Rich--house.ru

Строительный журнал Rich—house.ru
13 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Самодельный сканирующий лазерный дальномер

roboforum.ru

Технический форум по робототехнике.

  • Список форумовМастерскаяНаши проекты
  • Изменить размер шрифта
  • Версия для печати
  • Магазин
  • Правила
  • Wiki
  • FAQ
  • Регистрация
  • Вход

Сканирующий лазерный дальномер

Сканирующий лазерный дальномер

citizen » 13 окт 2012, 23:58

Вдохновившись лазерным дальномером, установленном на пылесосе Neato http://robocraft.ru/blog/robots/725.html, захотел себе подобный. Ну а поскольку все знают, сколько стоит дальномер, то остается один выход — собрать самому!

Проще всего сделать дальномер, работающий по тому же принципу, что и в вышеуказанном пылесосе. Это триангуляционный метод, он упоминается здесь: http://roboforum.ru/forum4/topic2001.html, а принцип работы описан здесь https://sites.google.com/site/todddanko/home/webcam_laser_ranger.
Получившаяся конструкция достаточно проста.
Самая труднодоставаемая часть — это светочувствительная линейка. Все что я смог найти — TSL1401, с довольно низким разрешением (128 пикселей). Покупал на ebay, за 15 долларов. Фокусирующая линза (f’ = 13 мм) — из окуляра микроскопа. Поскольку разрешение маленькое, приходиться использовать большое базовое расстояние — 10 см. Также на контроллере производится математическая обработка сигнала, позволяющая повысить разрешение до 1/10 пикселя.
Микроконтроллер — STM32F100C4.
Лазер — из DVD привода, так как мощности обычного лазерного модуля на 3 мвт не хватило. Мощность лазера в своем дальномере определить не могу, скажу только, что при постоянно работающем лазере через него идет ток 70 ма. Лазер включается на время, за которое конструкция поворачивается на 1/3 градуса, 2/3 он выключен.
Связь с компьютером организована при помощи bluetooth модуля.
Характеристики дальномера — 3 оборота в секунду, 360 измерений на оборот, точность определения расстояния — на 1 м примерно 1 см, на 3 м примерно 10 см. Минимальное измеряемое расстояние — 16 см.
Из-за того, что скорость вращения двигателя постоянно меняется, приходится постоянно корректировать скорость измерений, и для измерения скорости пришлось установить энкодер из мыши.

Фотографии готового устройства:

Двигатель из старого HDD использован как опора для вращающейся части — в двигателе хорошие подшипники, нет люфтов, и есть отверстия с резьбой для крепления. В оси двигателя было отверстие, в которое я вставил стержень. На конце стержня — металлическая площадка, провод от которой проходит сквозь ось. Стержень и площадка служат для передачи питания на основную часть дальномера. Позже я установил на стержень энкодер от мыши, так что энкодер неподвижен относительно доски. На фотографии виден скользящий контакт, позже я его убрал.


Вид на управляющую плату. Подстроечный резистор служит для регулировки тока через лазер.


Общий вид дальномера. Хорошо виден модуль лазера. Юстировка производится двумя винтами, лазер снизу подпружинен. Сразу скажу, что юстировка не отличается особой сложностью, так как при приближении препятствия к лазеру растет размер пятна, что компенсирует погрешности юстировки. Так что юстировка производится один раз на большом расстоянии.


Вид спереди. В центре фотографии виден диск энкодера из мыши.

Результаты работы:

Такую картинку дает дальномер, установленный в комнате.



Сама комната.
Как видно, дальномер смог обнаружить стул, но это удается ему только на близком расстоянии. На белом шкафу видны вспышки лазера.

В коридоре:


Фотография работающего дальномера в темноте в комнате с выдержкой 1 сек:

Робот расположен так же, как и на фотографии со стулом.

Демонстрация работы дальномера.

Основная задача теперь — обработка полученной информации, то есть определение положения робота в комнате. Подумываю об использовании ROS.

Разработана новая версия дальномера и выложена инструкция по сборке — смотреть тут: http://roboforum.ru/post278930.html#p278930 и тут forum10/topic12095-285.html#p281288
Там же выложена схема и исходный код.

Разработана 3 версия дальномера (OpenLidar):
https://geektimes.ru/post/275442/

Разработана 4 версия дальномера (OpenSimpleLidar):
post380962.html#p380962

Лазерный дальномер: ремонт, принцип работы и пример самодельного измерителя

Потребность проведения точных измерений, возникает практически во всех сферах деятельности современного человека: от мелкого ремесла, до крупного строительства. До недавних пор, самым актуальным и удобным прибором для определения размеров, считалась рулетка, оснащенная лентой с мерной шкалой. Массовое же развитие технологий, заложило основу инновационного принципа измерения, на котором базируются все современные лазерные дальномеры. В данной теме, мы проведем детальный разбор подобных устройств, расскажем, как они работают и какие могут иметь неполадки. Опишем способы устранения самых распространенных дефектов, а в завершении, дадим краткую инструкцию по изготовлению лазерного дальномера своими руками.

Как работает лазерный дальномер

Способ точного бесконтактного определения расстояния с выводом данных на дисплей, представляет собой сложную электронную схему. В основе конструкции лежит излучатель, приёмник, блок измерения времени и микропроцессор, чья совокупность позволяет нам в полной мере эксплуатировать лазерный дальномер. Устройство прибора, в более детальном разборе процессорных плат и модулей, имеет приличную сеть, чья структура лежит далеко за гранью понимания среднестатистического обывателя. Даже радиолюбители, увлекающиеся электроникой, собирают дальномеры из готовых элементов при помощи пайки и программирования.

Говоря по сути, принцип работы лазерного дальномера базируется на скорости света и времени прохождения луча до поверхности и обратно. Выпущенный из излучателя лазер, отражается от первого попавшегося на пути твердого объекта (даже с большим углом преломления), и частично возвращается к устройству, где его распознает принимающий модуль и фиксирует время, потребовавшееся ему для преодоления этого расстояния. Поскольку свет перемещается со скоростью 299 792 458 метров в секунду или 29.2 сантиметров в микросекунду (мкс), то, зная затраченное на путь время, можно легко вычислить длину проделанного им пути. Таким образом, основная формула, используемая дальномерами, имеет следующий вид.

Представленный выше принцип, относиться к импульсным дальномерам, имеющим максимально широкое представление на рынке строительного инструмента. Данные приборы имеют приличную точность с погрешностью от 0.5 до 3-х мм, в зависимости от встроенного датчика приема сигнала, чья скорость обработки должна быть молниеносно быстрой.

Помимо импульсного, существует ещё фазовый способ измерения, все также основанный на лазере, но кардинально отличающийся по способу получения информации. В основе данного принципа лежит частота испускаемого лазера, которая не превышает 450 МГц (в среднем от 10 до 150). Вместо времени, здесь определяется разница фаз (исходящей и принимаемой), на основе которой рассчитывается расстояние до объекта. Фазовому дальномеру требуется больше времени для получения значения, но точность измерений превосходит импульсный.

Неисправности лазерного дальномера

Производство электронных измерительных приборов, подразумевает высочайшую точность сборки с обязательным контролем качества каждого изделия. Сложную конструкцию лазерных рулеток, стараются максимально изолировать от контакта с внешней средой и обезопасить от грубого физического воздействия. Поскольку эксплуатация устройств зачастую проходит в условиях повышенной опасности (в мастерских, на производствах или стой-площадках), они нередко подвергаются ударам и сильным вибрациям, способным нанести фатальный ущерб мельчайшим узлам устройства.

Несмотря на общий принцип действия лазерных дальномеров, они зачастую имеют уникальный набор компонентов и программного обеспечения. Даже если корни неисправности будут схожими, то конструкция самой детали или схемы будет индивидуальной для каждой отдельно взятой модели. Проблемы физического характера, могут быть связаны с расфокусировкой лазерного луча, изломом откидной скобы, деформацией кнопок или корпуса. При желании и умелых руках, подобные дефекты можно устранить самостоятельно.

Ремонт электронных компонентов требует куда более специфичных навыков, и даже специального образования. Неисправности такого рода, часто выражаются в проблемах с включением устройства, дисплеем, приёмником сигнала, определением заряда батареи. Количество дефектов, пропорционально функционалу, которым оснащен конкретный дальномер. Ремонт прибора своими руками, в случае неисправной электроники, не удастся выполнить без определенных познаний, и лучше будет отнести его в специализированный сервис на диагностику.

Ремонт лазерного дальномера

Если повреждения несут в основном физический характер, а электроника работает исправно, прибор можно восстановить самостоятельно, при наличии желания и смекалки. В первую очередь необходимо установить источник проблемы, исходя из имеющегося дефекта. В данной теме, мы рассмотрим 2 случая поломок на конкретных моделях, и приведем рекомендации по их устранению.

Основываясь на изложенных далее принципах, можно отремонтировать практически любой лазерный дальномер. Разборка подобных приборов, зачастую имеет свои уникальные особенности, в связи с многообразием видов корпуса. В некоторых случаях, компоненты снимаются очень легко, но иногда приборы изначально задумываются неразборными и добраться до поломки бывает проблематично. Именно второй тип устройств рассмотрим далее.

