Rich--house.ru

Строительный журнал Rich—house.ru
64 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Индикатор уровня напряжения аккумулятора на светодиодах и ОУ LM339

Индикатор уровня напряжения аккумулятора на светодиодах и ОУ LM339

Светодиодный индикатор на универсальных поликомпараторных микросхемах, содержащих в одном корпусе по несколько аналоговых компараторов общего назначения. Микросхема LM339, которая в одном корпусе DIP-14 содержит четыре компаратора с полевыми входами. Используя одну LM339 можно сделать четырехпороговый индикатор постоянного напряжения.

На рисунке 1 показана схема такого индикатора с линейной зависимостью измерения. Инверсные входы всех компараторов соединены вместе, — их общая точка является входом индикатора. На прямые входы подается опорное постоянное напряжение +Uomax через резистивный делитель, обеспечивающий распределение этого напряжения так, чтобы получить необходимый закон измерения. В данном случае резисторы делителя R2-R5 выбраны одинаковыми, поэтому и зависимость линейная.

Максимальная величина измеряемого напряжения (величина порога, при котором включается светодиод HL4) равна напряжению +Uomax (опорное напряжения максимума). Это напряжение желательно стабилизировать хотя-бы обычным параметрическим стабилизатором. Минимальная величина (порог при котором загорается HL1) зависит от сопротивления резистора R5 или от величины опорного напряжения минимума (Uomin).

Например, если нужно производить измерения в каком-то остро зажатом узком интервале напряжений, например, от 10 до 11V, то +Uomax должно быть равно 11V, а Uomin = 10V, при этом сопротивление R5 нужно исключить из схемы. Либо выбрать Uomin равным нулю (как на рисунке 1) и установить R5 такой величины, чтобы напряжение на нем было равно 10V.

Сопротивления R10-R13 нужны для придания компараторным схемам небольшого гистерезиса, улучшающего четкость работы индикатора. Индикаторная шкала состоит из четырех светодиодов HL1-HL4, подключенных к выходам компараторов через токоограничительные резисторы R14-R17.

Чтобы измерять переменное напряжение, например, в схеме индикации аудиосигнала, можно на входе сделать детектор на диодах или операционном усилителе.

Конечно, схема показанная на рисунке 1 несколько сложнее схемы на ВА6884 или другой аналогичной микросхемы, но это усложнение не столь существенно, особенно если нужно получить какую-то специфическую характеристику закона измерения. К тому же в данной схеме можно использовать практически любые доступные в текущий момент аналоговые компараторы или операционные усилители.

Схему, показанную на рисунке 1 можно легко каскадировать чтобы получить практически любое количество порогов измерения. На рисунке 2 показана схема восьмипорогового индикатора на двух микросхемах LM339, то есть, на восьми компараторах.

Схема на рисунке 2 специально показана так, чтобы было видно, как соединить схемы при каскадировании. Входы всех компараторов, сколько бы их ни было нужно соединить вместе, — это будет общий вход, на который поступает напряжение, подлежащее измерению.

Резисторы делителя (R2-R5 и R18-R21) включены последовательно. Если схема на большее число порогов, то и компараторов будет больше и больше будет резисторов в этом делителе. Например, используя четыре микросхемы LM339 можно сделать 16-пороговый индикатор.

Число порогов может быть практически любым, — совсем не обязательно кратным четырем. Все зависит от того, сколько компараторов вы используете. Например, если использовать в индикаторе уровня для стереоусилителя пять микросхем LM339, можно получить двухканальный шкальный десятипороговый индикатор. При этом, в каждом из каналов будут работать по две микросхемы LM339. И еще одна LM339, два компаратора которой работают в одном канале, а два других — в другом.

Нагрузочная способность выходов компараторов LM339 не слишком высока, поэтому для получения достаточной яркости индикатора желательно использовать сверх-яркие светодиоды. Либо сделать выходы на дополнительных ключах — усилителях, но это приводит к существенному усложнению схемы.

Компаратор. Описание и применение. Часть 1

Эта статья содержит основную информацию о работе компараторов напряжения построенных на интегральных микросхемах и может быть использована в качестве справочного материала для построения различных схем.

