Rich--house.ru

Строительный журнал Rich—house.ru
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Подключение трехфазного двигателя через магнитный пускатель

Схема подключения трехфазного двигателя через пускатель

Любой электрический прибор имеет устройство для его подключения к электросети, будь то чайник, кофемолка или более сложный механизм. Это может быть как простое устройство, так и более сложное. Порой, если оно вышло из строя, необходимо заменить его либо самому собрать для электроприбора.

  • Способы подключения
    • Через реле
    • Магнитный пускатель
    • Использование контактора
  • Особенности подключения трехфазного двигателя
  • Возможные неисправности

Способы подключения

В чем может быть сложность подключения? Необходимо обеспечить безопасность пользователей от поражения электрическим током или пожара, сохранность самого прибора от полного или значительного повреждения при его неисправности. По принципам, которые используются в этих устройствах, их можно разделить на:

  • электронные;
  • электромеханические.

Электронные аппараты полностью состоят из приборов, в которых не используется механическая, мускульная сила. Для коммутации в них используются транзисторы и тиристоры. Такие устройства полностью автоматизированы. Они отличаются быстродействием, отсутствием шума. В них не возникают искры или электрическая дуга. По размерам они значительно меньше электромеханических. Также они выигрывают по весу и, что немаловажно, по цене.

Тем не менее электромеханические устройства еще широко используются. Пожалуй, единственным преимуществом у них является сравнительная простота. Если их классифицировать по разъединяемому току, то можно выделить три группы:

  • реле;
  • пускатели;
  • контакторы.

Через реле

Реле — самые маломощные, работают с малым током и напряжением. В связи с этим могут работать с относительно большими частотами, чем остальные два. Используются в автоматике, телефонии, для маломощных агрегатов. Могут применяться в виде основного коммутатора либо совместно с более мощным, например, пускателем.

Реле имеет металлический или пластиковый корпус и диэлектрическую пластину, из которой выходят вывода для крепления проводов. К пластине крепится катушка и контакты. По числу контактов можно выделить:

  • одноконтактные;
  • много контактные.

Катушка представляет собой намотанный на каркас провод, а в центре ее находится металлический сердечник. Вблизи сердечника располагается металлическая пластина, к которой через изолирующую прокладку крепится один или несколько контактов. В некоторых конструкциях их может быть 20−30. Когда по катушке проходит ток, сердечник намагничивается и притягивает пластину с коммутирующим устройством. Чтобы коммутатор вернулся в свое первоначальное положение после снятия напряжения с обмотки катушки, к нему с противоположной стороны крепится пружина.

Те коммутирующие устройства, которые находятся в движении, называют подвижными. Другие — неподвижные, они не перемещаются во время работы реле. На каждый подвижный контакт приходится один или два неподвижных. В связи с этим их можно разделить на три группы:

  • замыкающие;
  • размыкающие;
  • переключающие.

Замыкающими называют пару контактов, которые при срабатывании катушки замыкаются. Размыкающие, естественно, будут размыкаться при подаче на катушку напряжения. У переключающих подвижной коммутатор находится между двумя неподвижными, причем при отсутствии магнитного поля подвижные соединены с одним контактом, а при появлении магнитного поля они переключаются на другой.

Обычно на корпусе реле есть схема контактов, где показано, в каком положении при отсутствии напряжения на катушке находятся подвижные. Они пронумерованы, как и выводы на корпусе, что помогает определить, какой вывод соответствует тому или иному контакту. Отдельно показаны выводы катушки, они обозначаются буквами «А» и «Б».

На электрической схеме реле обозначается прямоугольником, а рядом ставится буква К. Если в схеме несколько реле, рядом с буквой ставится цифра — индекс. Сам прямоугольник обозначает обмотку катушки. Чтобы легче было читать схему, контакты могут располагаться отдельно от реле. Для идентификации рядом с ними ставится буква «К» и цифры (индекс), указывающие принадлежность к тому или иному реле. Если в реле несколько пар контактов, в индексе указывается их порядковый номер.

Магнитный пускатель

В быту и производстве широкое применение получил магнитный пускатель. Он используется для подключения потребителей различных мощностей. Корпус, изготовленный из электроизоляционного материала, полностью защищает человека от случайного поражения электрическим током.

Внутри корпуса крепится катушка с сердечником. Она подключается, на это необходимо обратить особое внимание, к напряжению 220 или 380 вольт. Несоблюдение этого требования приведет либо к плохой работе пускателя, либо к выходу из строя катушки. Номинальное напряжение указывается на самой катушке, а она ставится таким образом, что эту надпись можно было увидеть, не разбирая корпуса.

Как и в реле, обмотка с сердечником образует электромагнит, но гораздо большей мощности. Это позволяет увеличить скорость размыкания коммутирующего устройства за счет увеличения упругости пружины, что, в свою очередь, дает возможность подключать значительные токи к цепи.

Из-за размыкания больших токов возникает электрическая дуга. Она опасна тем, что может перекрыть соседние коммутирующие устройства, это приведет к короткому замыканию. Также увеличивается время разрыва цепи. Сами контакты под действием высокой температуры начинают плавиться и выгорать. Повышается сопротивление в них, что может плохо повлиять на работу электроприбора. Хуже всего, пожалуй, когда коммутирующие устройства слипаются, а то и вовсе привариваются, тогда цепь не сможет разомкнуться. Последствия предугадать несложно.

Для борьбы с этим нежелательным явлением существует несколько способов:

  1. Увеличение площади достигается засчет размера самого контакта. По сравнению с реле у пускателя она намного больше. Позднее придумали более оригинальный способ, сделали спаренный контакт. На самом подвижном контакте находится не одна, а две площадки. На неподвижном, соответственно, их тоже две.
  2. Второй метод сводится не только к подбору материала стойкого к температуре. Необходимо обеспечить малое сопротивление в контактах, в противном случае будет происходить потеря энергии. Таким требованиям больше всего соответствует серебро.
  3. В дугогасительных устройствах применяются разные принципы. Самый простой состоит в том, что между контактами в момент их разрыва вставляется изоляционная пластина. Она перерезает дугу. Другой способ заключается в выдувании дуги с помощью магнитного поля. Для этого к контакту подключается катушка, намотанная на ферромагнитный сердечник. К сердечнику крепятся две пластины из того же материала. Пластины же находятся возле контактов. Когда контакты размыкаются, по катушке проходит ток, создавая в сердечнике магнитное поле, а оно, в свою очередь, переходит на пластины. Между пластинами возникает мощное магнитное поле, которое разрывает электрическую дугу. Иногда пластины заменяют решеткой, которая действует аналогично. Но здесь используется еще и другой принцип. Поскольку дуга — это раскаленный ионизированный газ, то пластина или решетка выполняет роль огнетушителя, поскольку забирает тепло.
  4. Шунтирование контактов. При разрыве цепи, в которую включена индуктивность, а это катушки, двигатели, трансформаторы, ток не может сразу остановиться, поэтому возникает дуга. Чтобы предотвратить ее, необходимо ток направить по другому направлению. Это можно сделать двумя способами через конденсатор и резистор.

При использовании конденсатора необходимо подобрать емкость такой величины, чтобы она соответствовала индуктивности нагрузки. При малой емкости между контактами будут появляться искры, а при большой — сдвиг синуса по временной шкале, в худшем случае — срезание верхушек. Простым языком, ток будет выпрямляться, а это скажется на работе электроприборов.

Резистор устраняет эту проблему, но добавляет свою. При малом сопротивлении при разомкнутых контактах через пускатель будет идти ток. Это приведет к потере энергии и может представлять опасность для людей, находящихся, например, в сырых помещениях. При большом сопротивлении опять может возникнуть дуга.

Использование контактора

Контактор похож на магнитный пускатель, но работает со значительно большими токами. Обязательно имеет дугогасительную камеру, отличается быстрым срабатыванием. В отличие от магнитного пускателя не имеет защиты по току. В некоторых устройствах имеется не один, а два электромагнита. Для замыкания контактов используется основной, мощный, а для удержания применяется меньшей мощности.

Особенности подключения трехфазного двигателя

В домашних условиях иногда возникает необходимость подключения трехфазного двигателя через магнитный пускатель. На что необходимо обратить внимание? В магнитных пускателях предусмотрена защита по току. Она представляет собой биметаллическую пластину, по которой проходит ток. При нагревании пластина меняет форму, это используется для замыкания или размыкания контактов управления.

На корпусе пускателя имеются внешние контакты, которые также используются в цепи управления. Их обычно две пары, одни замыкающие, другие — размыкающие.

Основные контакты пускателя непосредственно подключают двигатель к трехфазной сети. Конструктивно две фазы уже проходят через биметаллические пластины, которые, в случае необходимости, разрывают цепь питания катушки пускателя.

Второй конец катушки идет по двум направлениям:

  • к нормально разомкнутым контактам на корпусе;
  • к кнопке «пуск».