В качестве первого пациента выступает дальномер Bosch DLE 50, с поврежденной фокусировкой луча в следствии падения со 2-го этажа. Вместо сконцентрированной точки, лазер принял форму фонарика с размытым пятном света. Измерительная способность устройства сократилась до 70 см, и при попытке измерения больших расстояний дисплей отображает ошибку “Error”. Задача заключается в калибровке фокусирующей линзы по отношению к измерительному каналу. Все элементы расположены внутри корпуса, поэтому разбирать необходимо.

Вполне вероятно, что производители модели Bosch DLE 50, исключили надобность в самостоятельном ремонте ещё на стадии проектирования. Корпус прибора, имеет всего 3 внешних резьбовых соединения (2 под батарейками и 1 на откидной скобе), в то время, как остальные элементы спаяны или приклеены. Разумеется, в гарантийном сервисе, разборка и сборка подобного монолита происходит без проблем, однако в быту этот процесс может вызвать затруднение. Потребуется паяльник, для отсоединения контактов питания, и термофен, для снятия приклеенной клавиатуры. Все соединительные элементы, представлены на приведенных ниже фотографиях, в порядке разборки инструмента.

Добравшись до линзы и блока привода штоки, можно приступать к фокусировке. Для этого отмеряем расстояние от 5 до 15 метров (чем больше, тем лучше), и в конце дистанции, располагаем ровный объект с хорошим отражением. Подключаем лазер к источнику питания (преобразователю) и начинаем аккуратно шевелить линзу, пока пучок света не примет вид точки. Процесс настройки достаточно кропотливый и стоит запастись терпением. При достижении оптимальной фокусировки, линзу следует зафиксировать термоклеем. Таким образом, можно продлить срок службы дальномеру с поврежденным лазером.

В качестве второго примера, рассмотрим поломку откидной скобы прибора того-же бренда “Bosch”, по уже под маркой “GLM 80”. Пластиковый элемент сломан пополам и подлежит замене. Крепление скобы к инструменту осуществляется винтом, поэтому процесс извлечения старой и установки новой детали, не составит труда. Загвоздка заключается в поиске и приобретении замены. Можно заказать новый крепежный комплект, который обойдется порядка 400 рублей (для данной модели), и с большой вероятностью будет доступен в крупных мегаполисах.

Альтернативным вариантом будет изготовление детали посредством печати на 3D-принтере. В таком случае, требуется провести точные измерения всех граней скобы и создать трехмерную модель в программе “Tinkercad” или ей подобной. Если у вас нет опыта моделирования, можно отнести лист с измерениями и сломанную деталь в ближайший сервис, где предоставляют услуги 3D-печати. Качество подобного изделия сравнимо с обычным гибким пластиком, чего вполне хватает для выполнения поставленных задач.

В большинстве случаев, ремонт лазерных дальномеров требует индивидуального подхода к каждой отдельно-взятой поломке. Разбор всех возможных неполадок займет объем стандартного учебника, что не возможно уместить в одну статью ознакомительного характера. Если вы хотите определить причину или узнать способ устранения поломки, изложите симптомы устройства к комментариях ниже. Наш мастер обязательно подскажет, где и как следует разбираться. Если же вы не уверены в своих навыках или терпении, то лучше всего будет обратиться в специализированный сервис.

Лазерный дальномер своими руками

Даже при поверхностном разборе дальномера, быстро приходит понимание сложности конструкции, состоящей из уникальных микросхем, плат и различных компонентов. Точное измерение расстояния, с выводом данных на дисплей, требует навыков уверенного радиолюбителя (минимум), и знаний программирования. Большинство элементов, выпускается индивидуально для производителей подобных устройств, и в открытой продаже не встречается, что осложняет процесс самостоятельной сборки.

По последним данным, на сегодняшний день, существует не много свободно распространяемых модулей лазерного измерителя, один из которых “CJMCU-530”, используемый в робототехнике, бытовых приборах, компьютерах и автофокусе камер. Производителем заявлена дистанция измерения до 2-х метров, но после 1.3 м, точность заметно падает. На оптимальной дистанции, погрешность составляет ± 1-3 мм. Подобные возможности мало подходят для строительных работ, и модель зачастую используется в автоматизации бытовых условий, как индикатор уровня воды в бочке, открывания дверей, лазерной сигнализации и прочих, разнообразных проектах.

Чтобы изготовить подобный дальномер своими руками, специализированные навыки не требуются. Достаточно иметь в наличии паяльник и компьютер для загрузки программы. Работает модель только в совокупности с аппаратной платформой (например, Arduino Uno), от напряжения 3.3 вольта. Первым делом, к модулю необходимо припаять штырьки, идущие в комплекте, и соединить его с ардуино кабелями DuPont, по следующей схеме.

По завершению соединения контактов, устанавливаем официальное программное обеспечение arduino и подключаем платформу к компьютеру через micro-USB. В текстовый редактор программы, помещаем нижеприведенный код и кликаем по кнопке загрузки. Когда данные будут преданы, на мониторе появиться окно с числовыми значениями, обозначающими расстояния от датчика до ближайшей поверхности, на которую он направлен.

При необходимости, собранный мини-дальномер, можно подключить к автономному источнику питания (аккумулятору или батарейному блоку). Для отображения результатов измерения, устройство должно соединяться с компьютером. При желании и более глубоких познаниях, его можно подключить к компактному дисплею, превратив в полностью портативный прибор.

Малый диапазон измерений и постоянной контакт с персональным компьютером, значительно сокращают область применения подобного модуля. Если самостоятельно собрать беспроводной дальномер, рекомендуем обратить внимание на ультрозвуковые датчики. В отдельной статье (ссылка), мы объяснили процесс сборки измерителя, основанного на этом принципе.

Электронный / лазерный дальномер

Благодаря развитию технологий, требования к качеству выполнения строительных работ постоянно повышаются. Это заставляет совершенствоваться и находить все новые и новые способы ускорения и упрощения работы. Так, для достижения одного из таких требований – особой точности измерений – и были созданы специализированные приборы. Одним из таких современных устройств является электронный дальномер – геодезический прибор, чьим основным предназначением является измерение больших линейных расстояний для строительства. При этом даже при измерении больших расстояний потери в точности отсутствуют.

Лазерный дальномер, применение

Лазерный дальномер незаменим в случае необходимости измерения расстояния в малодоступных или же вовсе не доступных для обычных линеек, метров или рулеток местах. Также он пригодится и при измерении больших расстояний, что значительно облегчает выполняемые работы и повышает тем самым производительность труда.

Одним из самых популярных видов дальномеров в настоящее время является лазерный, так называемая лазерная рулетка. Она представляет собой прибор, состоящий из детектора излучения и импульсивного лазера. При измерении времени, которое луч затратит на путь до отражателя и назад (в случае обладания данными о скорости света), этим устройством вы сможете рассчитать дистанцию между отражающим объектом и непосредственно лазером.
Помимо основной своей функции, дальномер способен облегчить обработку полученных при измерении результатов, что удобно для работы и экономит немало времени. Широкое применение он получил в инженерной геодезии, ведь данный прибор просто незаменим при строительстве гидротехнических сооружений, линий электропередач и путей сообщения. В военном деле или же астрономических исследованиях он поможет определить расстояние до цели. Купить лазерный дальномер рекомендуется тем, для кого важна быстрая и, главное, точная фокусировка. Пригодится это устройство и в охотничье-стрелковых целях, туризме, сельском хозяйстве, навигации и, безусловно, купить дальномер необходимо каждому работнику строительной отрасли.

Грустно, когда на ремонт квартиры приходится использовать такой долгожданный отпуск. Однако если поторопиться, то, качество работ, скорее всего, будет не на высоте. К счастью, все не так плохо. Главное, чтобы под рукой оказался нужный инструмент, и тогда вам не будут страшны никакие погрешности или ошибки. Поэтому первое, что поможет ускорить работы, – это избавление от безнадежно устаревших линеек и рулеток. Гораздо более эффективным будет купить лазерную рулетку. К тому же цена на нее вполне доступна.

Измерение расстояния

Как и привычные всем линейки, электронная рулетка способна с высокой точностью измерять расстояние прямым способом. В таком режиме данное устройство генерирует лазерный луч, который улавливает специальная линза с чувствительным элементом. При этом оно автоматически рассчитает время, которое понадобилось лучу для движения по заданному ему маршруту, и с высокой точностью определит дистанцию. А максимальное расстояние, которое способен измерить этот прибор, как правило, определяется его оптикой и мощностью лазерного светодиода. Среди лазерных дальномеров-рулеток, представленных сегодня на рынке, имеются модели с дальностью «видения» от 20 и вплоть до 250 м. Стоит отметить, что функция эта является базовой и присутствует в любой из моделей независимо от стоимости. Однако более дорогие из них оснащены и иными функциями, с помощью которых вы сможете определить площадь или объем поверхности (помещения), а также расстояние в малодоступных местах.

