прогрев;
  4. индукционный прогрев;
  5. термоматы;
  6. прогрев бетона с помощью ПНСВ.
Тепляки

Тепляки — это своеобразные «шатры», которые возводят над бетонной заливкой. Внутри устанавливают тепловые пушки, которые поддерживают температуру на нужном уровне. По достижении конструкцией критической прочности шатры можно демонтировать.

Электродный прогрев

Внутри опалубки закрепляют электроды, благодаря чему через бетонный раствор можно пропускать ток и таким образом греть бетон.

Технологическая карта на электродный прогрев конструкций из монолитного бетона содержит организационные и технические решения по электродному прогреву бетона с целью ускорения работ и повышения качества конструкций, которые изготавливаются в холодный сезон.

Эти решения разработаны в соответствии с требованиями СНиП. Подробнее можно ознакомиться с ними в СП 70.13330.2012 «Несущие и ограждающие конструкции» п. 5.11 «Производство бетонных работ при отрицательных температурах».

  1. область применения электродного прогрева (сквозного, периферийного, арматурного) со схемами и указаниями о подготовке конструкций;
  2. допустимость применения противоморозных добавок, их вид и количество;
  3. область применения гидротеплоизоляции;
  4. методы и график выполнения работ;
  5. калькуляцию трудозатрат;
  6. параметры прогрева;
  7. необходимые материально-технические ресурсы;
  8. технику безопасности;
  9. требования к качеству и приемке работ;
  10. технико-экономические показатели.

Технологическая карта позволяет правильно и своевременно произвести все необходимые работы по электродному прогреву бетонных конструкций в зимнее время.

Инфракрасный прогрев

Бетон прогревают инфракрасным излучением.

Индукционный прогрев

Разогревает арматуру, от нее прогревается и бетон.

Термоматы

На поверхности заливки раскладываются обогреватели в виде матов. Они равномерно прогревают бетон.

Прогрев бетона с помощью ПНСВ (провода нагревательного со стальной жилой и изоляцией из полиэтилена или поливинилхлоридного пластиката)

Провод ПНВС расшифровывается следующим образом:

  1. П — провод;
  2. Н — нагревательный;
  3. С — материал провода (сталь);
  4. В — материал изоляции (винил, который правильнее называть поливинилхлоридом).

Провод погружается в бетон; не реже двух раз за смену проверяют напряжение в цепи.

Технологическая карта на электрообогрев нагревательными проводами монолитных конструкций содержит указания по электрообогреву конструкций с помощью ПНСВ. В ней можно найти сведения, касающиеся области применения метода, организации и технологии выполнения работ, требований по приемке.

При выборе любого метода прогрева дополнительное применение противоморозных добавок будет целесообразным. Все методы прогрева — дорогостоящие мероприятия, поэтому, чем быстрее их можно будет прекратить, тем больше средств будет сэкономлено. Добавки-ускорители твердения и противоморозные добавки позволяют бетону быстрее достичь критической прочности, после чего можно отменить прогревающие мероприятия.

Какова продолжительность прогрева бетона

Бетон прогревается до тех пор, пока не достигнет критической прочности (30—50% от проектной). Обычно это происходит на 4—6-й день.

Прочность бетона определяют по фактическому температурному режиму при помощи графиков.

Для более точного определения сроков используют лабораторные исследования, для которых изготавливают отливки-образцы и позволяют им набирать прочность в таких же условиях, как и основная конструкция.

Применение противоморозных добавок при зимних бетонных работах гарантирует получение качественных бетонных конструкций даже в условиях отрицательных температур. Совмещение применения противоморозных добавок с методом термоса или прогревом бетона не только гарантирует набор прочности, но и сокращает продолжительность термообработки, а значит, позволяет сэкономить электроэнергию и повысить оборачиваемость дорогостоящего оборудования и опалубки. Грамотное применение прогревающих мероприятий и противоморозных добавок в соответствии с технологической картой позволяет получать зимний бетон высокого качества.

Зачем нужна технологическая карта прогрева бетона

ТИПОВАЯ ТЕХНОЛОГИЧЕСКАЯ КАРТА (ТТК)

ПРОГРЕВ МОНОЛИТНЫХ БЕТОННЫХ И ЖЕЛЕЗОБЕТОННЫХ КОНСТРУКЦИЙ В ТЕПЛЯКАХ ПРИ БЕТОНИРОВАНИИ В ЗИМНЕЕ ВРЕМЯ С ИСПОЛЬЗОВАНИЕМ ВОЗДУХОНАГРЕВАТЕЛЬНОЙ ДИЗЕЛЬНОЙ УСТАНОВКИ

I. ОБЛАСТЬ ПРИМЕНЕНИЯ

I. ОБЛАСТЬ ПРИМЕНЕНИЯ

1.1. Типовая технологическая карта (именуемая далее по тексту ТТК) — комплексный организационно-технологический документ, разработанный на основе методов научной организации труда предназначенный для использования при разработке Проектов производства работ (ППР), Проектов организации строительства (ПОС) и другой организационно-технологической документации в строительстве.

ТТК может использоваться для правильной организации труда на строительном объекте, определения состава производственных операций, наиболее современных средств механизации и способов выполнения работ по конкретно заданной технологии.

ТТК является составной частью Проектов производства работ (далее по тексту — ППР) и используется в составе ППР согласно МДС 12-81.2007.

1.2. В настоящей ТТК приведены указания по организации и технологии производства работ по прогреву монолитных бетонных и железобетонных конструкций в тепляках при бетонировании в зимнее время.

Определён состав производственных операций, требования к контролю качества и приемке работ, плановая трудоёмкость работ, трудовые, производственные и материальные ресурсы, мероприятия по промышленной безопасности и охране труда.

1.3. Нормативной базой для разработки технологической карты являются:

— рабочие чертежи;

— строительные нормы и правила (СНиП, СН, СП);

— заводские инструкции и технические условия (ТУ);

— нормы и расценки на строительно-монтажные работы (ГЭСН-2001, ЕНиР, ВНиР, ТНиР);

— производственные нормы расхода материалов (НПРМ);

— местные прогрессивные нормы и расценки, нормы затрат труда, нормы расхода материально-технических ресурсов.

1.4. Цель создания ТК — описание решений по организации и технологии производства строительно-монтажных работ по прогреву монолитных бетонных и железобетонных конструкций в тепляках при бетонировании в зимнее время с целью обеспечения высокого качества, а также:

— снижение себестоимости;

— сокращение продолжительности строительства;

— обеспечение безопасности выполняемых работ;

— организации ритмичной работы;

— рациональное использование трудовых ресурсов и машин;

— унификация технологических решений.

1.5. На базе ТТК в составе ППР (как обязательные составляющие Проекта производства работ) разрабатываются Рабочие технологические карты (РТК) на выполнение отдельных видов электромонтажных работ (СНиП 3.01.01-85* «Организация строительного производства») по прогреву монолитных бетонных и железобетонных конструкций в тепляках при бетонировании в зимнее время.

Конструктивные особенности их выполнения решаются в каждом конкретном случае Рабочим проектом. Состав и степень детализации материалов, разрабатываемых в РТК, устанавливаются соответствующей подрядной строительной организацией, исходя из специфики и объема выполняемых работ.

РТК рассматриваются и утверждаются в составе ППР руководителем Генеральной подрядной строительной организации.

1.6. ТТК можно привязать к конкретному объекту и условиям строительства. Этот процесс состоит в уточнении объёмов работ, средств механизации, потребности в трудовых и материально-технических ресурсах.

Порядок привязки ТТК к местным условиям:

— рассмотрение материалов карты и выбор искомого варианта;

— проверка соответствия исходных данных (объемов работ, норм времени, марок и типов механизмов, применяемых строительных материалов, состава звена рабочих) принятому варианту;

— корректировка объемов работ в соответствии с избранным вариантом производства работ и конкретным проектным решением;

— пересчёт калькуляции, технико-экономических показателей, потребности в машинах, механизмах, инструментах и материально-технических ресурсах применительно к избранному варианту;

— оформление графической части с конкретной привязкой механизмов, оборудования и приспособлений в соответствии с их фактическими габаритами.