После чего цепь вновь объединяется и идет к кнопке «Откл». После чего подсоединяется к фазе или нулю, в зависимости от типа катушки.

Если необходимо чтобы двигатель работал в двух направлениях, ставят второй пускатель по той же схеме и со своими кнопками управления. Разница будет заключаться в фазировке. Это можно будет сделать опытным путем. Двигатель пускается через один пускатель, отключается, пускается через другой. Если вращение происходит в одну и ту же сторону, две любые фазы на пускателе меняют местами.

Возможные неисправности

В процессе работы из-за износа или внешних факторов могут возникнуть неисправности:

  1. При включении пускателя контакты начинают дребезжать или не включаются.
  2. При отключении — залипают, между контактами появляются искры.

Что может быть причиной в первом случае? При замене катушки выбрали номинал большего значения. Стояла на 220 в, поставили на 380. Если не меняли, в катушке появились короткозамкнутые витки, и магнитное поле уменьшилось. Необходимо заменить катушку. При полном разборе пускателя поставили более мощную пружину на контактах.

Во втором случае либо контакты подпорчены, либо слишком большая нагрузка. Необходимо сверить ток потребителя и номинал пускателя. Если соответствуют — поменять контакты.

Магнитный Пускатель 380в Схема Подключения

Основа пускателя — магнитопровод и катушка индуктивности.


Для этого понадобится трёхжильный кабель и несколько контактов.

Для подачи питания используется второй тип, он и есть наиболее распространенным.
Пускатели магнитные КМЭ в корпусе IP65 9-95A. Схема подключения пускателя 380 и 220В (400 и 230).

На верхней части магнитопровода есть две группы контактов — подвижные и неподвижные. Исходя из этого, кнопки управления пускателем, которые называют кнопочным постом, имеют по две пары контактов — нормально открытые разомкнутые, замыкающие, НО, NO и нормально закрытые замкнутые, размыкающие, НЗ, NC см.

Если после подачи напряжения пускатель не включился самостоятельно — уже хорошо. Для этого каждый модельный ряд изделий взаимно дополняет друг друга.

Но, как вы понимаете, такая схема подключения магнитного пускателя не особо удобна — можно и напрямую проводники от источника питания подать, встроив обычный рубильник.

У алюминиевых проводов концы зачищают надфилем, затем покрывают пастой или техническим вазелином Чтобы не допустить перекоса пружинных шайб, находящихся в контактном зажиме пускателя, конец проводника загибают П-образно или в кольцо.

Наглядный пример. Следующим важным параметром будет ток сработки.

Как подключить магнитный пускатель. Схема подключения.

9 комментариев

На следующем видео реализована схема подключения магнитного пускателя с реверсом на старом стенде с использованием старого оборудования, но общий порядок действий понятен. Делают это для того, чтобы, когда двигатель окажется в опасности из-за перегрева, реле смогло бы отключить пускатель. Причем она располагается вертикально на стене электрического щита.

Источником его является нажатая пусковая кнопка, открывающая путь для подачи напряжения к управляющей катушке.

Пускатель должен отпасть.

Еще нам потребуется использовать дополнительный контакт пускателя, называемый блок-контактом. А также любым доступным способом предотвращено случайное его включение посторонними лицами.

Была ли Вам полезна данная статья?

Для сборки цепи управления нужно одну фазу прямо подключить к сердечнику, а со второй подключить с помощью провода к контакту пуска.

Так будет проще доступ к винтам катушки, которые всегда перекрываются проводами основной цепи.
Как подключить контактор или магнитный пускатель. Схема подключения

Инструкции по подсоединению

Подсоединение к 3-фазной сети Возможно подключение 3-фазного питания через катушку МП, функционирующей от В.

Если надпись гласит В АС или рядом с стоит значок переменного тока , то для работы схемы управления потребуется фаза и ноль. Последняя предназначена для быстрого рассоединения контактов, от скорости которого зависит величина электрической дуги.

Это является важным аспектом, ведь при неверном подсоединении сердечник может сгореть или не будет запускать полностью нужные контакторы. Графическое изображение по управлению, которое составляют катушка, кнопки и дополнительные контакторы, которые принимают участие в работе катушки или не допускают ошибочных включений. Теперь, перепроверив правильность монтажа можно подать напряжение и проверить работоспособность схемы.

Эта приставка защелкивается в специальные держатели, ее контактные группы работают вместе с группами основного корпуса. После выполнения вышеуказанных действий электродвигатель будет отключён и готов к последующего пуска с кнопочного поста. Кнопки управления пускателей В общем случае потребуется две кнопки: одна для включения и одна для отключения.

Необходимость в специфическом кнопочном контакте Известно, что контактор магнитного пускателя включается управляющим импульсом, исходящим от нажатия пусковой кнопки, с помощью которой подается напряжение на катушку управления. Различаются схемы подключения МП главным образом в зависимости от того, какая катушка в нем находится. Такие кнопки обычно имеют две пары групп контактов — одну нормально разомкнутую, другую замкнутую.

Поиск на сайте

Реверсивная схема подключения электродвигателя через пускатели В некоторых случаях необходимо обеспечить вращение двигателя в обе стороны. Удержание контактора во включенном состоянии происходит по принципу самоподхвата — когда дополнительный вспомогательный контакт шунтирует подключается параллельно пусковую кнопку, тем самым подавая напряжение на катушку, вследствие чего пропадает необходимость удерживать кнопку запуска в нажатом состоянии. При перекрестной схеме подключения одновременное срабатывание обоих пускателей приведет к короткому замыканию. Катушка приведёт в действие контакты КМ1 и они замкнут цепи с обмотками двигателя. Напряжение с обозначением — значит разные фазы.

При полном опускании якоря, контакты, отбрасываемые пружиной, отключаются Питание катушки управления после подключения магнитного пускателя реализуется от переменного тока, но для этого устройства род тока не имеет значения. Правильно подключенный пускатель должен фиксироваться во включенном положении при механическом нажатии на подвижную часть магнитопровода. Тип напряжения не имеет значения, главное, чтобы номинал не выходил за пределы В. Теперь если ее отпустить магнитный пускатель продолжает работать, пока не пропадет напряжение или сработает тепловое реле Р защиты двигателя. Одновременно сердечник пускателя притягивает якорь, в результате чего происходит замыкание подвижных силовых контактов, после чего напряжение поступает на нагрузку.

Но правильная — только одна. Это так называемый кнопочный пост. Можно также составить однолинейный графический рисунок подключения трехфазного электрического двигателя к магнитному пускателю через реле.
Магнитный пускатель. Или как подключить трех фазный двигатель

Устройство и принцип работы

Питание для двигателя или любой другой нагрузки фаза от В подается на любой из контактов, обозначенных буквой L, а снимается с расположенного под ним контакта с маркировкой T. Ниже мы рассмотрим некоторые схемы подключения магнитного пускателя на и вольт, которые могут пригодиться в домашних условиях.

Такое подключение позволяет производить коммутацию кнопками с любого поста.

Схема подключения магнитного пускателя с самоподхватом выглядит следующим образом: Рассмотрим работу цепей включения и выключения магнитного контактора.

Немного изменена и силовая часть От к. Обратите внимание, что у них для управления пускателем используются разные по назначению контакты.

Навигация по записям

Подсоединение к 3-фазной сети Возможно подключение 3-фазного питания через катушку МП, функционирующей от В. На контакторе КМ2 происходит замена фаз L1 на L3, а L3 на L1, таким образом меняется направление вращения электродвигателя. Напряжение с обозначением — значит разные фазы. Схема подключения магнитного пускателя на В Подключение к В практически не отличается от первого варианта, различие лишь в питающем напряжении магнитной катушки.

Вся схема будет работать от двух фаз. Реле подсоединяют к выводу с МП на электрический двигатель, электричество проходит в нем в последовательном образе сквозь нагрев реле до электромотора. Также рекомендуем прочесть другую нашу статью где мы рассказали о том как выбрать и подключить электромагнитный пускатель на В. Подключение магнитного пускателя с тепловым реле Магнитный пускатель это, по сути, мощное реле специального назначения. Для подачи питания используется второй тип, он и есть наиболее распространенным.

В случае перегрузки тепловой датчик Р сработает и разорвет контакт Р, машина остановится. В прорези нижней части магнитопровода устанавливается катушка. Как выглядит монтажная практическая схема подключения магнитного пускателя?

Далее нужно установить перемычку в кнопочном посте. Чем быстрее произойдет размыкание, тем меньше дуга и в тем лучшем состоянии будут сами контакты. Вся схема в целом претерпевает незначительные изменения. При особых требованиях безопасности повышенная влажность в помещении возможно использования пускателя с катушкой на 24 12 вольт.
Реверсивные магнитные пускатели в однофазной сети. Реверсивная схема подключения электродвигателя.