Читать еще:  Особенности применения активного паяльного жира

Измерение площади

Практически все дальномеры оснащены функцией автоматического расчета площади стен, пола, потолка либо иной поверхности. Принцип же работы данной функции достаточно прост. Следует лишь нажать специальную кнопку, отвечающую за обмер площади, после чего измерить стороны. При этом результаты ваших измерений незамедлительно будут выведены на экран, а под ними можно будет увидеть значение площади, рассчитанное путем умножения сторон. Данная возможность будет полезна в случае необходимости расчета количества строительных материалов с высокой точностью (к примеру, обоев или штукатурки для ремонта).

Измерение объема

Для активации этого режима вам также нужно нажать специальную клавишу, и прибор самостоятельно измерит для вас объем, например, шкафа. Данная функция может быть интересна не только строителям, но и установщикам кондиционеров, ведь их мощность определяется по объему расходуемого воздуха.

Помимо названных, некоторые дальномеры оснащены и уникальными функциями измерения сторон с помощью теоремы Пифагора или по функции трапеции. С точностью узнать величину любых углов поможет дальномер угломер, а определить магнитный азимут цели – дальномер азимут.

Работайте быстро и измеряйте точно с помощью дальномеров от «EFT-DISTO»!

Как выбрать и правильно использовать лазерный дальномер

Одной из самых важных работ во время строительства является проведение измерений. Во время ремонта тоже не обойтись без точных показателей длины и ширины материалов, расстояний от одной стены до другой. Если для правильного расчета длины обоев достаточно рулетки, то для измерения протяженных расстояний придется прибегнуть к помощи лазерного дальномера, специального устройства для получения точных данных о протяженности заданного отрезка.

Принцип работы и функционал лазерного дальномера

Технически лазерный дальномер представляет собой устройство, сочетающее в себе функционал строительной рулетки и простейшего калькулятора. Однако, преимущества лазерного дальномера перед этими инструментами очевидны.

  • При помощи дальномера вы парой движений измерите периметр участка, объем емкости или площадь поверхности. Достаточно измерить длину, ширину и высоту, а остальные вычисления машина сделает самостоятельно.
  • Инструмент имеет возможность сохранять в памяти предыдущие измерения, для сравнения с последующими или проведения простейшим математических операций.
  • Лазерный дальномер дает возможность проводить измерения отдаленных объектов, не прибегая к помощи дополнительных инструментов.
  • Механическое устройство надежно защищено от воздействия внешней окружающей среды, благодаря чему область применения лазерного дальномера не ограничена только лишь внутренними работами.

Принцип работы лазерного дальномера прост и состоит из нескольких этапов, выполняемых за короткий промежуток времени. Специальное устройство, именуемое излучателем, генерирует инфракрасный лазерный луч, который устремляется в ту сторону, в которую направлен дальномер. Сталкиваясь с препятствием на своем пути, луч разворачивается и возвращается назад, где улавливается другим устройством, отражателем. Далее микропроцессор, установленный в дальномере, конвертирует полученную информацию о скорости луча и времени прохождения траектории в нужный нам параметр расстояния. Для получения точных измерений используется штатив (удерживающий дальномер неподвижно), визир (позволяющий приблизить нужную точку) и ватерпас (контролирующий положение дальномера в пространстве).

Характеристики лазерного дальномера

К основным критериям выбора лазерного дальномера относятся следующие технические характеристики устройства:

  • Максимальная дальность измерений. Чем большее расстояние требуется измерить, тем мощнее потребуется лазерный луч. Средний диапазон дальности измерений колеблется от 15 м до 1,5 км. Однако, аппараты, способные измерять расстояние от 1 км и выше, являются профессиональными, производить измерения возможно только со штатива.
  • Погрешность измерений. Вне зависимости от класса дальномера, максимальная погрешность равна 3 мм.
  • Точки отсчета. По умолчанию точка отсчета измерения падает на место начала лазерного луча, передняя стенка прибора. Профессиональные модели дают возможность переключить точку отсчета на заднюю крышку или на место соединения со штативом.
  • Встроенный прицел. Удобное усовершенствование, помогающее приблизить место попадания луча, чтобы быть уверенным в правильности направления.

Правила использования лазерного дальномера

С измерением расстояния лазерным дальномером справится даже новичок в строительном деле. Порядок использования инструмента включает в себя несколько шагов:

  • Включите аппарат, установите необходимые настройки. К обязательным настройкам относится выставление единиц измерения и точки отсчета, если выбор точки предусмотрен конкретной моделью.
  • Установите прибор на ровную поверхность, исключите колебание и шатание основания.
  • Направьте прибор на нужный объект, проведите измерения и запишите получившийся показатель с экрана дальномера.
  • Если измерения проводятся на открытой территории, используйте штатив для получения наиболее точных показаний.

При работе с лазерным дальномером помните и о технике безопасности: кажущийся простым, прибор может нанести вред здоровью при неумелом его использовании. Никогда не заглядывайте в излучатель и не направляйте прибор на людей и животных, лазер способен повредить сетчатку глаза. Для увеличения срока службы дальномера, берегите аппарат от попадания на него воды и открытых солнечных лучей.

В завершении статьи поделюсь секретом от профессиональных строителей. При выполнении измерений в яркую солнечную погоду, воспользуйтесь темными солнечными очками, так проще увидеть луч и собрать правильные показания прибора.

Идеи о технике, программировании и железе

пятница, 14 сентября 2012 г.

Делаем дальномер из лазерной указки и старой веб-камеры с помощью OpenCV

Когда-то давно, когда различные ультразвуковые дальномеры не были столь доступны, у меня возникла идея сделать свой оптический прибор из подручных материалов. Спустя несколько лет я наткнулся на этот проект. Я его немного переделал — так появилась данная статья.

Итак, начнём с теории данного устройства.
Так как в основе всего лежит элементарная школьная геометрия, поэтому с пониманием принципов у вас не возникнет проблем.

Как известно, любая веб-камера состоит из линзы с определённым фокусным расстоянием и матрицы на которую проецируется изображение.

Фото взято отсюда с http://robot-develop.org/archives/2026

Для удобства, мы немного переделаем наше построение. Вся схема умещается на изображении ниже.

Далее вы можете видеть готовую установку. Я сделал её из подручных материалов, а именно, из пластика от лазерного диска, лазерной указки и старой веб-камеры.

После того как сборка установки была закончена, я решил снять зависимость, чтобы проверить мои предположения. График вы видите ниже.

Для пробы я даже подобрал логарифмическую функцию для аппроксимации. Она даёт удовлетворительные результаты, но ещё лучше использовать точную формулу. Сложность состоит в отсутствии точных каллибровочных данных камеры. О решении этой проблемы в моей следующей статье.

Теперь переходим к программной части. Программа для оценки расстояний предельно проста. В общем-то её можно немного доработать, но для пущей ясности представлю её в изначальном виде.

// простая аппроксимация зависимости
double getdistance(int i)
<
return -10.603*log(i*1.0)+76.769;
>

/*
// на самом деле это должно выглядеть так

double getdistance(int i)
<
double Beta=0.002840909; // в моём случае
double h=19.0;
double fi=20/180*3.1415;

int main(int argc, char* argv[])
<

//int itcount=4; только для cvThreshold
// получаем любую подключённую камеру
CvCapture* capture = cvCreateCameraCapture(CV_CAP_ANY);
assert( capture );

// Устанавливаем разрешение
cvSetCaptureProperty(capture, CV_CAP_PROP_FRAME_WIDTH, 640);
cvSetCaptureProperty(capture, CV_CAP_PROP_FRAME_HEIGHT, 480);

// узнаем ширину и высоту кадра для порядка(в некоторых случаях нужные параметры не устанавливаются)
double width = cvGetCaptureProperty(capture, CV_CAP_PROP_FRAME_WIDTH);
double height = cvGetCaptureProperty(capture, CV_CAP_PROP_FRAME_HEIGHT);
printf(«[i] %.0f x %.0fn», width, height );

IplImage* frame=0; // кадр из камеры
IplImage* Rframe=0;// с градациями серого

printf(«[i] press Enter for capture image and Esc for quit!nn»);

int counter=0;
char filename[512];

double framemin=0;
double framemax=0;
double framemid=0;

frame = cvQueryFrame( capture );
Rframe = cvCreateImage( cvGetSize(frame), IPL_DEPTH_8U, 1 );

// Задаём параметры надписи
CvPoint pt = cvPoint( 10, 20 );
CvFont font;
cvInitFont( &font, CV_FONT_HERSHEY_COMPLEX,0.5, 0.5, 0, 1, CV_AA);

// используя шрифт выводим на картинку текст
double distance=0;
std::ostringstream dist;

// получаем кадр
frame = cvQueryFrame( capture );

// выбираем из frame красный канал в Rframe
cvSplit(frame,0,0,Rframe,0);

cvMinMaxLoc(Rframe, &framemin, &framemax, 0, &p);
// координаты самой яркой точки

printf(«[R] %d x %dn», p.x, p.y);

// тут можно побаловаться с Threshold’ом
//framemid=(framemin+framemax)/2;
//for(int i=0;i Автор: Unknown на 06:25

Интересный принцип работы лазерного дальномера или как надо пользоваться измерителем

23 Январь 2019

С каждым днем в нашей повседневной жизни появляется все больше техники, позволяющей решать множество задач. Простые привычные в обиходе предметы сменяются более усовершенствованными инновационными новинками. Вот и традиционной рулетке нашлась современная альтернатива – лазерный дальномер. Это электронный оптический прибор, который используется для измерения длины, высоты, площади, объема, расстояний между объектами. При помощи этого оборудования замеры плоскостей выполняются с максимальной точностью. Лазерный дальномер, кроме строительной сферы, широко применяется в ландшафтном дизайне, в военной промышленности, в космической и авиационной геодезии, астрономии и других отраслях. Зная принцип работы устройства, можно использовать лазерный прибор в своих целях с максимальной эффективностью. Технологии стремительно развиваются, но и требования к качеству строительной техники постоянно растут. Современные модели измерительных приборов оснащены дополнительными полезными опциями и улучшенными рабочими характеристиками. В продаже можно встретить лазерные дальномеры с оптическим и цифровым визиром.