1.7. Типовая технологическая карта разработана на новое строительство и предназначена для инженерно-технических работников (производителей работ, мастеров) и рабочих на строительно-монтажных работах, выполняющих работы в III-й температурной зоне, с целью ознакомления (обучения) их с правилами производства работ по прогреву монолитных бетонных и железобетонных конструкций в тепляках при бетонировании в зимнее время, с применением наиболее современных средств механизации, прогрессивных конструкций и способов выполнения работ.

Технологическая карта разработана на следующие объёмы работ:

— монолитные конструкции — 100,0 м .

II. ОБЩИЕ ПОЛОЖЕНИЯ

2.1. Технологическая карта разработана на комплекс строительно-монтажных работ по прогреву монолитных бетонных и железобетонных конструкций в тепляках при бетонировании в зимнее время.

2.2. Строительно-монтажные работы по прогреву монолитных бетонных и железобетонных конструкций в тепляках при бетонировании в зимнее время, выполняют круглосуточно, в три смены, продолжительность рабочего времени в течение смены составляет:

где 0,828 — коэффициент использования ТП по времени в течении смены (время связанное с подготовкой ТП к работе и проведение ЕТО — 15 мин. перерывы связанные с организацией и технологией производственного процесса).

2.3. В состав, последовательно выполняемых строительно-монтажных работ по прогреву монолитных бетонных и железобетонных конструкций в тепляках в зимнее время входят следующие технологические операции:

— расчет параметров выдерживания бетона в тепляке;

— изготовление и установка тепляка;

— установка опалубки, арматуры, укладка бетонной смеси;

— выдерживание бетона в тепляке;

— контроль качества и приемка работ.

2.4. Технологической картой предусмотрено выполнение работ с использованием следующего электротехнического оборудования: воздухонагреватель дизельный Master B 150 CED (N=44 кВт, =900 м , m=28 кг); бензопила STIHL MS 180-14 (мощность N=2,0 л.с., вес Р=3,9 кг, длина шины =35 см).

Рис.1. Воздухонагреватель Master B 150 CED

Рис.2. Бензопила STIHL MS 180-14

III. ОРГАНИЗАЦИЯ И ТЕХНОЛОГИЯ ВЫПОЛНЕНИЯ РАБОТ

3.1. В соответствии с СП 48.13330.2001 «СНиП 12-01-2004 Организация строительства. Актуализированная редакция» до начала выполнения строительно-монтажных работ на объекте Подрядчик обязан в установленном порядке получить у технического Заказчика проектную документацию и нотариально заверенную копию разрешения на строительство, по форме, приведённой в Приложении N 1 к приказу Министерства строительства и жилищно-коммунального хозяйства РФ от 19 февраля 2015 г. N 117/пр. Выполнение работ без разрешения запрещается.

3.2. До начала производства строительно-монтажных работ на объекте подрядной строительной организации необходимо провести комплекс организационно-технических мероприятий, в том числе:

— заключить с техническим Заказчиком (застройщиком) договор строительного подряда на строительство здания (сооружения);

— получить от технического Заказчика (застройщика) проектную и рабочую документацию на весь объект, его часть или на данные виды работ, согласно п.5.4 СП 48.13330-2011;

— принять площадку для строительства согласно п.6.2.5 СП 48.13330-2011, оформленную Актом передачи земельного участка под строительную площадку, по форме, приведённой в Приложении Б, СТО НОСТРОЙ 2.33.51-2011;

— получить от технического Заказчика (застройщика) постановление органов местного самоуправления о предоставлении земельного участка для строительства в соответствии со ст.8, п.8 Земельного кодекса РФ;

— получить от технического Заказчика (застройщика) Акт выбора земельного участка для строительства объекта, утверждённый решением органа местного самоуправления либо исполнительного органа государственной власти субъекта РФ;

— не менее чем за 10 дней до начала выполнения строительных работ получить от технического Заказчика (застройщика) техническую документацию на геодезическую разбивочную основу и закрепленные на площадке строительства пункты геодезической основы с составлением Акта освидетельствования геодезической разбивочной основы объекта капитального строительства, по форме, приведённой в Приложение 1, РД-11-02-2006;

— решить основные вопросы, связанные с материально-техническим обеспечением строительства, в т.ч. заключение договоров на поставку материально-технических ресурсов, размещение заказов на изготовление элементов сборных конструкций, деталей и изделий, необходимых для строительства объекта (сооружения);

— получить у строительного контроля Заказчика основные комплекты рабочих чертежей с надписью «В производство работ» и обеспечить ими строительный участок;

— организовать тщательное изучение проектных материалов, содержащих исходные данные для строительства мастерами и производителями работ;

— разработать ППР «Работы нулевого цикла при строительстве зданий и сооружений», содержащий решения по организации строительного производства, технологии строительно-монтажных работ, согласовать их с Генеральным подрядчиком и строительным контролем Заказчика;

— назначить лиц, ответственных за безопасное производство работ, а также их контроль и качество выполнения;

— укомплектовать бригаду (звено) рабочими соответствующих профессий и машинистами строительных машин необходимой квалификации;

— ознакомить бригадиров и звеньевых с Проектом производства работ, Технологическими картами и технологией производства монтажных работ, а также выдать бригадам и звеньям Наряды-задания, Калькуляции и Лимитно-заборные карты на материалы на весь объем порученных работ;

— провести инструктаж членов бригады по технике безопасности и обеспечить рабочих средствами индивидуальной защиты;

— установить временные инвентарные бытовые помещения для хранения строительных материалов, инструмента, инвентаря, обогрева рабочих, приёма пищи, сушки и хранения рабочей одежды, санузлов и т.п.;

— разработать схемы и устроить временные подъездные пути для движения транспорта к месту производства работ;

— устроить временные складские площадки для приёма конструкций, строительных деталей и материалов;

— подготовить к производству работ машины, механизмы и оборудования, доставить их на объект, смонтировать и опробовать;

— доставить на строительную площадку необходимый инвентарь, приспособления для безопасного производства работ, электрифицированный, механизированный и ручной инструмент;

— обеспечить строительную площадку противопожарным инвентарём и средствами сигнализации;

— оградить строительную площадку и выставить предупредительные знаки, освещённые в ночное время;

— обеспечить связь для оперативно-диспетчерского управления производством работ.

3.3. Общие положения

3.3.1. Возведение монолитных бетонных и железобетонных конструкций при среднесуточной температуре наружного воздуха ниже +5°С и минимальной суточной температуре ниже 0°С должно осуществляться с проведением мероприятий, обеспечивающих твердение бетона и получение в заданные сроки прочности, морозостойкости, водонепроницаемости и других свойств, указанных в проекте.

3.3.2. В холодные дни при появлении вероятности падения температуры в отрицательную зону на строительных площадках применяют различные способы обогрева бетонного раствора. Одной из самых старых технологий является прогрев бетона в тепляках или шатрах.

3.3.3. Сущность метода бетонирования в тепляках заключается в создании вокруг возводимой конструкции замкнутого термоизолированное пространства — тепляка, т.е. временного сооружения и нагреть его до требуемой температуры при помощи обогревателей или тепловых пушек.

Рис.3. Схема выдерживания бетона в тепляке

3.3.4. Метод бетонирования в тепляках рекомендуется использовать при возведении конструкций нулевого цикла, некоторых конструкций надземной части зданий и сооружений выше нулевой отметки, гидротехнических блоков, искусственных транспортных сооружений, железобетонных дымовых труб, силосов, градирен и т.п., а также в тех случаях, когда другие методы выдерживания бетона технологически не приемлемы, а производство работ на открытом воздухе неэффективно из-за длительных перерывов для обогрева рабочих, а также снижения качества бетона при сильных морозах и ветре.

3.3.5. Тепляки представляют собой временные помещения для установки опалубки, монтажа арматуры, укладки бетонной смеси и выдерживания бетона. Шатер делается из брезента, полиэтиленовой пленки, древесины или других полимерных материалов с требуемыми характеристиками.

3.3.6. Тепляком, как правило, укрывают лишь отдельную часть всей конструкции, которая заливается в настоящий момент. Потом шатер перемещают к следующей части. Но если возможности позволяют, то накрыть можно сразу всю конструкцию.

3.3.7. По конструкции, габаритам и способам укладки в тепляках бетонной смеси применяются тепляки следующих типов:

— малые брезентовые (палатки), в которых укладка смеси производится средствами механизации, расположенными вне тепляка;

— объемные, внутри которых размещаются средства механизированной укладки смеси и обеспечен въезд автотранспорта;

— передвижные, перемещаемые вдоль бетонируемых протяженных конструкций (ленточных фундаментов, подземных каналов, мостовые сооружения и т.п.);

— подъемные для возведения высотных железобетонных вооружений (дымовых труб, силосов, телевизионных башен и др.).