Читать еще:  Как вырезать круглое отверстие в металле: инструкция

Схема подключения трехфазного электродвигателя к трехфазной сети

При этом нет необходимости добавлять в схему подключения какие-то пусковые устройства, потому что магнитное поле будет образовываться в обмотках статора сразу же после пуска двигателя. Давайте рассмотрим один вопрос, который сегодня встречается часто на форумах электриков. Вопрос звучит так: как правильно провести подключение трехфазного электродвигателя к трехфазной сети?

Схемы подключения

Начнем с того, что рассмотрим конструкцию трехфазного электродвигателя. Нас здесь будут интересовать три обмотки, которые и создают магнитное поле, вращающее ротор мотора. То есть, именно так и происходит преобразование электрической энергии в механическую.

Существует две схемы подключения:

  • Звезда.
  • Треугольник.

Сразу же оговоримся, что подключение звездой делает пуск агрегата более плавным. Но при этом мощность электродвигателя будет ниже номинальной практически на 30%. В этом плане подключение треугольником выигрывает. Мощность подключенный таким образом мотор не теряет.

Но тут есть один нюанс, который касается токовой нагрузке. Эта величина резко возрастает при пуске, что негативно влияет на обмотку. Высокая сила тока в медном проводе повышает тепловую энергию, которая влияет на изоляцию провода. Это может привести к пробивке изоляции и выходу из строя самого электродвигателя.

Хотелось бы обратить ваше внимание на тот факт, что большое количество европейского оборудования, завезенного на просторы России, укомплектовано европейскими электрическими двигателями, которые работают под напряжением 400/690 вольт. Кстати, снизу фото шильдика такого мотора.

Так вот эти трехфазные электродвигатели надо подключать к отечественной сети 380В только по схеме треугольник. Если подключить европейский мотор звездой, то под нагрузкой он сразу же сгорит.

Отечественные же трехфазные электродвигатели к трехфазной сети подключаются по схеме звезда. Иногда подключение производят треугольником, это делается для того, чтобы выжать из мотора максимальную мощность, необходимую для некоторых видов технологического оборудования.

Производители сегодня предлагают трехфазные электродвигатели, в коробке подключения которых сделаны выводы концов обмоток в количестве трех или шести штук. Если концов три, то это значит, что на заводе внутри мотора уже сделана схема подключения звезда.

Если концов шесть, то трехфазный двигатель можно подключать к трехфазной сети и звездой, и треугольником. При использовании схемы звезда необходимо три конца начала обмоток соединить в одной скрутке. Три остальных (противоположных) подключить к фазам питающей трехфазной сети 380 вольт.

При использовании схемы треугольник нужно все концы соединить между собой по порядку, то есть последовательно. Фазы подключаются к трем точкам соединения концов обмоток между собой. Внизу фото, где показаны два вида подключения трехфазного двигателя.

Схема звезда-треугольник

Такая схема подключения к трехфазной сети используется достаточно редко. Но она существует, поэтому есть смысл сказать о ней несколько слов. Для чего она используется? Весь смысл такого соединения основан на позиции, что при пуске электродвигателя используется схема звезда, то есть плавный пуск, а для основной работы используется треугольник, то есть выжимается максимум мощности агрегата.

Правда, такая схема достаточно сложная. При этом обязательно устанавливаются в соединение обмоток три магнитных пускателя. Первый соединяется с питающей сетью с одной стороны, а с другой стороны к нему подсоединяются концы обмоток. Ко второму и третьему подключаются противоположные концы обмоток. Ко второму пускателю производится подсоединение треугольником, к третьему звездой.

Внимание! Одновременно включать второй и третий пускатели нельзя. Произойдет короткое замыкание между подключенными к ним фазами, что приведет к сбрасыванию автомата. Поэтому между ними устанавливается блокировка. По сути, все будет происходить так – при включении одного, размыкаются контакты у другого.

Принцип работы таков: при включении первого пускателя временное реле включает и пускатель номер три, то есть, подключенного по схеме звезда. Происходит плавный пуск электродвигателя. Реле времени задет определенный промежуток, в течение которого мотор перейдет в обычный режим работы. После чего пускатель номер три отключается, а включается второй элемент, переводя на схему треугольник.

Подключение электрического двигателя через магнитный пускатель

В принципе, схема подключения 3 фазного двигателя через магнитный пускатель практически точно такая же, как и через автомат. Просто в нее добавляется блок включения и выключения с кнопками «Пуск» и «Стоп».

Одна из фаз подключения к электродвигателю проходит через кнопку «Пуск» (она нормально замкнутая). То есть, при ее нажатии смыкаются контакты, и ток начинает поступать на электродвигатель. Но тут есть один момент. Если отпустить Пуск, то контакты разомкнуться, и ток поступать не будет по назначению.

Поэтому в магнитном пускателе есть еще один дополнительный контактный разъем, который называется контактом самоподхвата. По сути, это блокировочный элемент. Он необходим для того чтобы при отжатой кнопке «Пуск» цепь подачи электроэнергии на электродвигатель не прерывалась. То есть, разъединить ее можно было бы только кнопкой «Стоп».

Что можно дополнить к теме, как подключить трехфазный двигатель к трехфазной сети через пускатель? Обратите внимание вот на какой момент. Иногда после долгой эксплуатации схемы подключения трехфазного электродвигателя кнопка «пуск» перестает работать. Основная причина – подгорели контакты кнопки, ведь при пуске двигателя появляется пусковая нагрузка с большой силой тока. Решить эту проблему можно очень просто – почистить контакты.

Магнитный пускатель с тепловым реле и кнопками управления, схема, принцип действия

Магнитный пускатель наиболее часто используется для управления электродвигателями. Хотя есть у него и другие сферы применения: управление освещением, отоплением, коммутация мощных нагрузок. Их включение и отключение может выполняться как вручную, при помощи кнопок управления, так и с применением систем автоматики. О подключении кнопок управления к магнитному пускателю мы и поговорим.

  1. Кнопки управления пускателей
  2. Магнитный пускатель
  3. Схема управления пускателем на 220 В
  4. Схема управления пускателем на 380 В
  5. Подключение теплового реле в схему пускателя
  6. Проверка работоспособности схемы

Кнопки управления пускателей

В общем случае потребуется две кнопки: одна для включения и одна для отключения. Обратите внимание, что у них для управления пускателем используются разные по назначению контакты. У кнопки «Стоп» они нормально замкнуты, то есть, если кнопка не нажата, группа контактов замкнута, и размыкается при активации кнопки. У кнопки «Пуск» все наоборот.

Эти устройства могут содержать или только конкретный, нужный для работы элемент, либо быть универсальными, включая в себя и по одному замкнутому и разомкнутому контакту. В этом случае необходимо выбрать правильный.

Производители обычно снабжают свою продукцию символьными обозначениями, позволяющими определить назначение той или оной контактной группы. Стоповую кнопку обычно окрашивают в красный цвет. Цвет пусковой традиционно черный, то приветствуется зеленый, который соответствует сигналу «Включено» или «Включить». Такие кнопки используются, в основном, на дверях шкафов и панелях управления двигателями станков.

Для дистанционного управления используются кнопочные станции, содержащие две кнопки в одном корпусе. Станция соединяется с местом установки пускателя с помощью контрольного кабеля. В нем должно быть не менее трех жил, сечение которых может быть небольшим. Простейшая рабочая схема пускателя с тепловым реле

Магнитный пускатель

Теперь о том, на что следует обратить внимание, рассматривая сам пускатель перед его подключением. Самое важное – напряжение катушки управления, которое указано либо на ней самой, либо неподалеку. Если надпись гласит 220 В АС (или рядом с 220 стоит значок переменного тока), то для работы схемы управления потребуется фаза и ноль.

Интересное видео о работе магнитного пускателя смотрите ниже:

Если же это 380 В АС (того же переменного тока), то управлять пускателем будут две фазы. В процессе описания работы схемы управления будет понятно, в чем отличие.

При любых других значениях напряжения, наличии знака постоянного тока или букв DC подключить изделие к сети не получится. Оно предназначено для других цепей.

Еще нам потребуется использовать дополнительный контакт пускателя, называемый блок-контактом. У большинства аппаратов он маркируется цифрами 13НО (13NO, просто 13) и 14НО (14NO, 14).

Буквы НО означают «нормально открытый», то есть замыкается он только на притянутом пускателе, что при желании можно проверить мультиметром. Встречаются пускатели, имеющие нормально замкнутые дополнительные контакты, они не годятся для рассматриваемой схемы управления.

Силовые контакты предназначены для подключения нагрузки, которой они и управляют.

У разных производителей их маркировка отличается, но при их определении сложностей не возникает. Итак, крепим пускатель к поверхности или DIN-рейке в месте его постоянной дислокации, прокладываем силовые и контрольные кабели, начинаем подключение.