Какое предназначение инструмента

Лазерная линейка – еще одно название оптического прибора для измерения расстояний между предметами. Многие по привычке называют его лазерная рулетка. В любом случае, под этими именами скрывается один и тот же прибор. В основе работы устройства лежит измерение интервала времени между зондирующим сигналом и сигналом отражения от объекта.

Инженерно-геодезические измерения – основополагающая строительных работ. Мероприятия проводятся задолго до начала возведения зданий и сооружений. Вопрос точности выполненных геодезических работ играет важную роль, и по итогу определяет качество и надежность построенных объектов. Вот почему в строительстве так важна точность измерений. Лазерный дальномер выполняет замеры с высочайшей точностью, а по уровню показаний значительно превосходит стандартные измерительные приборы (рулетки, мерные ленты).

Лазерный дальномер – находка для строителей. С его помощью можно:

  • Быстро определить площади стен помещений, определить необходимое количество стройматериалов
  • Вычислить высоту здания
  • Определить максимальное и минимальное расстояние до объекта
  • Вычислить угол наклона крыши
  • Сохранить полученные данные или сбросить на компьютер
  • Замерить удаленные объекты, не приближаясь к ним

Какой принцип работы у лазерных дальномеров

Конструктивно оптический прибор состоит из следующих элементов:

  • Излучателя – излучает лазерные лучи на выбранный объект
  • Приемника – принимает лазерные лучи от объекта
  • Микропроцессора – конвертирует световой сигнал в цифровую величину
  • Дисплея – экран, где отображаются цифровые значения

Все элементы заключены в пластиковый или металлический корпус. Последний – выходит дороже, но долговечнее. На поверхности имеются кнопки управления и ЖК-дисплей. По габаритам прибор выглядит не больше мобильного телефона. Но встречаются и совсем миниатюрные модели лазерных дальномеров, которые к тому же стоят дешевле. Работает устройство от аккумуляторных батареек. Их запаса хватает, чтобы выполнить около двух тысяч измерений.

При включении лазерного прибора и наведении его на нужный объект, электромагнитная волна генерирует лазерный луч, который отражается от исходной зоны. Тут же сигнал возвращается в приемник, после чего происходит обработка данных.

В основе работы оборудования заложен подсчет временного интервала, за который лазерный луч проходит расстояние от исходной точки до объекта, и обратно. Полученное время прохождения сигнала микроконтроллер умножает на скорость лазерного луча, затем делит эту величину пополам. Полученный результат выводится на дисплей за доли секунды в понятной единице измерения (сантиметрах, миллиметрах, дециметрах или метрах). Расстояния для электронного измерителя длины также не есть проблемой. Он с такой же точностью выдаст результаты, даже если человек находится вдали от объекта.

Виды рассматриваемых измерителей

Лазерный дальномер или рулетка, по типу обработки излучаемого сигнала, бывает двух видов:

  1. Фазовый – метод измерения расстояния основан на разнице фаз между излученным и полученным сигналом
  2. Импульсный – определяет время, за которое лазерный импульс проходит расстояние от объекта и обратно

Лазерный измерительный прибор, в основе которого лежит фазовый метод обработки сигналов, обладает необычайно высокой точностью измерений и пользуется спросом у геодезистов, топографов, строителей. Это дорогое профессиональное оборудование. Импульсные дальномеры более доступны в цене, потому пользуются большей популярностью.

Преимущества рулетки лазерного типа

Только представьте себе, сколько неудобств вы испытываете при использовании традиционной рулетки. Ограниченность размера полотна, вечные надломы при замерах на расстоянии, невозможность измерить дистанцию до нужной плоскости в одиночку. Чтобы зафиксировать результаты приходиться иметь под рукой калькулятор, карандаш и блокнот. Сама скорость измерения оставляет желать лучшего, а значит падает производительность работ на строительном объекте.

А что делать в том случае, если к объекту невозможно добраться обычной рулеткой ? Это могут быть аварийные здания, представляющие угрозу для жизни, опасные участки и т.д.

«Умная» рулетка поможет избежать всех этих неудобств, облегчив и ускорив процесс. Теперь не придется крепить конец металлического полотна, следить за его натяжением и контролировать, чтобы он не слетел.

Преимущества лазерной рулетки:

  • Возможность проведения всех измерительных операций одним человеком, увеличивая скорость замеров
  • Оперативность получения достоверных значений
  • Возможность сохранения данных на внутренней памяти устройства
  • Точная фокусировка на объектах
  • Есть возможность приобрести устройство с различной дальностью действия от 15 м до 300 м
  • Стабильная работа в жару и холод
  • Широкий функционал
  • Небольшие габариты и маленький вес

Есть отечественные мастера, которые создают лазерный дальномер своими руками. Самодельный прибор используют в бытовых условиях.

По каким параметрам выбирать

Как выбрать лазерную рулетку при настолько широком ассортименте ? При покупке конкретной модели нужно заранее знать ее технические характеристики и на какие задачи она способна.

Лазерный дальномер делится на два класса: бытового и профессионального назначения. Первый вариант – доступен каждому, имеет базовый набор функций, вполне подходит для домашнего ремонта и строительства. Второй класс – из разряда профессионального оборудования и его функциональные возможности куда шире. А цена – оправдана высокая. Тут уж за качество придется платить.

Но это вовсе не означает, что бюджетные модели стоит сразу «отмести» и копить средства на вариант подороже. Посудите сами, какой смысл покупать дорогущий прибор с оригинальными «примочками», если в них нет никакой необходимости. Ведь можно купить лучший лазерный дальномер для дома, не переплачивая за ненужные функции.

Критерии выбора устройства:

  1. Цена – напрямую зависит от функционала и рабочих характеристик. Готовьтесь к тому, что стоимость качественных приборов будет выше. Выбор делаете вы, исходя из собственных возможностей
  2. Дальность измерений – определитесь где вы будите делать замеры дальномером. Если эксплуатация предполагается только в помещении модели с дальностью измерения до 40-50 м будет вполне достаточно. Для работы на открытом пространстве следует выбирать измеритель с дальностью до 150-250 м
  3. Точность показаний – если требуется прибить дома полку в ванной, погрешность измерений не так важна. Другое дело, к примеру прокладка канализационных труб, где точность показаний играет большую роль. Модели с минимальной погрешностью (-/+ 1 мм) относятся к более высокой ценовой категории.

Полезные дополнительные опции, которыми оснащаются модели «побогаче»:

  • Таймер – отсрочка времени начала замеров
  • Широкодиапазонный уклономер – датчик точного измерения углов наклона
  • Bluetooth – для передачи данных на персональный компьютер или ноутбук с целью их дальнейшей обработки или хранения
  • Расчеты по Пифагору – опция, способная выполнять более сложные автоматические расчеты
  • Видоискатель – оптический усилитель, отвечающий за точную фокусировку сгенерированного лазерного луча на объекте
  • Пыле– и влагонепроницаемый корпус для защиты внутренних элементов от негативного воздействия окружающей среды

Как пользоваться в помещении и на улице – отличия

Работа прибора на улице и в помещении несколько отличается. Дальномер для улицы должен оснащаться отражающей пластиной – визиром. Для работы в солнечный день не обойтись без специальных красных очков. Они помогут обнаружить лазерный луч на плоскости при ярком дневном свете. Рулетка лазерного типа для улицы чаще имеет прочный корпус, специально предназначенный для работы на открытом воздухе. Цена дальномера для дома и улицы несколько различается. Последний будет стоить немного дороже. В остальном же действия измерительных приборов – идентичное.

Погрешность большинства бюджетных моделей дальномера составляет всего ничего – 1-3 мм.