3.3.8. Малые брезентовые тепляки (см. Рис.4) могут применяться при бетонировании конструкций нулевого цикла с небольшими размерами в плане (фундаменты под колонны, под оборудование, опоры, небольшие устои мостов и т.п.).

Предварительный отогрев промороженного основания, опалубки и арматуры производят в тепляке, на время механизированной укладки бетонной смеси палатку снимают, по окончании бетонирования ее снова устанавливают и выдерживают в ней бетон до приобретения им заданной прочности. При наличии в верхней части палатки открывающегося проема достаточных размеров палатку на время бетонирования можно не снимать, а подавать бетонную смесь через проем с помощью бадьи на крюке крана. Палатку без проема в верхней части можно не снимать при подаче бетонной смеси ленточным бетоноукладчиком или бетононасосом через боковой (дверной) проем палатки. При сильных морозах рекомендуется применять двухслойные палатки. В качестве тепляков можно использовать как выпускаемые промышленностью палатки общего назначения, так и сшитые специально для применения в качестве тепляков при бетонировании конкретных конструкций.

Доступ к полной версии этого документа ограничен

Ознакомиться с документом вы можете, заказав бесплатную демонстрацию систем «Кодекс» и «Техэксперт».

Прогрев (электропрогрев) бетона в зимнее время проводом пнсв: технологическая карта

Необходимость прогрева бетона в зимнее время появляется довольно часто. Несмотря на то, что обычно ремонтно-строительные работы проводят в теплое время года без нарушения технологического процесса, часто остановка производства стоит очень дорого и поэтому актуально использование разнообразных методов прогрева.

Согласно нормативам и правилам, заливать обычный бетон при минусовой температуре нельзя, так как смесь не застывает нормально, теряет большую часть прочности, становится причиной разрушений и деформаций. Для того, чтобы соблюсти график выполнения работ и обеспечить их высокое качество, бетон прогревают кабелями и трансформатором, индукционным и инфракрасным методами, применяют сварочные аппараты и противоморозные добавки.

До начала работ обязательно создается технологическая карта на прогрев любым выбранным методом, в которой указываются все основные положения, условия, этапы работ. Опытные мастера утверждают, что наилучшего результата можно добиться при использовании одновременно противоморозных добавок и одного из методов прогрева.

С одной стороны, специальные присадки помогают смеси быстрее застывать, устраняют пузыри воздуха, делают ее более прочной, с другой же – прогрев должен осуществляться под контролем и с заведомо установленными показателями, чтобы не допустить замерзания бетона и его перегрева. Для этих целей рекомендовано использовать специальные регуляторы, контроллеры либо же обращаться к профессионалам.

Технологическая карта и способы прогрева бетона

На прогрев бетона в зимнее время технологическая карта составляется обязательно. Чтобы все работы были выполнены качественно, эффективно и безопасно, важно четкое соблюдение технологии, нормативов. Найти примеры документа можно в сети, но для каждого конкретного объекта составляется индивидуальный план на прогрев.

Технологическая карта составляется с использованием СНиП, ЕНиР и ГЭСН, включает важные справочные данные касательно того, какая температура должна быть, какой метод прогрева выбран, указываются необходимые устройства и инструменты, весь процесс и т.д.

Главные разделы любой технологической карты:

  • Сфера применения способа прогрева
  • Технология, организация и этапы выполнения работ
  • Расчет трудозатрат
  • Основные требования к качеству работ
  • График осуществления всех задач
  • Необходимые материальные ресурсы
  • Охрана труда и обеспечение безопасности
  • Все важные технико-экономические показатели
  • Схемы укладки, подключения проводов, электродов, длина нагревательных элементов, контроль временного/температурного режимов и т.д.

Прогревать сварочным аппаратом

Данный способ предполагает выполнение прогрева с использованием кусков арматуры, лампы накаливания, термометра для измерения температуры. Куски арматуры устанавливаются параллельно цепи, с прямыми и примыкающими проводами, а между ними монтируют лампу накаливания, которая измеряет напряжение.

Для измерения температуры используют градусник. Обычно по времени данный процесс занимает много – около 2 месяцев. На весь период прогревания бетона конструкция должна быть надежно защищена от воздействия воды и холода. Как правило, обогрев сварочным аппаратом применяют в случае необходимости прогрева небольших объемов бетона и при условии хорошей погоды.

Инфракрасный метод

Данный метод базируется на использовании тепловой энергии, которая преобразуется из излучения прибора, что функционирует в инфракрасном диапазоне. Этот тип прогрева осуществляется за счет электромагнитных колебаний, где скорость распространения волны равна 2.98 х 108 м/с, а длина волны равна 0.76-1000 мкм. В роли генератора часто выступают трубки, сделанные из металла и кварца.

За счет лучей энергия доходит до более глубоких слоев бетона, процесс реализуется постепенно и плавно. Высокие показатели мощности запрещены и не эффективны, так как верхний слой бетона прогреется, а нижний останется холодным, что станет причиной распространения деформаций, разрушений и т.д. Метод чаще всего применяется для прогрева тонких слоев конструкции и подготовки раствора с целью ускорения времени адгезии.

Читать еще:  Мангальная зона на даче: готовые проекты и фото

Индукционный метод

Технология индукционного прогрева используется для ускорения набора железобетоном нужного показателя прочности при минусовых температурах. Применение технологии подходит лишь для армированных конструкций – всех тех, что содержат внутри металлические элементы (они выступят в роли сердечника).

Технология базируется на таком принципе электродинамики, как магнитная индукция. Вокруг залитого элемента (часто для колонн, к примеру) петлями размещают изолированный кабель, который выступает в роли индуктора. Количество мотков и сечение провода определяют методом расчета. Переменный ток пускают по кабелю, в конструкции появляется электромагнитное поле, прогревающее внутренние элементы армирования, от которых тепло идет на бетон.

Сердечником может выступить и металлическая опалубка – тогда прогревают снаружи. Такой способ довольно редко используют, так как в подобных условиях большую эффективность демонстрирует греющая опалубка.

Все открытые части бетона должны быть укрыты теплоизолирующими материалами, чтобы снизить теплопотери. Когда смесь достигает расчетной температуры, используют метод термоса либо изометрическое выдерживание посредством периодического отключения питания. Электропрогрев бетона по данной технологии предполагает расход на уровне 120-150 кВт-ч/м3 бетона.

Основные преимущества индукционного прогрева:

  • Сравнительно невысокая цена
  • Равномерность прогрева
  • Независимость от электропроводящих характеристик бетона
  • Возможность предварительно обогревать опалубку, арматуру без дополнительного оборудования

Из недостатков метода стоит упомянуть такие, как необходимость выполнения больших объемов индивидуальных расчетов, а также ограниченное использование в плане конструкций (обычно это трубы, балки, колонны и т.д.). Для индукционного прогрева бетона понадобятся: трансформатор КТПТО-80, кабель (КРПТ 1х25, 3х50, 3х25 + 1х16).

Применение трансформаторов

Трансформаторы применяются для прогрева бетона довольно часто. В большинстве случаев это ТМОБ, КТПТО-80, ТСДЗ-80 и другие.

Главные преимущества данного метода:

  • Повышение производительности труда за счет отсутствия простоя
  • Возможность проводить работы в любое время года
  • Соблюдение сроков строительства
  • Рациональное применение оборудования и транспорта
  • Повышение прочности бетона и соответствие готовой конструкции всем требованиям и нормам
  • Отсутствие дополнительных затрат на присадки, пластификаторы и т.д.

Прогрев бетона с использованием трансформатора может осуществляться двумя методами: проводом ПНСВ или электродами. Установка преобразовывает электроэнергию в тепло, за счет дополнительных средств передает его в бетонную массу. Смесь нагревается до +80 градусов, но интенсивность подачи тепла можно регулировать.

Нагрев требует определенного времени, обязательно контролируется и регулируется – за основу может быть взята таблица с расчетами или нормативные документы. При выборе одного из двух способов обязательно учитывают требование в равномерном распределении по бетону тепловой энергии.