Схема управления пускателем на 220 В

Один мудрец сказал: есть 44 схемы подключения кнопок к магнитному пускателю, из которых 3 работают, а остальные – нет. Но правильная – только одна. Про нее и поговорим (смотри схему ниже). Подключение силовых цепей лучше оставить на потом. Так будет проще доступ к винтам катушки, которые всегда перекрываются проводами основной цепи. Для питания цепей управления используем один из фазных контактов, от которой проводник отправляем на один из выводов кнопки «Стоп».

Это может быть или проводник, или жила кабеля.

От кнопки стоп пойдут уже два провода: один к кнопке «Пуск», второй – на блок-контакт пускателя.

Для этого между кнопками ставится перемычка, а к одной из них в месте ее подключения добавляется жила кабеля к пускателю. Со второго вывода кнопки «Пуск» тоже идут два провода: один на второй вывод блок-контакта, второй – к выводу «А1» катушки управления.

При подключении кнопок кабелем перемычка ставится уже на пускателе, к ней подключается третья жила. Второй вывод от катушки (А2) подключается к нулевой клемме. В принципе нет разницы, в каком порядке подключать вывода кнопок и блок-контакта. Желательно только именно вывод «А2» катушки управления соединить с нулевым проводником. Любой электрик ожидает, что нулевой потенциал будет только там.

Теперь можно подключить провода или кабели силовой цепи, не позабыв о том, что рядом с одним из них на входе присутствует провод на схему управления. И только с этой стороны на пускатель подается питание (традиционно – сверху). Попытка подключить кнопки на выход пускателя ни к чему не приведет.

Схема управления пускателем на 380 В

Все то же самое, но для того, чтобы катушка заработала, проводник от вывода «А2» надо подключить не к нулевой шинке, а к любой другой фазе, не использующейся до этого. Вся схема будет работать от двух фаз.

Подключение теплового реле в схему пускателя

Тепловое реле используется для защиты электродвигателя от перегрузки. Конечно, автоматическим выключателем он защищается при этом все равно, но его теплового элемента для этой цели недостаточно. И его нельзя настроить точно на номинальный ток мотора. Принцип работы теплового реле тот же, что и в автоматическом выключателе.

Ток проходит по греющим элементам, если его величина превысит заданную – отгибается биметаллическая пластинка и переключает контактики.

В этом есть еще одно отличие от автоматического выключателя: само тепловое реле ничего не отключает. Оно просто дает сигнал к отключению. Который нужно правильно использовать. Силовые контакты теплового реле позволяют подключать его к пускателю напрямую, без проводов. Для этого каждый модельный ряд изделий взаимно дополняет друг друга. Например, ИЭК выпускает тепловые реле для своих пускателей, АВВ – своих. И так у каждого производителя. Но изделия разных фирм не стыкуются друг с другом.

Тепловые реле также могут иметь два независимых контакта: нормально замкнуты и нормально разомкнутый. Нам понадобится замкнутый – как в случае с кнопкой «Стоп». Тем более, что и функционально он будет работать так же, как эта кнопка: разрывать цепь питания катушки пускателя, чтобы он отпал.

Теперь потребуется врезать найденные контакты в схему управления. Теоретически это можно сделать почти в любом месте, но традиционно он подключается после катушки.

В описанном выше случае для этого потребуется от вывода «А2» отправить провод на контакт теплового реле, а от второго его контакта – уже туда, где до этого был подключен проводник. В случае с управлением от 220 В это – нулевая шинка, с 380 В – фаза на пускателе. Срабатывание теплового реле у большинства моделей никак не заметно.

Для возврата его в исходное состояние на панели прибора есть небольшая кнопочка, которая перекидывает контакты при нажатии. Но это нужно делать не сразу, а дать реле остыть, иначе контакты не зафиксируются. Перед включением в работу после монтажа кнопку лучше нажать, исключив возможное переключение контактной системы в ходе транспортировки из-за тряски и вибраций.

Ещё одно интересное видео о работе магнитного пускателя:

Проверка работоспособности схемы

Для того, чтобы понять, правильно собрана схема или нет, нагрузку к пускателю лучше не подключать, оставив его нижние силовые клеммы свободными. Так вы обезопасите коммутируемое оборудование от лишних проблем. Включаем автоматический выключатель, подающий напряжение на испытуемый объект.

Само собой разумеется, пока идет монтаж, он должен быть отключен. А также любым доступным способом предотвращено случайное его включение посторонними лицами. Если после подачи напряжения пускатель не включился самостоятельно – уже хорошо.

Нажимаем на кнопку «Пуск», пускатель должен включиться. Если нет – проверяем замкнутое положение контактов кнопки «Стоп» и состояние теплового реле.

При диагностике неисправности помогает однополюсный указатель напряжения, которым можно легко проверить прохождение фазы через кнопку «Стоп» до кнопки «Пуск». Если при отпускании кнопки «Пуск» пускатель не фиксируется, а отпадает – неправильно подключены блок-контакты.

Проверьте – они должны подключиться параллельно этой кнопке. Правильно подключенный пускатель должен фиксироваться во включенном положении при механическом нажатии на подвижную часть магнитопровода.

Теперь проверяем работу теплового реле. Включаем пускатель и аккуратно отсоединяем любой проводок от контактов реле. Пускатель должен отпасть.

Схема подключения пускателя при подключении трёхфазного электродвигателя

Запись дневника создана пользователем Serj, 06.02.14
Просмотров: 16.303

Это простейшая схема пускателя (упрощенный вариант), которая лежит в основе всех или, по крайней мере, большинства схем запуска асинхронных электродвигателей, применяемых очень широко, как в промышленности, так и в обычном быте. Плох тот электрик, который не знает данной схемы (как ни странно, но есть и такие люди). Хоть Вы, возможно, конечно знаете принцип её работы, но для освежения памяти или для новичков все же опишу вкратце эту работу. И так, вся схема кроме электродвигателя, который установлен непосредственно на конкретном оборудовании или устройстве, монтируется либо в щитке или в специальной коробке (ПМЛ).
Кнопки ПУСКА и СТОПА, могут находится как на передней стороне этого щитка, так в не его (монтируются на месте, где удобно управлять работой), а может быть и там и там, в зависимости от удобства. К данному щитку подводится трёхфазное напряжение от ближайшего места запитки (как правило, от распределительного щита), а с него уже выходит кабель, идущий на сам электродвигатель.

А теперь о принципе работы: на клеммы Ф1, Ф2, Ф3 подается трехфазное напряжение. Для запуска асинхронного электродвигателя требуется срабатывание магнитного пускателя(ПМ) и замыкания его контактов ПМ1, ПМ2 и ПМ3. Для срабатывания ПМ, необходимо подать на его обмотку напряжение (кстати, величина его зависит от самой катушки, то есть, на какое именно напряжение она рассчитана. Это так же зависит от условий и места работы оборудования. Они бывают на 380в, 220в, 110в, 36в, 24в и 12в) (данная схема рассчитана на напряжение 220в, поскольку берётся с одной из имеющихся фаз и нуля). Подача электропитания на катушку магнитного пускателя осуществляется по такой цепи: С ф1 поступает фаза на нормально замкнутый контакт тепловой защиты электродвигателя ТП1, далее проходит через катушку самого пускателя и выходит на кнопку ПУСК (КН1) и на контакт само подхвата ПМ4 (магнитного пускателя). С них питание выходит на нормально замкнутую кнопку СТОП и после замыкается на нуле.

Для запуска требуется нажать кнопку ПУСК, после чего цепь катушки магнитного пускателя замкнётся и притянет (замкнёт) контакты ПМ1-3 (для пуска двигателя) и контакт ПМ4, который даст возможность при отпускании кнопки пуска, продолжать работу и не отключить магнитный пускатель (называется само подхватом). Для остановки электродвигателя, требуется всего лишь нажать кнопку СТОП (КН2) и тем самым разорвать цепь питания катушки ПМ. В результате контакты ПМ1-3 и ПМ4 отключатся, и работа будет остановлена до следующего запуска Пуска.

Для защиты обязательно ставятся тепловые реле (на нашей схеме это ТП). При перегрузки электродвигателя, соответственно повышается ток, и двигатель резко начинает нагреваться, вплоть до выхода из строя. Данная защита срабатывает именно при повышении тока на фазах, тем самым размыкает свои контакты ТП1, что подобно нажатию кнопки СТОП.

Читать еще:  Преимущества и недостатки параллельного и последовательного соединения лампочек

Данные случаи бывают в основном при полном заклинивании механической части или при большой механической перегрузки в оборудовании, на котором работает электродвигатель. Хотя и не редко причиной становится и сам движок, из-за высохших подшипников, плохой обмотки, механического повреждения и т.д. Думаю для тех, кто этого не знал, данная статья: Схема пускателя упрощенный вариант, была весьма полезна и однажды не раз пригодится в жизни.