На некорректность выдаваемых показаний и увеличение погрешности влияют несколько факторов:

  • Конструктивная особенность модели
  • Дальность измерения (чем она больше, тем выше будет погрешность)
  • Ошибки в работе с прибором

Рулетка электронного типа никакой сложности в работе не представляет. Включить прибор, нажать кнопку и наблюдать результаты на дисплее – что может быть проще. Но есть все же некоторые правила, которых стоит придерживаться:

  1. В процессе замеров важно, чтобы дальномер был неподвижен. Добиться этого можно при помощи штатива
  2. Следить за уровнем заряда батареи. Приборы со слабым зарядом могут негативно влиять на результат
  3. Объект, на который направлен лазерный луч не должен обладать высокой (зеркало, фольга) и низкой (пластик) отражательной способностью, иначе точность выданных показаний будет под сомнением
Читать еще:  Сверла по металлу с коническим хвостовиком в Екатеринбурге

Для чего прибору нужна поверка и калибровка

Лазерные рулетки относятся к высокотехнологичным средствам измерения, и перед началом эксплуатации подлежат процедуре поверки (аттестации). Метрологическая аттестация проводится с целью подтверждения заявленных характеристик прибора и дальнейшей его регистрации в едином государственном реестре измерительных устройств.

Это мероприятие выполняется в таких случаях:

  • Прибор был только приобретен и планируется использоваться по назначению
  • Если есть подозрения на некорректную работу прибора (ошибки, допущенные при хранении, транспортировке)
  • По собственному желанию владельца

Поверка происходит в несколько этапов:

  1. Внешний осмотр прибора, где возможно выявить все явные дефекты
  2. Проверка прибора в работе – оценка эффективности его работы
  3. Опробование – определяется мощность лазерного луча и его диаметр, длина волн
  4. Выявление погрешности

По итогу аттестации выдается свидетельство, подтверждающее точность измерений дальномера в пределах установленной погрешности.

Процедуры поверки и калибровки носят один и тот же характер, только последняя выполняется в частном порядке по желанию владельца. Есть фирмы, предоставляющие услуги калибровки владельцам приборов, которые не внесены в государственных реестр, так же с выдачей на руки свидетельства.

Теперь вы знаете по каким критериям нужно выбирать дальномер лазерного типа, чтобы выполнять быстрые и точные замеры. Осталось найти надежного продавца, который предложит вам качественный и сертифицированный товар.

Верного помощника в точных измерениях предлагает купить онлайн-магазин Cylinder. Заказать лазерный строительный дальномер с доставкой можно, оформив заявку прямо на сайте. Листая страницы онлайн-каталога, возможно, вы найдете и другие полезные для себя товары для дома, работы и отдыха.

Делать покупки на сайте одинаково удобно с любых уголков нашей страны. Мы стараемся отправлять товары в день заказа, понимая, как для вас важно получить его как можно быстрее.

Как выбрать лазерный дальномер (2019)

Лазерный дальномер способен значительно облегчить жизнь строителя или мастера-отделочника. Если отдельную деталь пока еще проще померить обычной рулеткой, то, как только дело доходит до размеров комнат, высоты потолков или расстояний между конструкциями, лазерный дальномер становится вне конкуренции. А многие модели еще и умеют запоминать измерения и вычислять по ним площадь или кубатуру помещения. Поэтому лазерные дальномеры стали незаменимыми помощниками многих специалистов, оперирующих в своей деятельности площадями и объемами комнат. Так что область применения этих приборов очень широка:

  • строительство и отделка;
  • монтаж конструкций и коммуникаций;
  • дизайн помещений и ландшафтный дизайн;
  • земляные работы;
  • проектирование вентиляции и кондиционирования;
  • инспекционные работы;
  • охота;
  • и т.д.

Ну и понятно, что дальномер, используемый землемером и дальномер, используемый дизайнером квартир – это совершенно разные дальномеры с разными характеристиками.

Характеристики лазерных дальномеров

Тип.

Лазерный дальномер улавливает отраженный от препятствия лазерный луч и вычисляет расстояние по сдвигу фазы сигнала, которым этот луч модулируется. Лазерные дальномеры отличаются высокой точностью измерений – до десятых долей миллиметра.

Удобно то, что дальномер измеряет расстояние именно до той точки, которая подсвечена лазером. Из недостатков можно отметить частую для лазерных инструментов «нелюбовь» к яркому солнечному свету и невозможность определения расстояния до прозрачных объектов (окон, стеллажей и пр.) Впрочем, если вдруг возникает необходимость измерить расстояние именно до поверхности стекла, на него всегда можно прилепить кусочек бумаги.

Ультразвуковой дальномер, вообще-то, к лазерным устройствам не относится – для измерений он использует принцип эхолокации – определяя расстояние по запаздыванию отразившейся от препятствия звуковой волны.

С лазерными дальномерами его роднит только использование лазерного светодиода для создания световой отметки, облегчающего «прицеливание» на объект, до которого измеряется расстояние. Однако, следует понимать, что испускаемый дальномером звуковой пучок расходится довольно широко и может отражаться от различных поверхностей, внося искажения в результат.

К примеру, если измерять расстояние до балки, расположенной на некотором расстоянии от стены, дальномер покажет расстояние до стены (хотя лазерный «зайчик» будет на балке), поскольку отраженный от неё сигнал будет сильнее.

Кроме того, по дальности и точности ультразвуковой дальномер сильно уступает лазерному – звук затухает намного быстрее лазерного луча, и скорость его зависит от погодных условий. Несколько лет назад ультразвуковые дальномеры были заметно дешевле лазерных, но сегодня это уже не так. Преимуществами ультразвуковых дальномеров остаются только невосприимчивость к яркому свету и возможность измерения расстояния до прозрачных плоскостей.

Максимальное расстояние измерений определяет область применения прибора.

Специалистам, работающим в квартирах и помещениях частных домов, будет вполне достаточно 20 м.

При работе в больших помещениях уже нужна возможность измерения на расстояниях до 40 м.

Максимум в 100 метров и более потребуется при работе на открытом воздухе или в очень больших помещениях (ангарах, складах, стадионах и т.п.)

Но имейте в виду, что на открытом воздухе световую отметку невооруженным глазом не видно уже метров с 15-20 (зависит от освещения), да и точность на таком удалении при измерении с рук будет невысока. Поэтому для работы на расстояниях от 40 метров желательно наличие видоискателя с зумом и крепления на штатив.

Многие модели ограничены и минимальным расстоянием измерений – оси передатчика и приемника обычно разнесены, поэтому, при малом расстоянии до точки отражения, отраженный луч просто не попадает в приемник. Обратите на это внимание, если вам важна возможность измерения небольших расстояний.

Погрешность определяет точность прибора. Для ультразвуковых дальномеров погрешность составляет 3-5 мм, для лазерных меньше, в среднем – 1-2 мм. Впрочем, бывают и специализированные охотничьи модели, которым высокая точность не требуется – они могут иметь погрешность до 1 метра.

Обычно дальномер считает расстояние до объекта от заднего торца прибора. Это удобно при работе внутри помещения. Но иногда бывает удобнее использовать другую точку начала отсчета – передний торец прибора при работе с внешними углами снаружи здания или точку крепления штатива – при работе со штатива. Количество точек для начала отсчета как раз и определяет возможность измерения от различных точек относительно самого прибора.

Длина волны лазера определяет цвет его луча. В лазерной технике обычно используются два вида лазеров – зеленые, с длиной волны 535-550 нм и красные – с длиной 635-650 нм. Это обусловлено тем, что человеческий глаз лучше всего видит именно красный и зеленый цвета. Причем зеленый чуть лучше, но этот цвет часто встречается в окружающем пространстве, а на нем зеленая точка хуже различима, чем красная, поэтому красный лазер используется чаще.

Следует отметить, что измерение расстояния происходит не мгновенно, – в зависимости от быстродействия устройства и измеряемого расстояния, прибор может потратить на это несколько секунд. Если такая задержка для вас неприемлема, обратите внимание на максимальное время измерения при подборе дальномера.

При замере множества расстояний бывает удобно, если у прибора есть возможность хранения замеров во встроенной памяти. Количество сохраняемых замеров у различных приборов может изменяться от одного до нескольких сотен.

Основное, что отличает дорогие профессиональные модели от простых бытовых – это расширенный набор функций. Самые простые дальномеры способны измерять только расстояние до подсвеченной точки.

Модели подороже способны на основе проведенных измерений автоматически подсчитать площадь или объем помещения.

Модели среднего ценового сегмента могут иметь следующие возможности:

    Функция Пифагора: возможность косвенного измерения различных величин по двум или более точкам. Например, для измерения высоты здания с некоторого расстояния производится измерение сначала расстояния до точки у основания, а затем – у верхушки здания. После чего электроника дальномера вычисляет искомую высоту. Более точный расчет высоты доступен для моделей с жидкостным уровнем или датчиком угла наклона – это позволяет определить точку пересечения горизонтальной линии от дальномера с измеряемой высотой.

Функция маляра: автоматический подсчет суммарной площади нескольких стен. Функция бывает полезна при подсчете количества требуемых стеновых покрытий, например, обоев или плитки.