Если планируется использовать электроды, то прогревочный трансформатор подключают к ним. Это могут быть поверхностные (нашивные, полосовые, пластичные) или внутренние (стержневые, струнные) электроды. Допускается применение исключительно переменного тока. Больше всего подходят для этой цели трансформаторы типа КТПТО.

Использование кабеля

Для прогрева бетона применяют провода ПНСВ разного производства толщиной 1.2-3 миллиметра. Жилы проводов делают из стали, вокруг есть специальная изоляция. Провод раскладывают по периметру объекта, кабель крепят к арматуре. Каркас позволяет исключить возможность соприкосновения проводника с землей или опалубкой. Для таких работ применяют сухие или масляные трансформаторы.

Прогрев кабелем не требует слишком больших затрат электроэнергии, дорогостоящего дополнительного оснащения.

Как проходит процесс:

  • Кабель устанавливается на бетонное основание до заливки.
  • Все надежно фиксируется крепежными деталями.
  • Кабель проверяется на предмет наличия повреждений (их быть не должно).
  • Подключение кабеля к низковольтному электрическому шкафу.

Противоморозные добавки

Разные добавки позволяют работать с бетоном при температуре до -25 градусов, делая его способным противостоять агрессивным воздействиям. В состав добавок вводятся компоненты, призванные сделать бетон способным сохранить свои физико-механические свойства в условиях пониженной температуры. Разнообразие добавок, представленных на рынке сегодня, огромно.

Основные типы противоморозных добавок в бетон:

  1. Антифризы – не дают воде в растворе кристаллизироваться, делают бетон пластичным, способствуют лучшей гидратации цемента при твердении. Особенно важно использовать антифриз в качестве пластификатора при работе с большими объемами бетона, которые заливаются в сложную опалубку.
  2. Тепловыделители – сульфатные добавки, которые прогревают бетон, не позволяя кристаллизироваться воде. Эти добавки применяют осторожно, так как они в структуре бетона создают прочные связи, способные повлиять на качество конструкции в итоге.
  3. Ускорители гидратации цемента – влияют на процесс внутри застывающего монолита, что сокращает время твердения и ускоряет набор прочности.

Строительство и монтаж в условиях пониженной температуры (как и в любых других) регламентируются установленными правилами и нормами. Прогрев бетонных конструкций осуществляется в соответствии с такими документами: СНиП 3.06.04-91 («Мосты и трубы») и СНиП 3.03.01-87 («Несущие и ограждающие конструкции»).

Расчет времени

Прогрев бетона начинается с выбора оптимальной схемы с учетом требований строительной площадки, региона (Москва требует одних мер, Сочи или Норильск – совершенно иных), возможностей и т.д.

Основные факторы, которые учитываются в расчетах времени и температуры:

  • Среднегодовой прогноз погоды зимой в регионе, взятый за предыдущие пару лет, а также прогнозируемая отметка средней температуры воздуха в течение данного зимнего периода.
  • Расчет модуля рабочей прогреваемой поверхности, определение термосной выдержки раствора.
  • Расчет средней температуры конструкции на протяжении срока ее охлаждения.
  • Учет информации про температуру готовой бетонной смеси, ее изотермические свойства (предоставляет завод-изготовитель раствора).
  • Определение тепловых потерь в процессе транспортировки смеси, разгрузки.
  • Определение температуры смеси с начала укладки (учитывается отдача тепла на прогрев арматуры, опалубки).
  • Расчет времени охлаждения раствора (в соответствии с нормативными требованиями прочности).

Все эти данные используются при прогнозировании времени затвердевания бетона, для учета тепловых потерь в процессе заливки, излучения тепла с поверхности. Но все это довольно приблизительно, поэтому в процессе прогрева нужно тщательно контролировать температуру каждые полчаса-час при нагревании и раз в 12 часов при остывании. Если режим нарушен, нужно повышать или отключать ток, регулируя параметры.

В технологической карте должен быть отмечен график нагрева с указанием оптимальных значений и всех важных расчетов, выполненных в соответствии со СНиПами и правилами.

Прогрев бетона – чрезвычайно важное мероприятие при выполнении ремонтно-строительных работ в зимнее время. Без реализации указанных методов бетон просто не наберет нормативную прочность, поставив под сомнение прочность, надежность и долговечность всей конструкции.

Прогрев бетона в зимнее время согласно технологической карте

При помощи технологической карты прогрева бетона в зимнее время можно сочетать обеспечение эффективности с соблюдением норм безопасности. Этот документ содержит сведения о прогреве бетонных конструкций и технологических решений, которые помогут ускорить работу и уменьшить трудовые затраты, не нанеся ущерб качеству возводимых зимой конструкций.

Область применения

Технологическая карта актуальна при необходимости прогрева малоармированных монолитных конструкций из бетона. Описанные методики наиболее эффективны для таких частей конструкции:

  • перегородки;
  • полы (подготовки) из бетона;
  • колонны;
  • стены;
  • плоские перекрытия;
  • фундаменты.
  • Существует несколько видов прогрева. Чаще всего применяются такие:

    • периферийный;
    • сквозной;
    • арматурный.

    Все способы различаются лишь элементами, используемыми как электроды, а их принцип одинаков — при пропускании электричества выделяется тепло, которое разогревает бетон изнутри.

    Технологическая карта на электропрогрев бетона содержит необходимые схемы, а также описание всех элементарных операций:

    • набор состава рабочих необходимой квалификации;
    • расчёт трудовых затрат;
    • составление рабочего графика;
    • расчёт материальных затрат на технику и оборудование;
    • подготовка к бетонированию и прогреву;
    • организация зоны работы;
    • установка электрического оборудования и его подключение.

    Она также предусматривает нормы техники безопасности и советы по экономии электроэнергии.

    Организация работы

    Электропрогрев бетона проводом ПНСВ по технологической карте начинается с подготовки. Сначала комплексную трансформаторную подстанцию устанавливают на ровной поверхности, тестируют на холостом ходу, включив устройство в сеть питания. Затем готовят секции шинопроводов и монтируют их у конструкций, обогрев которых необходим. После установленные секции соединяются подходящими кабелями и подключаются к цепи подстанции.

    При необходимости с рабочей площадки удаляют наледь, мусор или снег.

    Бетонную смесь укладывают в опалубку, открытые поверхности изолируют плёнкой из полиэтилена и минераловатными матами. В указанные на схеме точки вбивают электроды, — стальные стержни диаметром 6 миллиметров и длиной 1 метр — при этом видимые концы должны быть длиннее 10 и короче 20 сантиметров, расстояние же между ними зависит от температуры воздуха и выбранного напряжения. Все это регламентируется таблицами, приведёнными в технологической карте. Электроды соединяют и подключают к шинопроводам.

    Перед подачей электричества проверяют несколько важных пунктов:

    • соответствие фактической установки электродов схеме;
    • правильность соединения электродов и их подключения;
    • наличие температурных датчиков;
    • качество контактов;
    • соблюдение правил укладки утеплителя.

    Если все в порядке, то на преобразователь подают ток. Если произошло короткое замыкание, дежурный электрик диагностирует и исправляет причину неисправности. Специалист в любом случае обязан ещё раз проверить состояние контактов — это норма безопасности.

    Показания температурных датчиков сначала проверяют раз в час, в норме результаты измерений меняются на 6 градусов каждый раз. Когда изотермическая фаза оканчивается, а бетон начинает разогреваться, это делают в два раза реже. На каждой стадии обязательно проверяют не только показания приборов, но и состояние отпаек и соединений.

    Если требуется скорректировать скорость прогрева, то для этого меняют напряжение низкой стороны электрического трансформатора. Это же касается и ситуаций, когда температура внешнего воздуха становится отличной от расчётной, что проверяют два раза в день, записывая показания термометра в журнал. С такой же частотой измеряют характеристики электрического тока, — силу и напряжение — осматривают соединения, чтобы исключить искрение.

    Тепловую изоляцию, как и опалубку, снимают только после остывания верхних слоёв до 5 градусов, но перед понижением температуры до нуля градусов, иначе они могут примёрзнуть к бетону, что недопустимо. Чтобы избежать трещин, следят за разностью температуры поверхности и воздуха, которая не должна превышать 20−30 градусов. Если добиться таких условий невозможно, бетон защищают толем или брезентом. Скорость остывания должна входить в диапазон от пяти до десяти градусов в час.