Подключения пускателя по схеме — реверс

Вариант приведенной выше схемы, используется для запуска электродвигателей, работающих в одном режиме, т. е. не меняя вращения (насосы, циркулярки, вентиляторы). Но для оборудования которое должно работать в двух направлениях, это кран — балки, тельферы, лебедки, открывание-закрывание ворот и др. необходима другая электрическая схема. Для такой схемы нам понадобится не один, а два одинаковых пускателя и кнопка ПУСК-СТОП трех кнопочная, т. е. две кнопки ПУСК и одна СТОП. Могут в схемах реверс, использоваться пульты и на две кнопки, это участки, где промежутки работы очень короткие. Например небольшая лебедка, промежутки работы 3-10 секунд, для работы этого оборудования, вариант на две кнопки более подходящий, но кнопки обе пусковые, т. е. только с нормально открытыми контактами, и в схеме блок контакты (пм1 и пм2) самоподхвата не задействуются, а именно пока вы держите кнопку нажатой – оборудование работает, как отпустили – оборудование остановилось. В остальном схема реверс аналогична схеме упрощенный вариант.

Подключения пускателя по схеме – реверс

СХЕМА ПОДКЛЮЧЕНИЯ МАГНИТНОГО ПУСКАТЕЛЯ

Прежде чем приступить к практическому подключению пускателя — напомним полезную теорию: контактор магнитного пускателя включается управляющим импульсом, исходящим от нажатия пусковой кнопки, с помощью которой подается напряжение на катушку управления. Удержание контактора во включенном состоянии происходит по принципу самоподхвата – когда дополнительный контакт подключается параллельно пусковой кнопке, тем самым подавая напряжение на катушку, вследствие чего пропадает необходимость удерживать кнопку запуска в нажатом состоянии.

Отключение магнитного пускателя в этом случае возможно только при разрыве цепи управляющей катушки, из чего становится очевидной необходимость использования кнопки с размыкающим контактом. Поэтому кнопки управления пускателем, которые называют кнопочным постом, имеют по две пары контактов – нормально открытые (разомкнутые, замыкающие, НО, NO) и нормально закрытые (замкнутые, размыкающие, НЗ, NC)

Данная универсализация всех кнопок кнопочного поста сделана для того, чтобы предвидеть возможные схемы обеспечения моментального реверса двигателя. Общепринято называть отключающую кнопку словом: «Стоп» и маркировать её красным цветом. Включающую кнопку часто называют пусковой, стартовой, или обозначают словом «Пуск», «Вперёд», «Назад».

Если катушка рассчитана на срабатывание от 220 В, то цепь управления коммутирует нейтраль. Если рабочее напряжение электромагнитной катушки 380 В, то в цепи управления протекает ток, «снятый» с другой питающей клеммы пускателя.

Схема подключения магнитного пускателя на 220 В

Здесь ток на магнитную катушку КМ 1 подается через тепловое реле и клеммы, соединенных в цепь кнопок SB2 для включения — «пуск» и SB1 для остановки — «стоп». Когда мы нажимаем «пуск» электрический ток поступает на катушку. Одновременно сердечник пускателя притягивает якорь, в результате чего происходит замыкание подвижных силовых контактов, после чего напряжение поступает на нагрузку. При отпускании «пуск» не происходит размыкание цепи, поскольку параллельно этой кнопке выполнено подключение блок-контакта КМ1 с замкнутыми магнитными контактами. Благодаря этому на катушку поступает фазное напряжение L3. При нажатии «стоп» питание отключается, подвижные контакты приходят в исходное положение, что приводит к обесточиванию нагрузки. Те же процессы происходят при работе теплового реле Р – обеспечивается разрыв ноля N, питающего катушку.

Схема подключения магнитного пускателя на 380 В

Подключение к 380 В практически не отличается от первого варианта, различие лишь в питающем напряжении магнитной катушки. В данном случае питание осуществляется с использованием двух фаз L2 и L3, тогда как в первом случае — L3 и ноль.

На схеме видно, что катушка пускателя (5) питается от фаз L1 и L2 при напряжении 380 В. Фаза L1 присоединяется напрямую к ней, а фаза L2 – через кнопку 2 «стоп», кнопку 6 «пуск» и кнопку 4 теплового реле, соединенные последовательно между собой. Принцип действия такой схемы следующий: После нажатия кнопки 6 «пуск» через включенную кнопку 4 теплового реле напряжение фазы L2 попадает на катушку магнитного пускателя 5. Происходит втягивание сердечника, замыкающее контактную группу 7 на определенную нагрузку (электродвигатель М), при этом подается ток, напряжением 380 В. В случае выключения «пуск» цепь не прерывается, ток проходит через контакт 3 – подвижный блок, замыкающийся при втягивании сердечника.

При аварии в обязательном порядке должно сработать теплового реле 1, его контакт 4 разрывается, отключается катушка и возвратные пружины приводят сердечник в исходное положение. Контактная группа размыкается, снимая напряжение с аварийного участка.

Подключение магнитного пускателя через кнопочный пост

В данную схему включены дополнительные кнопки включения и остановки. Обе кнопки «Стоп» подключены в цепь управления последовательно, а кнопки «Пуск» соединяются параллельно.Такое подключение позволяет производить коммутацию кнопками с любого поста.

Вот ещё вариант. Схема состоит из двухкнопочного поста “Пуск” и “Стоп” с двумя парами контактов нормально замкнутых и разомкнутых. Магнитный пускатель с катушкой управления на 220 В. Питание кнопок взято с клеммы силовых контактов пускателя, цифра 1. Напряжение подходит до кнопки “Стоп” цифра 2. Проходит через нормально замкнутый контакт, по перемычке до кнопки “Пуск” цифра 3.

Нажимаем кнопку “Пуск”, замыкается нормально разомкнутый контакт цифра 4. Напряжение достигает цели, цифра 5, катушка срабатывает, сердечник втягивается под воздействием электромагнита и приводит в движение силовые и вспомогательные контакты, выделенные пунктиром.

Вспомогательный блок контакт 6 шунтирует контакт кнопки “пуск” 4, для того, чтобы при отпускании кнопки “Пуск” пускатель не отключился. Отключение пускателя осуществляется нажатием кнопки “Стоп”, цифра 7, снимается напряжение с катушки управления и под воздействием возвратных пружин пускатель отключается.

Подключение двигателя через пускатели

Нереверсивный магнитный пускатель

Если изменять направление вращения двигателя не требуется, то в цепи управления используются две не фиксируемые подпружиненные кнопки: одна в нормальном положении разомкнутая – «Пуск», другая замкнутая – «Стоп». Как правило, они изготавливаются в едином диэлектрическом корпусе, при этом одна из них красного цвета. Такие кнопки обычно имеют две пары групп контактов – одну нормально разомкнутую, другую замкнутую. Их тип определяется во время монтажных работ визуально или с помощью измерительного прибора.

Провод цепи управления подключается к первой клемме замкнутых контактов кнопки «Стоп». Ко второй клемме этой кнопки подключают два провода: один идет на любой ближайший из разомкнутых контактов кнопки «Пуск», второй – подключается к управляющему контакту на магнитном пускателе, который при отключенной катушке разомкнут. Этот разомкнутый контакт соединяется коротким проводом с управляемой клеммой катушки.

Второй провод с кнопки «Пуск» подключается непосредственно на клемму втягивающей катушки. Таким образом, к управляемой клемме «втягивающей» должно быть подключено два провода – «прямой» и «блокирующий».

Одновременно замыкается управляющий контакт и, благодаря замкнутой кнопке «Стоп», управляющее воздействие на втягивающую катушку фиксируется. При отпускании кнопки «Пуск» магнитный пускатель остается замкнутым. Размыкание контактов кнопки «Стоп» вызывает отключение электромагнитной катушки от фазы или нейтрали и электродвигатель отключается.

Реверсивный магнитный пускатель

Для реверсирования двигателя необходимо два магнитных пускателя и три управляющие кнопки. Магнитные пускатели устанавливаются рядом друг с другом. Для большей наглядности условно отметим их питающие клеммы цифрами 1–3–5, а те, к которым подключен двигатель как 2–4–6.

Для реверсивной схемы управления пускатели соединяются так: клеммы 1, 3 и 5 с соответствующими номерами соседнего пускателя. А «выходные» контакты перекрестно: 2 с 6, 4 с 4, 6 с 2. Провод, питающий электродвигатель, подключается к трем клеммам 2, 4, 6 любого пускателя.

При перекрестной схеме подключения одновременное срабатывание обоих пускателей приведет к короткому замыканию. Поэтому проводник «блокирующей» цепи каждого пускателя должен проходить сначала через замкнутый управляющий контакт соседнего, а потом – через разомкнутый своего. Тогда включение второго пускателя будет вызывать отключение первого и наоборот.