Профессиональные модели способны и на более сложные вычисления:

    Подсчет площади по нескольким точкам позволяет подсчитать площадь сложных фигур, находясь на расстоянии десятков метров от них.

Подсчет углов наклона линий и плоскостей по нескольким измеренным точкам. Функция приближает прибор по возможностям к лазерным нивелирам и может быть полезна многим специалистам: от отделочников и строителей до геодезистов и ландшафтных дизайнеров.

  • Создание фотографий объектов с наложенными результатами измерений.
  • Отдельным набором функции снабжаются охотничьи дальномеры: например, баллистический калькулятор, определяющий снижение траектории полета пули на измеренной дальности; функция «игнорирования листвы», отсеивающая отражения от листьев и травы на близких расстояниях и т.д.

    Если вы приобретаете прибор для профессиональной деятельности, и результаты измерений будут вноситься в официальные документы, будет нелишним, если дальномер внесен в Госреестр средств измерений (в некоторых областях деятельности это даже оговорено нормативными документами). В любом случае, наличие прибора в Госреестре СИ позволяет проводить его поверку в метрологических центрах, что обеспечит юридическое подтверждение достоверности измерений.

    Как и всякий строительный инструмент, дальномер подвержен воздействию различных неблагоприятных факторов, в том числе – пыли и влаги. Поэтому при его выборе нелишним будет обратить внимание на степень защиты. Она определяется маркировкой IPXY, IP (Internal Protection – внутренняя защита), X – уровень защиты от твердых предметов и частиц, Y – уровень защиты от влаги. Чем больше число, тем выше уровень защиты:

    Варианты выбора лазерных дальномеров

    Если вы ищете инструмент, который бы с успехом заменил строительную рулетку, но при этом стоил ненамного дороже, выбирайте среди простых лазерных дальномеров с минимумом функций.

    Если вам важна точность измерений, обратите внимание на модели с низкой погрешностью измерений.

    Для работы в квартирах и частных домах будет достаточно дальномера с максимальным измеряемым расстоянием до 20 м.

    Все лазерные дальномеры имеют собственный источник питания. Если вам проще сменить комплект батареек, чем таскать с собой зарядное устройство, выбирайте модель с питанием от батарей. В обратном же случае делайте выбор среди аккумуляторных моделей.

    Лазерный дальномер с максимальным измеряемым расстоянием от 100 метров наиболее универсален: он будет одинаково полезен и в помещениях любого размера, и на улице.

    Если вы увлекаетесь охотой, то лазерный дальномер с максимальным расстоянием в 500-1500 метров поможет вам совершить удачный выстрел.

    Денисюк Роман Эдуардович

    Факультет компьютерных информационных кехнологий и автоматики

    Кафедра электронной техники

    Специальность «Научные, аналитические и экологические приборы и системы»

    Обоснование, разработка и исследование лазерного дальномера для систем машинного зрения роботов

    Научный руководитель: к. т. н., доц. Кузнецов Дмитрий Николаевич

    Лазерный дальномер своими руками

    Содержание

    • Введение
    • 1. Лазерный дальномер из веб-камеры
    • 1.1. Принцип работы
    • 1.2. Компоненты
    • 1.3. Программное обеспечение
    • 1.4. Дальнейшая работа
    • 2. Фазовый лазерный дальномер
    • 2.1. Принцип работы
    • 2.2. Создание макетного образца
    • Заключение
    • Список источников

    Введение

    В продаже, есть большое количество дешевых датчиков – дальномеров, в их числе ультразвуковые и инфракрасные. Все эти устройства работают хорошо, но из-за значительного веса, не подходят для летающих роботов. Миниатюрный робот вертолет, например, может нести около 100&nbspг полезной нагрузки. Это даёт возможность использовать, для поиска препятствий и предотвращения столкновений с ними, машинное зрение, используя веб-камеры (или другие миниатюрные, беспроводные камеры с подключением к компьютеру через USB). А еще лучше, установить две камеры, что обеспечит роботу, стерео зрение, таким образом, благодаря информации о глубине изображения, улучшится обход препятствий. Недостатком этой идеи является сравнительно большой вес камеры.

    1. Лазерный дальномер из веб-камеры

    1.1. Принцип работы

    Лазерная точка проектируется на возможное препятствие, лежащие в поле зрения камеры, расстояние до этого препятствия может быть легко вычислено. Математика здесь очень простая, обработку данных лучше всего производить в компьютерных приложениях. (см. рис. 1.1)

    Рисунок 1.1 – Принцип действия дальномера

    Итак, вот как это работает. Лазерный луч проецируется на объект в поле зрения камеры. Этот луч должен быть идеально параллелен оптической оси камеры. Лазерная точка захватывается вместе с остальной сценой. Простой алгоритм ищет на изображении яркие пиксели. Предполагая, что точка лазера является яркой на фоне более тёмной обстановки (я использовал обычную лазерную указку купленную в магазине за доллар), изначально положение точки в кадре не известно. Затем нам нужно рассчитать дальность до объекта, основываясь на том, где вдоль оси Y находится лазерная точка, чем ближе она к центру изображения, тем дальше находится объект.

    Как мы видим из рисунка выше, расстояние (D) может быть рассчитано по формуле:

    Конечно, для решения этого уравнения, вы должны знать, h – фиксированное расстояние между лазерной указкой и камерой. Знаменатель высчитывается так:

    Для калибровки системы, мы будем собирать серию измерений, где нам известно, дальность до цели, а также количество пикселей центра изображения до точки лазера.

    Используя следующее уравнение, мы можем вычислить угол наклона в зависимости от значения h, а также фактическое расстояние до каждой точки.

    Теперь у нас есть расчётные значения, мы можем придумать отношения, что позволяет нам рассчитывать, дальность, зная количеством пикселей от центра изображения. Можно использовать линейную зависимость.

    Зная калибровочные данные, можно посчитать:

    1.2. Компоненты

    Для сборки дальномера требуется не так много деталей: веб-камера и лазерная указка. Для соединения лазерной указки и камеры необходимо вырезать раму из жести или фанеры:

    Собранный дальномер должен выглядеть примерно следующим образом:

    1.3. Программное обеспечение

    Программа-обработчик написана на двух языках: Visual C&nbsp++ и Visual Basic. Вы, вероятно, подумаете, что программа на Visual Basic проще, чем на VC&nbsp++ в плане кода, но во всём есть компромисс. Код на VC&nbsp++ можно собрать бесплатно (при условии, что у вас есть Visual Studio), в то время как код VB требует приобретение программных пакетов сторонних производителей (в дополнение к Visual Studio).

    Коды программ написанных на Visual Basic и Visual C&nbsp++ можно найти по ссылке: www.cxem.net

    1.4. Дальнейшая работа

    Одним из конкретных улучшений, которые могут быть внесены в этот дальномер, является проекция горизонтальной лазерной линии, вместо точки. Таким образом, мы сможем вычислять расстояние до цели, для каждого ряда пикселов на изображении [1].

    2. Фазовый лазерный дальномер

    В даном разделе описаны натуральные испытания макетного образца фазового лазерного дальномера, полученного собственными силами.

    2.1. Выбор метода измерений

    Принцип действия дальномера физического типа заключается в измерении времени, которое затрачивает посланный дальномером сигнал для прохождения расстояния до объекта и обратно. Способность электромагнитного излучения распространяться с постоянной скоростью дает возможность определять дальность до объекта.

    Существует несколько методов измерения дальности:

    1. Метод триангуляции.

    3. Импульсный метод.

    4. Фазовый метод.

    Разрабатываемый лазерный дальномер предлагается выполнить но основе фазового метода. Фазовый метод измерения расстояний основан на определении разности фаз посылаемых и принимаемых модулированных сигналов.

    Режим работы устройства зависит от его температуры, с изменением которой незначительно изменяется фаза сигнала. Вследствие этого точное начало отсчета фазы определить нельзя. С этой целью фазовые измерения повторяются на эталонном отрезке (калибровочной линии) внутри прибора. Главное преимущество фазового метода измерения – более высокая точность, которая может достигать единиц миллиметров [2].

    2.2. Создание макетного образца

    Для проверки теоретических положений на практике, проверки устойчивости усилительных каскадов и предварительной оценки чувствительности и уровня шумов измерительного канала отраженного лазерного излучения был разработан и исследован его макетный образец.

    В качестве излучателя при разработке макетного образца использован стандартный модуль красного лазерного светодиода (см. рис. 2.1) мощностью 5&nbspмВт длиной волны 650&nbspнм.

    Рисунок 2.1 – Модуль лазерного светодиода

    Для регистрации отраженного лазерного излучения в качестве фотоприемника использован pin-фотодиод bpw24r (см. рис. 2.2). К преимуществам данного фотодиода следует отнести высокую чувствительность в красной области видимого спектра, узкую диаграмму направленности и малую емкость р-п-перехода (5&nbspпФ). Максимальная рабочая частота 35&nbspМГц.