    На результат сильно влияет соблюдение нескольких простых правил. При укладке основания рабочие не должны допустить того, что бетон замёрзнет из-за контакта с основанием или деформирует его, не приобретя нужную прочность. Нельзя снимать наледь с уже обложенной изоляцией конструкции горячей водой или паром. Заливка бетонной смеси производится равномерно, при этом масса должна охлаждаться медленно и не достигать температуры ниже пяти градусов.

    Эта методика представлена как демонстрация примерной последовательности действий и особенностей электропрогрева, не является пособием. Для осуществления прогрева бетона нужно скачать технологическую карту и руководствоваться ей.

    Экономия электроэнергии

    Для эффективного энергосбережения необходимо выполнить несколько условий. Важно не допустить охлаждение бетонной смеси на стадии транспортировки или укладки более чем на значение, установленное технологическим расчётом. Экономии поспособствует портландцемент (особенно быстротвердеющий). У этой смеси высокая относительная прочность, то есть на прогрев уходит меньше времени. В массу другого вида можно включить химическую добавку, которая уменьшит продолжительность термической обработки благодаря повышению электропроводности или прочности бетона.

    Конструкцию следует греть до максимально допустимой температуры, ведь прочность растёт преимущественно в стадии остывания. Некачественная теплоизоляция или её намокание, кабели неподходящей плотности или нарушения контактов — все это приводит к напрасным тратам электроэнергии.

    Прогрев бетона в зимнее время: методы

    Строительство бетонных монолитов при минусовых температурах осложняется неравномерным застыванием смеси. Вода быстро превращается в лед, процесс гидратации останавливается, в результате прочность готовой постройки нарушается. Прогрев бетона помогает избежать этих проблем.

    Добиться необходимой температуры бетонной смеси можно пятью способами:

    1. электродным;
    2. проводом ПНСВ;
    3. электропрогревом опалубки;
    4. индукционным обогревом;
    5. инфракрасным теплом.

    Рассказываем, в каких случаях используется каждый из них.

    Электродный прогрев

    Принцип действия основывается на способности бетонного раствора проводить ток. Электроды располагают внутри и на поверхности смеси. После подключения к трансформатору образуется электрическое поле и происходит нагрев. Добиться оптимальной температуры можно изменением выходных параметров трансформатора.

  • Простота монтажа и высокий КПД;
  • Позволяет прогреть конструкцию любой толщины и формы.

  • требует проведения расчетов и долгой подготовки;
  • высокие энергозатраты (не менее 1000 кВт на 3–5 м3 смеси).

    Что нужно знать об электродном прогреве

    1. По мере схватывания бетона, его электрическое сопротивление меняется нелинейно. Чтобы избежать потери тепла и влаги, после завершения установки электродов необходимо укрыть поверхность утеплителем. Им может стать фанера с прокладкой из пенопласта, шлаковата, картон, опилки, доски и т. д. Осуществлять работы без утепляющего материала нельзя.

    2. Прогрев с помощью сварочных аппаратов не рекомендуется по ряду причин:

    • при вживлении электродов в бетон ток проходит непосредственно через раствор – отсюда вытекает опасность поражения людей и животных;
    • допустимое напряжение – 36 В, в противном случае опасность удара током становится критичной;
    • сварочный трансформатор не предназначен для таких нагрузок и быстрее изнашивается.

    3. Постоянный ток при прогреве бетона электродами использовать недопустимо: он способствует электролизу. Вода разлагается и не кристаллизируется. Застывание смеси становится невозможным.

    4. Подходят электроды четырёх видов:

    Вид электродовОписаниеСхема подключения
    ПластинчатыеЭто металлические пластины, которые помещаются с разных сторон конструкции между бетоном и опалубкой.
    ПолосовыеПолосы металла 20–50 мм шириной. Подходят для прогрева горизонтальных элементов – например, плит или бетона, который соприкасается с грунтом. Подключаются по очереди к разным фазам с одной стороны конструкции, либо с разных сторон аналогично пластинчатым электродам.>
    СтрунныеРазмеры: 2–3 м в длину и 15 мм в ширину. Часто используются при прогреве колонн. Устанавливаются в центре конструкции. Электрическое поле образуется между опалубкой с токопроводящим листом и струной.
    СтержневыеПодходят для конструкций сложной формы. Вставляются прутья арматуры диаметром до 15 мм, после чего их подключают к различным фазам трансформатора. Обеспечивают сквозной прогрев.

    5. Трансформатор для прогрева бетона в зимнее время должен отличаться высокой мощностью, иметь защищенный корпус, быть удобным для транспортировки и выдерживать длительную работу при минусовых температурах.


    Отправить заявку

    Прогрев бетона проводом ПНСВ

    Один из самых эффективных и безопасных способов. При прохождении тока через провод ПНСВ выделяется тепло, нагревая смесь. Расход – в среднем 60 м на 1 м3 бетона. Этот провод часто используется как напольный обогреватель в частном секторе.

  • несложно предсказать «поведение» и отрегулировать температуру, бетон нагревается постепенно, набор прочности происходит плавно;
  • существенно ускоряет процесс застывания;
  • подходит для повторного использования;
  • устойчив к возгоранию за счёт покрытия изоляцией;
  • отличается прочностью и не перегибается;
  • эффективен при экстремальных температурах;
  • устойчив к воздействию кислотной и щелочной среды.

    требует точных расчетов и подготовительных работ.

    Что нужно знать о проводе ПНСВ

    1. Укладка кабеля в холодное года должна выполняться таким образом, чтобы он не касался опалубки, земли, а также не выходил за пределы бетона. После того, как опалубка будет залита бетонной смесью, дождитесь, пока она начнет застывать, затем подключите трансформаторную подстанцию и регулируйте температуру.

    2. Секции монтируются на одинаковом расстоянии нагревательных проводов относительно друг друга (примерно 15 см). Смесь прогреется равномерно.

    3. Закрепить провод на арматурном каркасе, вдоль которого он протянут, следует так, чтобы риски повредить его при подаче бетона в траншею отсутствовали.

    4. Температура смеси измеряется в процессе изотермического прогрева каждые два часа. Этот пункт входит в содержание технологической карты на электрообогрев нагревательными проводами монолитных конструкций.

    5. 70 В – напряжение, которым следует ограничиться при проведении работ. Поэтому при эксплуатации может потребоваться понижающий трансформатор (ПТ).

    Пример техники: Подстанция для прогрева бетона КТПТО-80
    Отправить заявку

    Электропрогрев опалубки (контактный метод)

    Этот способ предполагает изготовление опалубки, в которую заранее будут закладываться нагревательные элементы. Они отдают бетону свое тепло при нагреве и ускоряют твердение. Электропрогрев опалубки происходит снаружи, через контактную поверхность.

    Минусы: трудоемкость изготовления; низкий КПД (при заливке фундамента смесь нагревается лишь частично).

    Индукционный обогрев

    Применяется с армированными конструкциями. Металлические элементы, содержащиеся внутри них, станут сердечниками. Изолированный кабель выполняет роль индуктора и размещается петлями вокруг арматуры. Количество мотков провода и сечение необходимо рассчитать предварительно. Вдоль кабеля пускается переменный ток, образующий электромагнитное поле. Затем происходит нагревание армирующих элементов, от них тепло переходит к бетону, постепенно распространяясь по всей смеси.

    Расход электроэнергии достигает 150 кВт/ч на 1 м3 бетона.

    Плюсы: низкая цена; равномерный прогрев.

    Минусы: сложный расчет; ограниченность применения (балки, колонны и т. д.).


    Отправить заявку

    Инфракрасный подогрев

    Инфракрасные лучи нагревают поверхность непрозрачных объектов, распространяя тепло на весь объем. При применении инфракрасного подогрева бетонную конструкцию необходимо окутать прозрачной пленкой – она задержит тепло, пропустив лучи через себя. Подходит для прогрева железобетона.

    Плюсы: простота и доступность.

    Минусы: подходит только для небольших, тонких конструкций; инфракрасное тепло распространяется неравномерно.

    Инфракрасный нагреватель должен быть устойчивым к сильному ветру и способным долгое время работать без дозаправки.

    Электропрогрев бетона в зимнее время: СНип обогрева

    Бетон – это очень популярный на сегодняшний день строительный материал, для изготовления которого применяют такие компоненты, как цемент, вода, заполнитель и вода. Но одно дело, когда вы производите заливку бетона летом, ведь теплое время года благоприятно влияет на процесс набора прочности. Что же происходит зимой? При сильных морозах набор прочностных характеристик прекращается, а это крайне нежелательно. В этом случае необходимо применять ряд мероприятия, которые позволят прогревать бетон. Для этого нужно знать все особенности технологической карты бетона на зимний период и актуальные способы прогрева.