Ко второй клемме замкнутой кнопки «Стоп» подключаются не два, а три провода: два «блокирующих» и один питающий кнопки «Пуск», включаемых параллельно друг другу. При такой схеме подключения кнопка «Стоп» выключает любой из скоммутированных пускателей и останавливает электродвигатель.

Советы и хитрости установки

  • Перед сборкой схемы надо освободить рабочий участок от тока и проконтролировать, чтобы напряжение отсутствовало тестером.
  • Установить обозначение напряжения сердечника, которое упоминается на нем, а не на пускателе. Оно может быть 220 или 380 вольт. Если оно 220 В, на катушку идет фаза и ноль. Напряжение с обозначением 380 – значит разные фазы. Это является важным аспектом, ведь при неверном подсоединении сердечник может сгореть или не будет запускать полностью нужные контакторы.
  • Кнопка на пускатель (красная)Нужно взять одну красную кнопку «Стоп» с замкнутыми контактами и одну черную либо зеленую кнопку с надписью «Пуск» с неизменно разомкнутыми контактами.
  • Учтите, что силовые контакторы заставляют работать или останавливают только фазы, а нули, которые приходят и отходят, проводники с заземлением всегда объединяются на клеммнике в обход пускателя. Для подсоединения сердечника в 220 Вольт на дополнение с клеммника берется 0 в конструкцию организации пускателя.

А ещё вам понадобится полезный прибор — пробник электрика, который легко можно сделать самому.

Cхема подключения пускателя

Для подачи питания на различные электроприборы используются включатели. В зависимости от мощности электроустановки, проектируются контакты коммутаторов: чем выше ток (потребляемая мощность), тем больше масса и площадь соприкосновения металла. Соответственно, прижимное устройство (пружина, стальная пластина) должно обеспечивать большее усилие нажатия. Если включатель ручной (механический), его размеры будут слишком велики, пользоваться им будет неудобно.

Такие вводные устройства имеют ряд недостатков (помимо габаритов):

  • слишком большое усилие при включении (выключении);
  • контактные группы не рассчитаны на частую коммутацию: быстро изнашиваются;
  • не решены вопросы безопасности: при необходимости аварийного отключения тратится слишком много времени;
  • «рубильники» необходимо размещать рядом с зоной работ (в непосредственной близости от электроустановки), это не всегда удобно по причине тех же габаритов.

Единственный выход — подключение двигателя (или другого электроприбора) через пускатель.

Преимущества реализации такой схемы подключения

  1. Коммутатор и манипулятор управления (кнопка) могут быть разнесены. То есть, управляющий элемент располагается в непосредственной близости от оператора, а массивный коммутатор можно разместить в любом удобном месте.
  2. Возможно управление с помощью ножного привода (руки остаются свободными). Это позволяет лучше контролировать электроустановку и удерживать обрабатываемую деталь.
  3. Схема подключения выносного пускателя позволяет разместить устройства безопасности. Например, защиту от короткого замыкания или тепловые реле, срабатывающие при температурных перегрузках. Кроме того, такая схема позволяет реализовать механическую защиту: при перемещении подвижных частей электроустановки до критической отметки, срабатывает концевой выключатель, и магнитный пускатель размыкается.
  4. Дистанционное расположение управляющих элементов позволяет расположить аварийную кнопку в удобном месте, что повышает безопасность эксплуатации.
  5. Есть возможность установить единый кнопочный пост для управления большим количеством магнитных пускателей при расположении электроустановок в разных местах и на большом удалении. Схема подключения через такой пост предполагает использование слаботочной управляющей проводки, что экономит средства на приобретение дорогостоящих силовых кабелей.
  6. Для управления одним пускателем можно установить несколько кнопочных постов. В таком случае управление электроустановкой с каждого поста будет равнозначным. То есть, можно запустить электродвигатель с одной точки, а выключить с другой. Схема подключения нескольких кнопочных постов на иллюстрации:
  7. Магнитные контакторы можно интегрировать в электронную систему управления. В этом случае команды на пуск и отключение электроустановок подаются автоматически, по заданному алгоритму. Организовать такую систему с помощью механических (ручных) включателей невозможно.

Фактически, такая коммутация представляет собой релейную схему.

Как подключить пускатель на 220V с кнопкой

Самая распространенная схема включения — однофазный потребитель с кнопочным стартом. Причем кнопки должны быть разнесены: отдельно «пуск», отдельно «стоп». Чтобы понять, как подключить магнитный пускатель, изобразим комбинированную схему, с изображением деталей:

В нашем случае используется однофазный источник питания (220 V), разнесенные кнопки управления, защитное термореле, и собственно магнитный пускатель. Потребитель — мощный электродвигатель.

  • Нулевой кабель (N) подключается одновременно к электродвигателю и контактам управляющей цепи.
  • Кнопка (Кн2) «стоп» является нормально замкнутой: в отпущенном состоянии через нее протекает электрический ток.
  • Линия фазы (F) контролируется защитной схемой термореле (ТП), и подключается к входным рабочим контактам пускателя (ПМ1).
  • Пусковая электроцепь от фазы соединяется с обмоткой соленоида пускателя (ПМ) через замкнутые (без перегрева) контакты термореле (ТП-1).
  • Параллельно нормально разомкнутой кнопке (Кн1) «пуск», подключены контакты сервисной цепи магнитного пускателя (ПМ4).
  • При нажатии кнопки «пуск», через соленоид контактора течет электроток. Замыкаются контакты (ПМ1) — питание электродвигателя и (ПМ4) — питание соленоида пускателя. После отпускания кнопки «пуск», управляющая и силовая цепи остаются замкнутыми, схема находится в режиме «включено».
  • При перегреве линии, срабатывает термореле (ТП), нормально замкнутые контакты (ТП1-) разрывают цепь соленоида, контактор размыкается, потребитель отключен. Повторное включение можно выполнить после остывания термореле.
  • Для принудительного обесточивания потребителя, достаточно коснуться кнопки (Кн2) «стоп», цепь питания соленоида разомкнется, питание потребителя прекратится.

Такая схема клавишного подключения магнитного пускателя на 220 V позволяет безопасно пользоваться мощными электроустановками, и обеспечивает дополнительную защиту в случае перегрева линии по току. Например, если вал двигателя остановится под нагрузкой.

Упрощенная схема (без защитных устройств и термореле) на иллюстрации:

В этом случае управление соленоидом (соответственно и силовыми контактными группами) осуществляется двумя кнопками вручную.

При организации электронного поста управления, роль кнопок выполняют реле, подключенные к схеме, либо электрические системы (например, на тиристорах).

В качестве бонуса, рассмотрим подключение с помощью розетки с таймером. В этом случае схема включения работает без кнопки «стоп». То есть, при наличии управляющего напряжения (от таймера), электроустановка работает.

Как подключить трехфазный двигатель через магнитный пускатель

Питание 380 V (три фазы) осуществляется аналогично, только силовых проводов будет больше.

Контактор включает не одну, а три фазные линии. При этом, управляющая кнопка подключена по аналогичной схеме (как в однофазном случае).

На иллюстрации изображен пускатель, с управляющей катушкой соленоида на 380 V. Управляющая цепь коммутируется между двумя любыми фазами. Для безопасности присутствует термореле, датчики которого могут располагаться как на одном, так и на нескольких фазных проводах.

Как подключить контактор на 3 фазы, с обмоткой пускателя 220 V? Схема аналогичная, только управляющая цепь коммутируется между любой из фаз, и нейтральным проводом. Термореле работает так же точно, поскольку его механизм завязан на температуру силовых кабелей.

Как менять направление вращения двигателя с помощью пускателя

Трехфазные электромоторы дают возможность задавать направление вращения. Существует множество схем для однофазного питания 220 V. А для работы трехфазной (380 V) коммутации, существует схема подключения реверсивного магнитного пускателя.

Прибор состоит из двух самостоятельных схем, с отдельным управлением каждой группы контактов (пм1 и пм2). Каждая обмотка соленоида (ПМ1 и ПМ2) управляется своей кнопкой. При этом клавиша стоп всего одна, она просто разрывает цепь управления (как и в одиночном пускателе). Соединение входных и выходных контактов второй группы производится с так называемым «сдвигом фазы». При этом обмотки электродвигателя создают крутящий момент на валу в противоположном направлении.

Термореле без изменений: их задача разомкнуть пускатель при перегрузках.

Есть одна особенность:

Для предотвращения короткого замыкания между фазами, группы контактов (пм1 и пм2) не должны замыкаться одновременно. Поэтому они механически размещены на одном штоке, и чисто физически не могут быть подключены к питающей шине вместе. При попытке нажать на вторую кнопку (при работающей первой), питание потребителя отключится.

Видео по теме

Как подключить трехфазный двигатель к сети 220 или 380 В?