    Рисунок 2.2 – PIN-фотодиод bpw24r

    Читать еще:  Самодельное зарядное для автомобильного аккумулятора

    Для генерации рабочего и опорного сигналов использован модуль DDS генератора сигналов на базе микросхемы AD9850 (см. рис. 2.3). Рабочий диапазон генерируемых синусоидальных колебаний лежит в пределах от 1&nbspГц до 40&nbspМГц, шаг перестройки 1&nbspГц, относительная нестабильность частоты 10 -5 .

    Рисунок 2.3 – Модуль AD9850 DDS генератора сигналов

    В качестве микропроцессорного модуля управления использована стандартная плата Arduino Uno (см. рис. 2.4) на базе современного микро-контроллера ATmega328 c тактовой частотой 16&nbspМГц.

    Рисунок 2.4 – Микропроцессорный модуль Arduino Uno

    На рисунке 2.5 приведена схема модулятора лазерного излучения. Гармоничный сигнал частотой 10 МГц и амплитудой 0,5 В с выхода DDS генератора поступает на электронный усилитель с коэффициентом усиления по напряжению KU&nbsp=&nbsp3, построен на базе операционного усилителя DA1 AD8042. С помощью подстроечного резистора R1 обеспечивается выбор оптимального положения рабочей точки по постоянному току.

    Рисунок 2.5 – Функциональная схема модулятора лазерного излучения

    На рисунке 2.6 представлена схема отраженного лазерного сигнала, состоящий из фотоусилителя на DA1, смесителя и двухкаскадного избирательного усилителя на DA2 и DA3. Фотопидсилювч превращает измерительный оптический сигнал в электрический. На выходе смесителя формируется низкочастотный разностный сигнал с частотой 1 кГц, который после фильтрации двухзвенный фильтром нижних частот (R3, R4, C4, C5) поступает на избирательный усилитель с коэффициентом усиления около 10000.

    Модулятор лазерного излучения и измерительного канала отражен-ного сигнала собраны на отдельных беспаечних монтажных платах (см. рис. 2.7 и 2.8). Программное обеспечение модуля разработано в среде Arduino 1.0.5. Для управления DDS генератором использована стандартная библиотека AH_AD9850.h .

    Рисунок 2.6 – Функциональная схема измерительного канала отраженного лазерного излучения

    В результате испытаний макетного образца получили:

    – Уровень шумов на выходе избирательного усилителя составляет 5&nbspмВ;

    – Уровень полезного сигнала на выходе избирательного усилителя при расстоянии до объекта 2 м составляет 200&nbspмВ;

    – Самовозбуждение усилителя отсутствует;

    – Внешняя засветка фотодиода на результаты измерений не влияет.

    Рисунок 2.7 – Макетная плата модулятора

    Рисунок 2.8 – Макетная плата измерительного канала отраженного сигнала

    3. Заключение

    В целом результаты макетирование подтверждают способность предложенного способа измерений, основанного на технике прямого преобразования частоты. Чувствительность измерительного канала достаточна для регистрации отраженного лазерного сигнала. Уровень выходного сигнала позволяет в дальнейшем простыми средствами определять его фазу и вычислять расстояние до объекта.

    Дальномер своими руками.Возможно ли это?

    Ну уж очень хочется заиметь такой девайс, но земноводное душит при взгляде на магазинные ценники.
    Мож существует на свете что нибудь подобное, даже не лазерный, а какой нить оптико-механический, который можно воспроизвести в домашних условиях.
    Пы-Сы. поиск ничего вразумительного не дал 🙁

    дальномерная шкала тебе поможет

    Самый простой дальномер — рулетка. Есть модели до 100 метров меряют! а точность какая!

    есть оптические дальномеры — принцип действия, как в старых фотоаппаратах.

    те, которые я видел, похожи на видеокассету VHS и стоили порядка 2000р.
    последний раз видел в Спортактиве на Звенигородском шоссе (Москва)

    точность определения хороша до 30-40м, потом падает — а именно после 50м она как раз и нужна.

    Про рулетки лазерные забыли

    Возьми две лаз. указки (а лучше модуля лазерных), разнеси их сантиметров на 20. Один закрепи неподвижно, другой на поворотной оси. Принцип измерения прост — совместить две отметки на объекте, и по углу поворота подвижного лазерного модуля можно определить расстояние. Но Кайнын, написал правильно с увеличением расстояния точность измерения будет падать — посему лажа, лучше купить нормальный.

    ober
    Про рулетки лазерные забыли

    ВОт положа руку на сердце — цену не знаю. Видел ультразвуковую. Примерно за 1900 рублей.

    julbu
    Возьми две лаз. указки (а лучше модуля лазерных), разнеси их сантиметров на 20.

    поставить указку над (под) прицелом максимально далеко.

    и свести точку от рулетки и перекрестье прицела на дистанцию пристрелки — на 50м, например.
    на других расстоянийх пятно будет выше (ниже) перекрестья на величину, четко зависящую от дальности. сделать табличку — и всё.

    to ober
    дальность у УЗ рулеток мала
    to sana
    а кней еще молоток и набор гвоздей, что бы кары не улетали пока до них расстояние меряют :-)))

    поставить указку над (под) прицелом максимально далеко.

    и свести точку от рулетки и перекрестье прицела на дистанцию пристрелки — на 50м, например.
    на других расстоянийх пятно будет выше (ниже) перекрестья на величину, четко зависящую от дальности. сделать табличку — и всё.

    Кайнын, еще проще — делаешь выстрел — смотришь куда попал — делаешь поправки 😀

    2 hundert: скажу еще больше — до малоразмерной цели уз-рулетки ваще не меряют. Но в тире видел лазерную рулетку в действии. Демаскирующий признак — красное пятно — сведет на нет все попытки замерять растояние на охоте.

    Помниццо в школьном учебнике был вариант дальномера 😛

    Картонная полоска с треугольным отверстием. Типа наводишь треугольничек на человека, чтоб он был вписан между катетом и гипотенузой и бац — тебе и расстояние по шкале, что возле катета нарисована 😛

    to ober
    мерять не по цели а окружающей её деталям местности, а насчет рулетки это правда — даже расстояние до столба ей не отметить, не увидит она столб

    Кайнын
    поставить указку над (под) прицелом максимально далеко.
    и свести точку от рулетки и перекрестье прицела на дистанцию пристрелки — на 50м, например.
    на других расстоянийх пятно будет выше (ниже) перекрестья на величину, четко зависящую от дальности. сделать табличку — и всё.

    если ворона на ветке, то рулетка отдыхает. Если утка на воде, то рулетка отдыхает.

    Ну по оптикомеханическому уже сказали.
    Лазерный дальномер тоже можно сделать в домашних условиях, но стоимость его значительно превысит стоимость китайского и будет чуть больше никона — поэтому невыгодно.
    Есть способ заиметь хороший (очень) дальнемер, ищеш прапорщика и покупаеш прицел с дальнемером от, например Т72, там даже есть автоматический ввод поправок и выбор типа боеприпаса 😊 Вот только он несколько тяжеловат, поэтому сп. ть не вышло 😊

    Igor_IVS
    Ну по оптикомеханическому уже сказали.
    Лазерный дальномер тоже можно сделать в домашних условиях, но стоимость его значительно превысит стоимость китайского и будет чуть больше никона — поэтому невыгодно.
    Есть способ заиметь хороший (очень) дальнемер, ищеш прапорщика и покупаеш прицел с дальнемером от, например Т72, там даже есть автоматический ввод поправок и выбор типа боеприпаса 😊 Вот только он несколько тяжеловат, поэтому сп. ть не вышло 😊

    Точно. A потом с ним в автосервис и вам его не дорго врежут в крышу автомобиля 😀

    Да купи за 5 килорублей китайский и радуйся, я когда понял, что без него никак, решил взять и до сих пор еще не пожалел.

    KVK
    Помниццо в школьном учебнике был вариант дальномера 😛

    Картонная полоска с треугольным отверстием. Типа наводишь треугольничек на человека, чтоб он был вписан между катетом и гипотенузой и бац — тебе и расстояние по шкале, что возле катета нарисована 😛

    Еще способ. Скорее этим способом все и закончится. 😊
    1) Задушить жабу.
    2) Удариться в накопительство.
    3) за 5-7 тыров купить девайс.

    ..и будет тебе счастье.

    Ничего не напоминает?

    Igor_IVS
    Есть способ заиметь хороший (очень) дальнемер, ищеш прапорщика и покупаеш прицел с дальнемером от, например Т72, там даже есть автоматический ввод поправок и выбор типа боеприпаса 😊 Вот только он несколько тяжеловат, поэтому сп. ть не вышло 😊

    Гы, ДАК-2 (или ДАК-2М) рулит, карры при замере дальности сами падают, слепит он их 😀 Не раз сбивали во время учений!

    Ст.Сержант
    Всё. срочно меняюсь: ПСП на ДАК-2 (или ДАК-2М) 😊

    Я как то взял «JJ» на «померить» постоянные дистанции, долго удивлялся почему «БК» не правильно работает
    А не так давно взял N-440 опять на померить, ой, я то думал что у меня 78 метров, а оказалось 67 . и «БК» стал правильно работать 😛

    Может он в ярдах показывал?