    Технологическая карта и способы прогрева бетона

    Прогревать сварочным аппаратом

    Этот метод прогрева предполагает применение следующих материалов:

    • кусков арматуры;
    • лампы накаливания и градусника для измерения температуры.

    Процесс установки кусков арматуры выполняется параллельно цепи, с примыкающими и прямыми проводами, между которыми монтируется лампа наливания. Именно благодаря ей будет возможным производить измерения напряжения.

    Чтобы померить температуры, стоит задействовать градусник. По времени этот процесс занимает много времени, примерно 2 месяца. При этом на весь процесс прогревания необходимо оградить конструкцию от влияния холода и воды. Применять обогрев сварочным аппаратом целесообразно при малом объеме бетона и отличных условиях погоды.

    Инфракрасный метод

    Смысл этого метода состоит в том, что ведется установка оснащения, работа которого выполняется в инфракрасном диапазоне. В результате этого удается преобразовать излучение в тепло. Именно тепловая энергия внедряется в материал.

    Инфракрасный подогрев бетонной смеси представляет собой электромагнитные колебания, у которых скорость распространения волны будет составлять 2,98*108 м/с и длина волны 0,76-1, 000 мкм. Очень часто в роли генератора задействуют трубки, выполненные из кварца и металла.

    Главной особенностью представленной технологии является возможность питания энергией от обычного переменного тока. При инфракрасном обогреве бетона параметр мощности может меняться. Она зависит от необходимого температурного режима нагревания.

    Благодаря лучам энергия может проникать в более глубокие слои. Для достижения необходимой эффективности процесс обогрева должен выполняться плавно и постепенно. Здесь запрещено работать при высоких показателях мощности, иначе верхний слой будет иметь высокую температуру, что в конечном результате приведет к потере прочности. Применять такой метод необходимо в случаи, когда нужно разогреть тонкие слои конструкции, а также подготовить раствор для ускорения времени сцепки.

    Клей для газобетона состав и особенности применения указаны в статье.

    Как выглядит фундамент из фбс для дома из газобетона, можно узнать из данной статьи.

    Какие существуют плюсы и минусы дома из газобетона, указано в данной статье.

    Индукционный метод

    Для осуществления этого метода необходимо задействовать энергию переменного тока, которая будет преобразовываться в тепловую в опалубке или арматуре, выполненной из стали.

    После преобразованная тепловая энергия будет распространяться на материал. Применять индукционный метод обогрева целесообразно при обогреве железобетонных каркасных конструкций. Это могут быть ригели, балки, колонны.

    Если использовать индукционный прогрев бетона по внешним поверхностям опалубки, то здесь необходимо выполнить монтаж последовательных витков, которые изолированы от индукторов и проводом, а число и шаг определяется расчетным путем. С учетом полученных результатов удается изготовить шаблоны с пазами.

    Когда индуктор был установлен, то можно выполнять обогрев арматурного каркаса или стыка. Делается это для того, что удалить наледь до того, как будет происходить бетонирование. Теперь открытые поверхности опалубки и конструкции можно укрыть при помощи теплоизоляционного материала. Только после обустройства скважин можно приступать к непосредственной работе.

    Читать еще:  Свайно-ленточный фундамент своими силами

    Когда смесь примет необходимый температурный режим, то процедуру обогрева прекращают. Следите, чтобы опытные показатели отличались от расчетных не менее чем на 5 градусов. Скорость остывания может сохранить свои пределы 5-15 С/ч.

    Применение трансформаторов

    Для повышения температурного режима в бетоне можно воспользоваться таким недорогим и простым методом, как нагревательный провод ПНСВ.

    Конструкция этого кабеля предусматривает два элемента:

    • однопроволочная жила круглой формы, выполненная из стали;
    • изоляция, для которой можно задействовать ПВХ пластик или полиэтилен.

    Если вам необходимо обогреть смесь 40-80 м3, то для этого будет достаточно установить всего лишь одну трансформаторную подстанцию. Применяют такой метод в том случае, когда на улице температура воздуха достигла отметки -30 градусов. Использовать трансформаторы целесообразно для обогрева монолитных конструкций. Для 1 м веса будет достаточно провода в 60 м.

    В данной статье описаны характеристики газобетона и пенобетона.

    Газобетон d600 характеристики и особенности применения указаны в данной статье.

    Какие производители автоклавного газобетона существуют, указано в данной статье.

    Выполняется такая манипуляция по следующей инструкции:

    1. Внутрь бетона укладывают нагревательный провод. Его подсоединяют к станции или выводам трансформатора.
    2. При помощи электрического тока массив начинает набирать температуру, в результате чего ему удается затвердеть.
    3. так как материал обладает отличными свойствами проводимости тепловой энергии, тепло с высокой скоростью начинает двигаться по всему массиву.

    Таблица 1 – Характеристика проводов марки ПНСВ

    1Напряжение переменного тока, В380
    2Длина секции кабеля на напряжение 220 В:
    – ПНСВ1,0 мм, м80
    – ПНСВ1,2 мм, м110
    – ПНСВ1,4 мм, м140
    3Удельная мощность тепловыделения кабеля:
    – для армированных установок, Вт/п.м.30-35
    – для неармированных установок, Вт/п.м.35-40
    4Напряжение питания рекомендуемое, В55-100
    5Среднее значение сопротивления жилы:
    – ПНСВ1,2 мм, Ом/м0,15
    – ПНСВ1,4 мм, Ом/м0,10
    6Параметры метода:
    – Мощность удельная, кВт/м31,5-2,5
    – Расход провода, п.м./м350-60
    – Цикл термосного выдерживания конструкций, суток2-3

    Провод для обогрева, который уложен внутрь бетона, должен обогревать конструкцию до 80 градусов. Электропрогрев происходить при помощи трансформаторных подстанций КПТ ТО-80. Для такой установки характерно наличие нескольких ступеней низкого напряжения. Благодаря этому становится возможным выполнять регулировку мощности нагревательных кабелей, а также подгонят ее согласно измененной температуре воздуха.

    Использование кабеля

    Использование такого варианта прогрева не требует больших затрат электроэнергии и дополнительного оснащения.

    Весь процесс протекает по следующей схеме:

    1. Ведется установка кабеля на бетонное основание перед заливкой раствора.
    2. Все зафиксировать, используя крепежные детали.
    3. Будьте внимательны во время установки кабеля и го эксплуатации, чтобы на его поверхности не возникли повреждения.
    4. Выполнить подключение кабеля в низковольтный электрический шкаф.

    Противоморозные добавки

    При добавлении противоморозных добавок бетон способен противостоять самым агрессивным атмосферным осадкам. Входящие в состав такой смеси компоненты могут быть самые различные, но роль главного отведена антифризу. Это жидкость, которая не позволяет воде замерзать.

    Если необходимо взвести конструкции из железобетона, то в составе смеси должен находиться нитрит натрия и формат натрия. Главной особенностью противоморозных смесей остается сохранение антикоррозийных и физико-химических свойств при низком температурном режиме.

    При возведении товарного бетона, производстве бордюров необходимо задействовать смесь, в составе которой имеется хлорид кальция. Этот компонент позволяет добиться быстрой скорости затвердения, устойчивости к низкому температурному режиму.

    Идеальной противоморозной добавкой остается такое химическое вещество, как поташ. Оно очень быстро растворяется в воде, при этом отсутствует коррозия. Если вы будет применять поташ при прогреве бетона зимой, то удастся сэкономить на строительных материалах.

    Если вы используете противоморозные добавки, то очень важно придерживаться всех норм безопасности. Например, не стоит задействовать бетон с такими компонентами, когда конструкция расположена под напряжением, возводятся монолитные дымовые трубы.

    Все мероприятия по монтажу и строительству нужно выполнять в соответствии с установленными нормами. Процесс бетонирования в зимнее время не считается исключением. Прогрев бетонной конструкции при низких температурах воздуха происходят согласно следующих документов:

    • СНиП 3.03.01-87 – Несущие и ограждающие конструкции
    • СНиП 3.06.04-91 – Мосты и трубы

    На видео – прогрев бетона в зимнее время, технологическая карта:

    Несмотря на то, что представленная документация лишь косвенно затрагивает тему, связанную с прогревом бетона, в ней содержатся определенные разделы, в которых имеется технология заливки бетонного раствора в морозное время года.