Среди электрических машин, предназначенных для совершения механической работы, одними из наиболее продуктивных считаются трехфазные агрегаты. Вращение ротора осуществляется посредством одновременного воздействия магнитного потока от фазных обмоток. Что и обеспечивает одновременное усилие сразу трех моментов, пропорционально взаимодействующих друг с другом. Как можно выполнить подключение трехфазного двигателя в зависимости от их конструктивных особенностей и параметров электрической сети мы рассмотрим далее.

Общая информация

Подключение трехфазных двигателей подразумевает относительно сложную операцию, которая требует понимания процессов, протекающих в электроустановке. Для чего необходимо рассмотреть как составляющие элементы, так и их назначение.

Конструктивно трехфазные электродвигатели состоят из:

  • Статора с магнитопроводом;
  • Ротора с валом;
  • Обмоток.

В зависимости от типа двигателя встречаются модели с короткозамкнутым или фазным ротором. В одних ротор вращается только за счет электромагнитного поля, наводимого от обмоток статора, в других, вращение вала получает усилие от поля ротора при протекании тока в его обмотках. Для включения трехфазных двигателей необходимо разобраться с тем, как фазы обмоток соединяются между собой.

Читать еще:  Теодолит: устройство, назначение, разновидности

Схемы подключения обмоток двигателя

В трехфазных асинхронных электродвигателях применяется два варианта соединения – в звезду и треугольник. В трехфазных асинхронных электрических машинах, в зависимости от модели, можно реализовать схему:

  • Звезда;
  • Треугольник;
  • Звезда и треугольник.

Простейший способ определения возможностей конкретного асинхронного электромотора – посмотреть на шильд (металлическая пластина с техническими параметрами). На них обозначается в том числе и номинал рабочего напряжения для соответствующего соединения. Здесь может указываться обозначение только для звезды, только для треугольника или и тот и другой вариант одновременно, пример такой маркировки приведен на рисунке ниже:

Пример обозначения на шильде

Если шильд отсутствует или информация на нем стерлась, то схему подключения можно узнать, открыв блок распределения начал обмотки (БРНО). Если вы увидите 6 выводов, имеющих клеммные соединения, можно определить тип включения обмоток. Гораздо хуже, когда борно имеет только три вывода, а подключение производится внутри корпуса. В этом случае нужно разобрать трехфазный электромотор, чтобы увидеть способ соединения.

Звезда

Схема подключения трехфазного двигателя звездой предусматривает, что начало каждой обмотки объединяется в одну точку, а к их концам подключаются фазы от питающей линии. Такой тип обеспечивает значительно более плавный пуск и относительно щадящий режим работы. Однако мощность, с которой вращается ротор, в полтора раза ниже, чем при подключении треугольником. Схематически данное подключение выглядит следующим образом:

Схема подключения звезда

Как видите на рисунке, концы выводов обмоток трехфазного двигателя A2, B2, C2 соединены в один электрический узел. А к клеммам A1, B1, C1 – подключаются фазные провода, как правило, на 220 или 380 вольт.

Если рассматривать данную схему на примере борна, выглядеть оно будет так:

Соединение обмоток звездой

Треугольник

Чтобы подключить электродвигатель треугольником вам необходимо подвести конец одной обмотки к началу другой. И таким образом замкнуть обмотки в своеобразное кольцо, в точки соединения которых и подключаются выводы питающей линии. Схема соединения треугольником обеспечивает максимальный момент и усилие на валу, что особенно актуально для больших нагрузок. Однако и ток в обмотках при номинальной нагрузке также пропорционально повысится, не уже говоря о режимах перегрузки.

Поэтому включение трехфазного двигателя треугольником и требует понижения напряжения. К примеру, если одну и ту же электрическую машину можно подключить с соединением обмоток и треугольником, и звездой, то звезда будет иметь напряжение питания 380, а треугольник 220 вольт или 220 и 127 вольт соответственно. Схематически подключение обмоток треугольником будет выглядеть так:

Схема подключения треугольник

Как видите, соединение производится от A2 к B1, от B2 к C1, от C2 к A1, в некоторых моделях электрических машин маркировка выводов может отличаться, но на крышке борна будет отображаться их принадлежность к той или иной обмотке и возможные варианты соединения между собой.

Соединение обмоток треугольником

Варианты подключения

Трехфазные двигатели имеют отличные характеристики, довольно широкий модельный ряд и применяются в самых разнообразных устройствах. Поэтому их применяют как в промышленных устройствах с трехфазным питанием, так и в бытовых однофазных электроустановках. Далее разберем оба варианта подключения электрических машин.

В однофазную сеть

Конструктивная особенность трехфазного агрегата, в отличии от однофазных асинхронных двигателей, состоит в необходимости сдвига фаз в обмотках, иначе вращения вала не будет происходить. Чтобы изменить ситуацию одну фазу разделяют для всех трех обмоток, в две из которых включаются дополнительная индуктивность и пусковая емкость. Которые и обеспечивают сдвиг тока и напряжения относительно напряжения в сети. Индуктивность позволяет осуществить сдвиг напряжения в отрицательную область до -90°, а вот однофазный конденсатор, наоборот, в положительную до +90°.

Графически функция отставания напряжения от тока будет выглядеть следующим образом:

Изменение тока и напряжения на емкости и индуктивности

Однако на практике смещение обеспечивается только емкостными элементами, которые включаются в цепь электроснабжения одной из обмоток, а две другие запускаются между фазным и нулевым проводом. Схема подключения трехфазного двигателя в однофазной цепи приведена на рисунке ниже:

Схема включения в однофазную сеть

Как видите на рисунке, от фазного провода делается отпайка, содержащая конденсаторный однофазный магазин из двух элементов, один для пуска C2, второй для постоянной работы C1. При нажатии кнопки пуска происходит одновременное замыкание контактов SA1 и SA2, но после создания достаточного момента и начала вращения SA1 отбрасывается и выводит C1 из цепи, оставляя C2. Мощность, при такой схеме включения двигателя, снижается до 30 – 50%.

Расчет конденсаторного пуска производится по формуле:

Сраб = (2800*I)/U — для включения трехфазного двигателя звездой

Cраб = (4800*I)/U — для включения трехфазного двигателя треугольником

Пусковой конденсатор используется только в нагруженном пуске, поэтому в легком запуске его можно не применять. Тогда вместо емкости пускового будет задействоваться рабочий.

В трёхфазную сеть

В трехфазной сети, несмотря на наличие необходимого типа питающего напряжения, всегда используется магнитный пускатель для приведения двигателя во вращение. Производить запуск без пускателя или контактора довольно опасно, поэтому они являются неотъемлемым элементом.

Схема включения в трехфазную сеть

На рисунке выше приведена обычная схема подключения двигателя к трехфазной сети, которая работает по такому принципу:

  • подача напряжения на двигатель от сети производится через рубильник 1.
  • далее, при включении кнопки пуска 6 осуществляется питание катушки контактора 4, которая притягивает силовые контакты пускателя 3;
  • после чего двигатель начинает вращение, а пусковая кнопка 6 шунтируется через повторитель 5;
  • для остановки трехфазного двигателя используется кнопка Стоп – 7, находящаяся в нормально замкнутом положении;
  • защита двигателя от перегрузки контролирует токовую нагрузку в сети и при возникновении угрозы размыкает контакты 2.

Как подключить магнитный пускатель

Для подачи питания на двигатели или любые другие устройства используют контакторы или магнитные пускатели. Устройства, предназначенные для частого включения и выключения питания. Схема подключения магнитного пускателя для однофазной и трехфазной сети и будет рассмотрена дальше.

Контакторы и пускатели — в чем разница

И контакторы и пускатели предназначены для замыкания/размыкания контактов в электрических цепях, обычно — силовых. Оба устройства собраны на основе электромагнита, работать могут в цепях постоянного и переменного тока разной мощности — от 10 В до 440 В постоянного тока и до 600 В переменного. Имеют:

  • некоторое количество рабочих (силовых) контактов, через которые подается напряжение на подключаемую нагрузку;
  • некоторое количество вспомогательных контактов — для организации сигнальных цепей.

Так в чем разница? Чем отличаются контакторы и пускатели. В первую очередь они отличаются степенью защиты. Контакторы имеют мощные дугогасительные камеры. Отсюда следуют два других отличия: из-за наличия дугогасителей контакторы имеют большой размер и вес, а также используются в цепях с большими токами. На малые токи — до 10 А — выпускают исключительно пускатели. Они, кстати, на большие токи не выпускаются.

Внешний вид не всегда так сильно отличается, но бывает и так

Есть еще одна конструктивная особенность: пускатели выпускаются в пластиковом корпусе, у них наружу выведены только контактные площадки. Контакторы, в большинстве случаев, корпуса не имеют, потому должны устанавливаться в защитных корпусах или боксах, которые защитят от случайного прикосновения к токоведущим частям, а также от дождя и пыли.