    EagleB3
    😛 Обязательно требуй в комплекте родной заводской моноблок.
    Ну, тот, который с гусеницами.

    Это ранцевые дальномеры 😊 Носить на спине можно, правда габариты и вес несколько больше чем у радиостанции типа Р-108

    P.S. Хоть штангенциркулем меряй =)

    нет уж нах.
    буду лучше глазомер тренировать, а на экономию поощрять (за правильно определенную дистанцию) организм пывом :-)))

    Не знаю насколько он точен, но в полученном мною вчера прицеле (HAwke SR 4-16 , 50 IR) есть шкала дальномера. А дополнительно можно скачать прогу (Hawkeoptics/brc) .Пойду постреляю, расскажу насколько им верить мона.

    england66
    Не знаю насколько он точен, но в полученном мною вчера прицеле (HAwke SR 4-16 , 50 IR) есть шкала дальномера. А дополнительно можно скачать прогу (Hawkeoptics/brc) .Пойду постреляю, расскажу насколько им верить мона.

    У ДАКа расчет три чела. Один акум весит 68 кг. Серебро, однака.

    В середине 80-х я занимался фотографией (Смена-8м), так вот с тех пор у меня остался дальномер. Выглядит по длине как 2 спичечных коробка, по ширине — 0,5 коробка. Есть смотровое окошечко, снизу крепление под гнездо для фотовспышки и колёсико с метражём — от 1 до 15 м затем бесконечность. Принцип работы: смотришь в окошко, внутри желтенькое пятнышко, которое наводишь на объект, внутри пятнышка объект «двоится», затем крутишь колёско до объект не двоится и снимаешь метраж. Всё хорошо, но до 15 м. Принцип — оптико-механический, вот я думаю изменить какой-нить угол зеркальца и откалибровать метров до 100. Кто как думает, сработает?

    Piston_Po
    Принцип — оптико-механический, вот я думаю изменить какой-нить угол зеркальца и откалибровать метров до 100. Кто как думает, сработает?

    1) надо менять не угол зеркальца, а БАЗУ (расстояние между оптическими осями приемников лучей). Не увеличишь базу — с увеличением дистанции будет расти погрешность измерения. Чтобы иметь такую же погрешность на дистанции 100 метров, какую сейчас этот дивайс имеет на 10, тебе надо базу увеличить в 100/10 = 10 раз. Если сейчас расстояние между окошками 8 см, то должно стать 80 см. Угол настройки, тогда, кстати, менять и не придется. Чистая геометрия.

    2) надо разглядеть то, во что целишься. До 15 метров увеличение не больно нужно. А на 50 метров ты разглядишь — двоиться контур у вороны или уже нет?

    EagleB3
    Обязательно требуй в комплекте родной заводской моноблок.
    Ну, тот, который с гусеницами.

    Старшина объясняет устройство бронетранспортера, упоминая, что на нем есть рация. Кто-то
    из солдат спрашивает:
    — Товарищ прапорщик, а эта рация на лампах или на полупроводниках?
    — Повторяю для идиотов. Эта рация на бронетранспортере.

    а еще оптические стоят или стояли на крейсере Аврора, может там наковырять? 😊

    Бродит такая мыслишка на уровне концепции.
    Да, сделать можно, да недорого, но!
    Даже для сборки и отладки готовой конструкции, нужен как минимум уровень «опытного радиолюбителя», для проектирования — чуток побольше.
    Суть довольно проста, и вытекает из задачи:
    1. Дистанции 0. 100 (150) метров.
    2. Точность +/- 0,5м (+/- 1м).
    3. Дешево.
    В качестве оптического визира — китайский «карандаш» 4×20.
    Необходим инфракрасный лазерный модуль (диод с линзой) не менее 5мВт мощи, кварцевый генератор синуса 455 или 465 кГц, драйвер лазера.
    В приемном канале — собственно фотоприемник, усилок с АРУ, фазовый детектор, далее контроллер с АЦП и нужной прошивкой (PIC/ATmega).

    Ну как, не передумали еще?
    Это при том, что используется упрощенный метод с одной несущей частотой (в фирменных, более точных приборах — несущих две).

    Я не особо силен в аналоговой схемотехнике, по этому идея пока задвинута в долгий ящик, на повестке дня (и в процессе) строительство точного хрона с базой 1000мм, но если кто то возьмется за аналоговую часть разработки — я сделаю цифровую.

    Необходим инфракрасный лазерный модуль (диод с линзой) не менее 5мВт мощи, .
    В приемном канале — собственно фотоприемник.

    Юстировка даже такой простенькой системы будет делом непростым (попробуй-ка поймать зайчик, да ещё сфокусировать его). Скорее всего система получится либо трудно повторимой, либо трудно настраиваемой. Плюс меры для механической прочности. ИМХО легче Leika Disto разломать. Кстати повторить её «механику/оптику» врядли удастся — нужен доступ к технологии точного литья. В 90-е годы у нас в конторе пытались микрософтовскую мышь скопировать — всё содрали : софт, конструктив. даже шарик обрезиненный, шершавенький такой слепили а колесико с прорезями так и не смогли — то прорези разной толщины, то крутится яйцом — так и бросили. причем контора (по возможностям) до сих пор входит в список ведущих НИИ МинАтома (раньше шутили — министерство средних мегатонн).

    Нужно использовать модули с нормированными углом расхождения и
    соосностью луча и корпуса, такие есть, и можно найти относительно
    недорого.
    Ловить обратный луч ненужно, в реальном мире, у реальных предметов,
    всегда есть микрорельеф, отражение всегда будет сильно рассеяно.
    Единственная серьезная проблема — поставить крест визира на невидимое
    пятно, тут уже придется поломать голову и помучатся.

    Альтернатива — переход в видимый диапазон, юстировка в режиме
    непрерывного излучения, но работа с импульсным. В первую очередь для
    безопасности зрения, ну и конечно что бы воронтусов не пугать,
    но это заметно усложняет электронную часть.

    hundert
    Ну уж очень хочется заиметь такой девайс, но земноводное душит при взгляде на магазинные ценники.
    Мож существует на свете что нибудь подобное, даже не лазерный, а какой нить оптико-механический, который можно воспроизвести в домашних условиях.
    Пы-Сы. поиск ничего вразумительного не дал 🙁

    Всем привет. На уровне идеи делать лень. Берём штангенциркуль на штанге устанавливаем китайскую лазерную указку (далее ЛУ) на нониус устанавливаем вторую ЛУ под углом и совмещаем две точки на дистанции от 10 до ста метров так что бы на циркуле отношение было метр к миллиметру. Остаётся навести на цель и точно совместить точки от ЛУ. Я понимаю что ещё необходимо монокуляр с большой кратностью что бы совмещать точки. Как думаете что получится?
    Наверняка кто то уже делал получилось что ни будь путное?
    Заранее спасибо.

    whisper
    Всем привет. На уровне идеи делать лень. Берём штангенциркуль на штанге устанавливаем китайскую лазерную указку (далее ЛУ) на нониус устанавливаем вторую ЛУ под углом и совмещаем две точки на дистанции от 10 до ста метров так что бы на циркуле отношение было метр к миллиметру. Остаётся навести на цель и точно совместить точки от ЛУ. Я понимаю что ещё необходимо монокуляр с большой кратностью что бы совмещать точки. Как думаете что получится?
    Наверняка кто то уже делал получилось что ни будь путное?
    Заранее спасибо.

    А можно еще так (у меня так непроизвольно получилось). Ставите колиматорный прицел и ЛЦУ. Настраиваите ЛЦУ и колиматорный, например, на 20 м. На всех дистанциях, кроме 20 м, метки прицелов будут расходиться, по расстоянию между ними можно определять дистанцию.(прицел желательно с сеткой, не знаю, бывают ли такие.)

    Любое угломерное приспособление на короткой (небольшой то есть) базе будет безбожно врать, так как точность измерения угла недостаточная (из реально достижимых). Чем будет угол определяться — совмещением изображений или лучами — уже не столь важно.

    С уважением — Doktor77

    Полностью согласен с Doktor77 это конечно не очень серьёзно
    Было интересно может ктопробовал с ЛУ ставил эксперимент и нтересно что получится может и сам займусь
    С уважением.

    блин.. ну я вообще непонимать..
    винтовка, для которой необходим дальномер, обойдётся минимум в 4-6к .. а то и во все 10 с лишним.. а на дальномер (если уж по прицельной сетке мерить впадлу) наскрести не могут.. (за 6-8к можно оч неплохой девайсик купить, а просто «работающие» агрегаты — от 4)
    а работа над изготовлением самодельного лазерного дальномера — это Слишком сложная и трудо/время/деньго-затратная затея имхо.. (сам оптик, имею некоторое представление о сём приборе)

    Ссылка на основную публикацию
    ВсеИнструменты
    Adblock
    detector