    Расчет времени

    При расчете прогрева бетона необходимо принимать во внимание таки факторы, как тип конструкции, общую площадь обогрева, объем бетона и электрическую мощность.

    Во время обогревательных работ с бетоном стоит разработать технологическую карту. В нее будут вписаны все значения лабораторных наблюдений, а также время прогрева и время затвердения материала.

    Расчет прогрева бетона начинается с выбора схемы. Например, чаще всего выбирают четырехстадийную. Первая стадия предполагает собой выдерживание материала. После этого показатели температуры повышают до конкретного значения, осуществляют обогрев и остывание длительность выдерживания перед началом мероприятия примерно 1-3 часа при низком температурном режиме. Поле этого можно переходить к расчету обогрева, которое находится в прямой зависимости от скорости и итоговой температуры.

    На протяжении всего процесса стоит вести контроль температуры, отмечая все результаты при повышении через 30-60 минут, а при остывании контролирование осуществляют 1 раз за смену. При нарушении режима необходимо поддерживать все параметры, отключив ток и повысив напряжение. В таком случае показатели фактические и полученные в ходе расчета могут не совпадать. После этого строят график зависимости времени от прочности, где обозначают необходимое значение времени и температуры обогрева, а после отыскивают необходимое значение прочности.

    Процесс обогрева бетона – это очень важные мероприятия, без проведения которых бетонная конструкция при морозах просто перестанет набирать прочность, в результате чего это приведет к понижению марки и дальнейшему разрушению. Осуществить все эти мероприятия несложно, достаточно просто определить, какой из представленных подходит вам больше всего.

    ТЕХНОЛОГИЧЕСКАЯ КАРТА ПРОГРЕВА БЕТОНА

    Существует несколько типов технологических карт на прогрев бетона в зимних условиях. Технологи, разрабатывающие ТК, в процессе принятия методологии для прогрева монолитных конструкций должны учитывать такие факторы, как:

    • тип прогреваемой конструкции (фундаменты, стены, колонны, плиты перекрытий и т.д);
    • геометрические характеристики (размеры, объем, масса, процент армирования и т.д.);
    • модуль поверхности элемента (Мп);
    • температуру окружающей среды и бетонной смеси;
    • способы бетонирования и разбитие прогреваемой конструкции на захватки;
    • характеристики оборудования и материалов строительной компании

    Необходимо понимать, что от правильно выбранного способа зависит то, насколько быстро, какими силами и средствами будет выполнено бетонирование в зимних условиях.

    ТЕХНОЛОГИЧЕСКАЯ КАРТА НА ПРОГРЕВ БЕТОНА ПРОВОДОМ ПНСВ

    ТК на бетонирование монолитных конструкций, как правило, разрабатывается в отношении элементов с модулем поверхности более 5. К ним относятся сены, колонны, плиты перекрытия и т.д. В некоторых случаях данный способ применяют для прогрева массивных фундаментов, закрывая их контур теплоизоляционными материалами.

    Как мы осуществляем разработку данной ТК?

    На начальном этапе необходимо собрать исходные данные (чертежи раздела КЖ, планы строительной площадки). Затем определяются места стоянки техники, способы деления бетонируемой конструкции на захвати. Далее необходимо уточнить все основные параметры оборудования и материалов, которые имеются в наличии у строительной организации (тип, марка проводов, трансформаторов, укрывочных материалов и опалубки). На следующем этапе мы уточняем дату и время, на которое назначено бетонирование конкретной конструкции. Разработка ТК выполняется за день-два до начала работ по бетонированию т.к. режим прогрева и твердения бетона напрямую зависит от температуры окружающей среды.

    ТЕХНОЛОГИЧЕСКАЯ КАРТА ПРОГРЕВА БЕТОНА ЭЛЕКТРОДАМИ

    Этот метод еще иногда называют «Метод электропрогрева».

    Особенностью метода является то, что для его осуществления используют всевозможные типы электродов, которые подключают к токопроводящим изолируемым проводам сразу после окончания бетонирования. На выбор типа трансформаторов, схему размещения электродов и установление режимов прогрева влияют размеры конструкций, количество закладных деталей, схемы армирования и т.д. Разработка данной ТК нашими специалистами позволит:

    • определить способы и режимы прогрева для своевременного и равномерного набора прочности бетона в монолитных конструкциях;
    • подобрать типы, виды оборудования и расходных материалов, определить их кол-во;
    • принять наиболее оптимальные места для установки и подключения прогревочного оборудования;
    • рассчитать трудозатраты;
    • сэкономить время и средства;
    • соблюсти требования охраны труда в процессе производства работ

    Данная технологическая карта является на 100% полезной и применимой на практике. Затраты на ее разработку несоизмеримы с той пользой которую она приносит своему владельцу. Универсальность данного документа заключается в том, что его можно включить в состав ППР на бетонирование.

    Почему лучше заказать технологическую карту на прогрев бетона у нас?

    Провод для прогрева бетона — принцип действия, виды, укладка и монтаж

    При строительстве монолитных бетонных конструкций в зимнее время применяется несколько технологий для создания необходимых температурных условий. Это может быть установка специальных тепляков, применение тепломатов или специального провода для прогрева бетона. Первый способ наиболее энергоемкий, поэтому экономически невыгоден, второй вариант подразумевает установку тепловых станций, прогревающих только верхние слои, что также вносит ряд ограничений на применение. Последний вариант наиболее востребован, о нем и пойдет речь в данной публикации.

    Зачем нужен прогрев бетона?

    В холодное время года, когда температура окружающего воздуха опускается ниже точки замерзания воды, возникают проблемы с гидратацией бетонного раствора. Проще говоря, смесь частично замерзает, а не полностью затвердевает. После повешения температуры окружающей среды начинается процесс оттаивания, монолитность смеси может быть нарушена, что отрицательно отразится на монолитности конструкции, ее сопротивлению проникновения воды, что приведет к снижению долговечности.

    Последствия заливки раствора на морозе, в этом случае не поможет даже гидрошпонка Аквабарьер или другая гидроизоляция

    Чтобы избежать перечисленных последствий, обязательно необходимо зимой делать электропрогрев бетонной смеси. При этом изотермическом процесс не возникает нарушений в ее структуре, что положительно отражается на прочности возводимой конструкции.

    Виды нагревательных проводов и кабелей

    Чаще всего для электроподогрева бетона применяются провода ПНСВ. Это объясняется его относительно невысокой стоимостью и простым монтажом. Ниже представлен внешний вид термопровода, его конструктивные особенности и расшифровка маркировки.

    Внешний вид провода ПНСВ (А), расшифровка маркировки (В) и конструкция (С)

    В качестве альтернативы может применяться аналог – ПНСП, основное отличие которого заключается в изоляции, она выполнена из полипропилена, что позволяет незначительно повысить максимальную мощность тепловыделения.

    Таблица основных параметров проводов ПНСВ и ПНСП

    Обратим внимание, что провода данного типа могут использоваться в качестве напольных обогревателей, которые работают по принципу теплого пола.

    Основная трудность, связанная с применением термопроводово данного типа, заключается в необходимости произвести расчет их длины. Небольшие просчеты можно исправить регулируя уровень напряжения, поступающего с прогревочного трансформатора.

    Подробно о том, как производится монтаж ПНСВ, а также описание связанных с этим процедур (расчет длины проводов, схема укладки, составление технологической карты и т.д.) будет приведено в другом разделе.

    Разновидности и особенности кабелей КДБС и ВЕТ

    Основной недостаток описанных выше термопроводов – необходимость дополнительного оборудования, позволяющего регулировать мощность тепловыделения путем изменения напряжения. Значительно упростить задачу можно применяя двужильные секционные саморегулирующие термокабели, а именно финский ВЕТ или отечественный КДБС. Они не требуют для подогрева дополнительного оборудования и подключаются напрямую к сети 220 вольт. Устройство прогревочного кабеля представлено ниже.

    Основные элементы конструкции кабеля обогревочного

    Обозначение:

    • А – Выходы нагревательных жил.
    • В – Установочный кабель, служащий для подключения КДБС к сети 220в, для этой цели можно использовать любой соединительный провод, например АПВ.
    • С – Муфта, для подключения нагревательной секции.
    • D – Концевая изоляторная муфта.
    • Е – Нагревательная секция фиксированной длины.