Кроме того, есть некоторое отличие в назначении. Пускатели предназначены для запуска асинхронных трехфазных двигателей. Потому они имеют три пары силовых контактов — для подключения трех фаз, и одну вспомогательную, через которую продолжает поступать питание для работы двигателя после того, как кнопка «пуск» отпущена. Но так как подобный алгоритм работы подходит для многих устройств, то подключают через них самые разнообразные устройства — цепи освещения, различные устройства и приборы.

Видимо потому что «начинка» и функции обоих устройств почти не отличаются, во многих прайсах пускатели называются «малогабаритными контакторами».

Устройство и принцип работы

Чтобы лучше понимать схемы подключения магнитного пускателя, необходимо разобраться в его устройстве и принципе работы.

Основа пускателя — магнитопровод и катушка индуктивности. Магнитопровод состоит из двух частей — подвижной и неподвижной. Выполнены они в виде букв «Ш» установленные «ногами» друг к другу.

Нижняя часть закреплена на корпусе и является неподвижной, верхняя подпружинена и может свободно двигаться. В прорези нижней части магнитопровода устанавливается катушка. В зависимости от того, как намотана катушка, меняется номинал контактора. Есть катушки на 12 В, 24 В, 110 В, 220 В и 380 В. На верхней части магнитопровода есть две группы контактов — подвижные и неподвижные.

Устройство магнитного пускателя

При отсутствии питания пружины отжимают верхнюю часть магнитопровода, контакты находятся в исходном состоянии. При появлении напряжения (нажали кнопку пуск, например) катушка генерирует электромагнитное поле, которое притягивает верхнюю часть сердечника. При этом контакты меняют свое положение (на фото картинка справа).

При пропадании напряжения электромагнитное поле тоже исчезает, пружины отжимают подвижную часть магнитопровода вверх, контакты возвращаются в исходное состояние. В этом и состоит принцип работы эклектромагнитного пускателя: при подаче напряжения контакты замыкаются, при пропадании — размыкаются. Подавать на контакты и подключать к ним можно любое напряжение — хоть постоянное, хоть переменное. Важно чтобы его параметры не были больше заявленных производителем.

Так выглядит в разобранном виде

Есть еще один нюанс: контакты пускателя могут быть двух типов: нормально замкнутыми и нормально разомкнутыми. Из названий следует их принцип работы. Нормально замкнутые контакты при срабатывании отключаются, нормально разомкнутые — замыкаются. Для подачи питания используется второй тип, он и есть наиболее распространенным.

Схемы подключения магнитного пускателя с катушкой на 220 В

Перед тем, как перейдем к схемам, разберемся с чем и как можно подключать эти устройства. Чаще всего, требуются две кнопки — «пуск» и «стоп». Они могут быть выполнены в отдельных корпусах, а может быть единый корпус. Это так называемый кнопочный пост.

Кнопки могут быть в одном корпусе или в разных

С отдельными кнопками все понятно — у них есть по два контакта. На один подается питание, со второго оно уходит. В посте есть две группы контактов — по два на каждую кнопку: два на пуск, два на стоп, каждая группа со своей стороны. Также обычно имеется клемма для подключения заземления. Тоже ничего сложного.

Подключение пускателя с катушкой 220 В к сети

Собственно, вариантов подключения контакторов много, опишем несколько. Схема подключения магнитного пускателя к однофазной сети более простая, потому начнем с нее — будет проще разобраться дальше.

Питание, в данном случае 220 В, полается на выводы катушки, которые обозначены А1 и А2. Оба эти контакта находятся в верхней части корпуса (смотрите фото).

Сюда можно подать питание для катушки

Если к этим контактам подключить шнур с вилкой (как на фото), устройство будет находится в работе после того, как вилку вставите в розетку. К силовым контактам L1, L2, L3 можно при этом подавать любое напряжение, а снимать его можно будет при срабатывании пускателя с контактов T1, T2 и T3 соответственно. Например, на входы L1 и L2 можно подать постоянное напряжение от аккумулятора, которое будет питать какое-то устройство, которое подключить надо будет к выходам T1 и T2.

Подключение контактора с катушкой на 220 В

При подключении однофазного питания к катушке неважно на какой вывод подавать ноль, а на какой — фазу. Можно провода перекинуть. Даже чаще всего на А2 подают фазу, так как для удобства этот контакт выведен еще на нижней стороне корпуса. И в некоторых случаях удобнее задействовать его, а «ноль» подключить к А1.

Но, как вы понимаете, такая схема подключения магнитного пускателя не особо удобна — можно и напрямую проводники от источника питания подать, встроив обычный рубильник. Но есть гораздо более интересные варианты. Например, подавать питание на катушку можно через реле времени или датчик освещенности, а к контактам подключить линию питания уличного освещения. В этом случае фаза заводится на контакт L1, а ноль можно взять, подключившись к соответствующему разъему выхода катушки (на фото выше это A2).

Схема с кнопками «пуск» и «стоп»

Магнитные пускатели чаще всего ставят для включения электродвигателя. Работать в таком режиме удобнее при наличии кнопок «пуск» и «стоп». Их последовательно включают в цепь подачи фазы на выход магнитной катушки. В этом случае схема выглядит как на рисунке ниже. Обратите внимание, что

Схема включения магнитного пускателя с кнопками

Но при таком способе включения пускатель будет в работе только то время, пока будет удерживаться кнопка «пуск», а это не то, что требуется для длительной работы двигателя. Потому в схему добавляют так называемую цепь самоподхвата. Ее реализуют при помощи вспомогательных контактов на пускателе NO 13 и NO 14, которые подключаются параллельно с пусковой кнопкой.

Схема подключения магнитного пускателя с катушкой на 220 В и цепью самоподхвата

В этом случае после возвращения кнопки ПУСК в исходное состояние, питание продолжает поступать через эти замкнутые контакты, так как магнит уже притянут. И питание поступает до тех пор, пока цепь не будет разорвана нажатием клавиши «стоп» или срабатыванием теплового реле, если такое есть в схеме.

Питание для двигателя или любой другой нагрузки (фаза от 220 В) подается на любой из контактов, обозначенных буквой L, а снимается с расположенного под ним контакта с маркировкой T.

Подробно показано в какой последовательности лучше подключать провода в следующем видео. Вся разница в том, что использованы не две отдельные кнопки, а кнопочный пост или кнопочная станция. Вместо вольтметра можно будет подключить двигатель, насос, освещение, любой прибор, который работает от сети 220 В.

Подключение асинхронного двигателя на 380 В через пускатель с катушкой на 220 В

Эта схема отличается только тем, что в ней подключаются к контактам L1, L2, L3 три фазы и также три фазы идут на нагрузку. На катушку пускателя — контакты A1 или A2 — заводится одна из фаз. На рисунке это фаза B, но чаще всего это фаза С как менее нагруженная. Второй контакт подсоединяется к нулевому проводу. Также устанавливается перемычка для поддержания электропитания катушки после отпускания кнопки ПУСК.

Схема подключения трехфазного двигателя через пускатель на 220 В

Как видите, схема практически не изменилась. Только в ней добавилось тепловое реле, которое защитит двигатель от перегрева. Порядок сборки — в следующем видео. Отличается только сборка контактной группы — подключаются все три фазы.

Реверсивная схема подключения электродвигателя через пускатели

В некоторых случаях необходимо обеспечить вращение двигателя в обе стороны. Например, для работы лебедки, в некоторых других случаях. Изменение направления вращения происходят за счет переброса фаз — при подключении одного из пускателей две фазы надо поменять местами (например, фазы B и C). Схема состоит из двух одинаковых пускателей и кнопочного блока, который включает общую кнопку «Стоп» и две кнопки «Назад» и «Вперед».

Реверсивная схема подключения трехфазного двигателя через магнитные пускатели

Для повышения безопасности добавлено тепловое реле, через которое проходят две фазы, третья подается напрямую, так как защиты по двум более чем достаточно.

Пускатели могут быть с катушкой на 380 В или на 220 В (указано в характеристиках на крышке). В случае если это 220 В, на контакты катушки подается одна из фаз (любая), а на второй подается «ноль» со щитка. Если катушка на 380 В, на нее подаются две любые фазы.

Также обратите внимание, что провод от кнопки включения (вправо или влево) подается не сразу на катушку, а через постоянно замкнутые контакты другого пускателя. Рядом с катушкой пускателей изображены контакты KM1 и KM2. Таким образом реализуется электрическая блокировка, которая не дает одновременно подать питание на два контактора.

Магнитный пускатель с установленной на нем контактной приставкой

Так как нормально замкнутые контакты есть не во всех пускателях, можно их взять, установив дополнительный блок с контактами, который называют еще контактной приставкой. Эта приставка защелкивается в специальные держатели, ее контактные группы работают вместе с группами основного корпуса.

На следующем видео реализована схема подключения магнитного пускателя с реверсом на старом стенде с использованием старого оборудования, но общий порядок действий понятен.

Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector
×
×