    Конструктивно кабель ВЕТ практически не отличается от рассмотренного выше отечественного аналога, что касается основных технических характеристик, то они приведены в сравнительной таблице ниже.

    Таблица сравнительных характеристик кабелей ВЕТ и КДБС

    Что касается маркировки, то отечественные изделия данного типа кодируются в следующем виде: ХХКДБС YY, где ХХ – характеристика линейной мощности, а YY – длина секции. В качестве примера можно привести маркировку 40КДБС 10, которая указывает мощность 40 Вт на метр, а сама секция десятиметровой длины.

    Технология прогрева с использованием ПНСВ

    Принцип действия довольно простой: при подаче напряжения происходит нагрев провода, который в свою очередь нагревает бетонную смесь. Поскольку для нагрева рекомендуется ограничится напряжением 70 В, потребуется понижающий трансформатор (далее ПТ) соответствующей мощности.

    Трансформаторная подстанция КТПТО 80 для работы с термопроводом

    Перед тем, как осуществлять монтаж, необходимо рассчитать длину прогревочного провода. При этом необходимо принимать во внимание его тип и характеристики, напряжение трансформаторной подстанции, объема бетонной смеси, температуры окружающей среды, а также характер конструкции (предполагается заливка колоны, балки) и т.д. Чтобы не запутаться в расчетах, можно воспользоваться онлайн калькулятором для расчета нагревательного проводника ПНСВ или другого кабеля (ПНБС, ПТПЖ и т.д.).

    Для нагрева бетонной смеси, объемом один кубометр необходимо около 1200-1300 Вт. Если мы будем использовать провод данной марки сечением 1,20 мм, то потребуется прогревочник 30-45 м (для точного расчета длины необходимо знать температурные условия).

    Помимо этого необходимо учитывать силу тока, для нормальной работы погруженного в раствор кабеля допустимо 14,0 – 18,0 Ампер (в зависимости от схемы подключения).

    Электрическая схема подключения ПНСВ А) звездой В) треугольником

    Монтаж ПНСВ

    Приведем краткое руководство стандартной методики:

    1. Выбираем диаметр провода согласно техкарте, как правило это 1,20-4,0 мм. Если планируется обогрев армированных конструкций, то рекомендуется остановиться на ПВХ изоляции, поскольку она более прочная. Для неармированных конструкций допускается применять провод с полипропиленовым покрытием.
    2. Нарезка производится сегментами равной длины, после чего их сворачивают спиралью (Ø 30,0-45,0 мм).
    3. Укладка спиральных ниток производится в арматурный каркас или их располагают в фанерном или деревянном каркасе (опалубке).
    4. Характеристики ПНСВ не предполагают его работу в качестве обогревателя за пределами бетонной смеси. При таких условиях он сразу выходит из строя. Для исправления ситуации используется любой монтажный провод большего сечения, который подключают к выводам сегмента. Пример как подключить ПНСВ с помощью холодных концов
    5. После того, как опалубку зальют бетонной смесью, дожидаются, пока она начнет схватываться, после чего производится включение трансформаторной подстанции. С ее помощью осуществляют установку необходимой температуры путем увеличения или уменьшения напряжения.

    Обратим внимание, принцип и схема укладки ПНСП, ПНБС, ПТПЖ практически не отличается от ПНСВ.

    Использование сварочного аппарата в качестве ПТ.

    Такой способ подогрева вполне возможен, приведем пример как это можно реализовать такой метод. Допустим, нам необходимо залить плиту объемом 3,7 кубических метра, при температуре на улице – 10°С. Для этой цели потребуется сварочная установка на 200,0-250ампер, клещи для измерения тока, провод ПНСВ, холодные концы и тканевая изоляционная лента.

    Нарезаем восемь сегментов по 18,0 метров, каждый такой может выдержать ток до 25,0 А. Мы оставим небольшой запас и возьмем для подключения к сварочному аппарату на 250,0 А восемь таких сегментов.

    К каждому выходу отрезка подсоединяем на скрутке монтажный провод (подключаем холодные концы). Производим укладку ПНСВ, ее схема будет приведена ниже. Соединение холодных концов (плюс и минус отдельно) желательно делать при помощи клеммника, размещенном на текстолите или любом другом изоляционном материале.

    Подключение ПНСВ к сварочному аппарату

    Завершив заливку, подключаем прямой и обратный выход аппарата (полярность не имеет значения), предварительно выставив ток на минимум. Проводим измерение тока нагрузки на отрезках, он должен быть порядка 20,0 А. В процессе нагрева сила тока может немного «проседать», когда это происходит, увеличиваем ее на сварке.

    Плюсы и минусы ПНСВ

    Прогревать таким способом бетон довольно выгодно. Это объясняется как низкой стоимостью провода и относительно небольшим расходом электричества. Отдельно необходимо отметить устойчивость проволоки к щелочному и кислотному воздействию, что позволяет использовать данный способ при добавлении в смесь различных присадок.

    Основные недостатки:

    • сложность расчетов при расчете длины провода;
    • необходимость использования ПТ.

    Понижающие станции стоят довольно дорого, а учитывая длительность процесса брать их в аренду не выгодно (такие услуги обходятся в 10% от себестоимости изделия). Использование сварочных аппаратов делает возможным обогрев небольших конструкций, но поскольку она не рассчитана на такой режим работы, выход ее из строя и последующий дорогостоящий ремонт довольно вероятны.

    Монтаж секционного обогревочного кабеля

    Поскольку такие нагреватели для бетона поставляются не в бухтах, а готовыми секциями, снимается вопрос с обрезкой. Все что необходимо для сбора установки для зимнего бетонирования это рассчитать мощность сегмента исходя из того сколько кубов бетона в конструкции, после чего выбрать кабель соответствующей длины.

    Начнем с краткого руководства по расчетам и небольших рекомендаций по монтажу:

    • В инструкции к технологии ТМО бетона указывается, что на обогрев кубометра смеси требуется от 500 до 1500 Вт (зависит от температуру воздуха). Расход электроэнергии можно существенно снизить, если применить несколько несложных технических приемов:
    1. Использовать специальные присадки для смеси, позволяющие понизить точку замерзания раствора.
    2. Утеплить опалубку.
    • Если производится заливка балки или перекрытия, расчет обогревочного кабеля производится из 4 погонных метров на 1 м 2 площади поверхности. При возведении объемных элементов, таких как двутавровые бетонные балки, электрообогрев укладывают ярусами, с расстоянием между ними не более 40,0 см.
    • Защита кабеля позволяет приматывать его к арматуре.
    • Расстояние от поверхности конструкции до уложенного внутри электрообогревателя должно быть как минимум 20,0 см.
    • Чтобы бетонная смесь прогревалась равномерно, нагреватели должны быть уложены на одинаковом расстоянии.
    • Между разными контурами должно быть не менее 40,0 мм.
    • Запрещено пересечение греющих проводников.

    Преимущества и особенности сегментированного кабеля

    К несомненным положительным качествам продукции данного типа следует отнести:

    • Для организации прогрева бетона при помощи не требуется наличие дорогостоящего дополнительного оборудования (ПТ).
    • В отличие от сушки электродами вероятность поражения электричеством минимальна.
    • Легкий монтаж и несложный расчет длины сегмента.

    Особенности:

    ВЕТ кабель стоит существенно дороже, чем провод для прогрева бетона ПНСВ. Отечественный КДБС, например производимый компанией ЭТМ в Красноярске, несколько улучшает положение, но не намного. Именно поэтому данные кабели применяются при возведении небольших бетонных и ЖБТ конструкций.

    В качестве заключения.

    Мы описали только один способ обогрева бетона, на самом деле их значительно больше. Они будут рассмотрены в других публикациях.

    В завершении считаем необходимым ответить на вопрос, неоднократно встречающийся в сети, почему нельзя для прогрева бетона использовать нихромовые провода. Во-первых, это удовольствие было бы очень дорогим, во-вторых, правилами техники безопасности запрещено. Именно поэтому не стоит калькулятор для расчета числа витков нихрома, чтобы сделать обогрев трубы или бетона.


    0 0 голоса
    Рейтинг статьи
  • Ссылка на основную публикацию
    ВсеИнструменты