В электронике, компаратор представляет собой устройство, которое сравнивает между собой два электрических сигнала и выводит цифровой сигнал, указывающий на увеличение одного входного сигнала над другим. Компаратор имеет два аналоговых входа и один цифровой выход.

Компаратор, как правило, построен на дифференциальном усилителе с высоким коэффициентом усиления. Компараторы широко используются в устройствах, которые измеряют и оцифровывают аналоговые сигналы, например, в аналого-цифровых преобразователях (АЦП)

Примеры работы компаратора приведены на основе микросхемы LM339 (счетверенный компаратора напряжений) и LM393 (сдвоенный компаратор напряжения). Эти две микросхемы по своему функционалу идентичны. Компаратор напряжения LM311 так же может быть использован в данных примерах, но он имеет ряд функциональных особенностей.

Структурная схема одного компаратора входящего в микросхему LM339 и LM393

Компаратор напряжения — выход с открытым коллектором

Как правило, выход компаратора напряжения представляет собой выход с открытым коллектором.

Выход открытый коллектор имеет отрицательную полярность. Это означает, что на этом выходе не бывает положительного сигнала и нагрузка должна подключаться между этим выходом и источника питания.

В некоторых схемах к выходу компаратора подключают нагрузочный (подтягивающий) резистор для того, чтобы обеспечить сигнал высокого уровня поступающего на вход следующего элемента схемы.

Операционные усилители (ОУ), такие как LM324, LM358 и LM741 обычно не используются в радиоэлектронных схемах в качестве компаратора напряжения из-за их биполярных выходов. Тем не менее, эти операционные усилители могут быть использованы в качестве компараторов напряжения, если к выходу ОУ подключить диод или транзистор для того чтобы создать выход с открытым коллектором.

Ниже представлена логика работы компаратора имеющий выход с открытым коллектором:

Ток будет течь через открытый коллектор, когда напряжение на входе (+) будет ниже, чем напряжение на входе (-). И соответственно ток не будет протекать через открытый коллектор, когда напряжение на входе (+) будет выше, чем напряжение на входе (-).

Схема эквивалента компаратора напряжения с однополярным источником питания

Принципиальная схема «компаратор напряжения» эквивалентна работе операционного усилителя, например, LM358 или LM324, имеющим на выходе два транзистора типа NPN (см. выше). Таким образом, можно сделать все 4 выхода ОУ (LM339) с открытым коллектором. Каждый такой выход может выдерживать ток нагрузки 15 мА и напряжение до 50 вольт.

Выход включается или выключается в зависимости от относительных напряжений на плюсовом (+) и минусовом (-) входах компаратора. Входы компаратора крайне чувствительны и разница напряжения между ними всего лишь в несколько милливольт приводит к переключению его выхода.

Схема эквивалента компаратора напряжения с двухполярным источником питания

Компараторы напряжения LM339, LM393 и LM311могут работать с одно- или двухполярным источником питания до 32 вольт максимум.

При работе с двухполярным питанием, режим сравнения напряжения остается таким же, за исключением того, что для большинства схем эмиттер выходного транзистора подключается к отрицательной шине питания, а не к общей цепи. Исключением из этого правила является операционный усилитель LM311, имеющий изолированный эмиттер, который можно подключить как к минусу однополярного источника питания, так или к общему проводу двухполярного.

При работе с двухполярным источником питания, входное напряжение может быть выше или ниже относительно общего провода блока питания. Кроме того, один из входов компаратора может быть подключен к общему проводу, таким образом создается детектор «пересечение нуля».

Описание работы компаратора

Следующий рисунок показывает простейшую конфигурацию для компаратора напряжения, а так же графическое изображение режима его работы. В этой схеме опорное напряжение составляет половину напряжения питания, а входное напряжение может меняться от нуля до напряжения питания. В теории опорное и входное напряжение могут иметь значение от нуля и до напряжения источника питания, но есть реальные ограничения, зависящие от конкретно используемого компаратора.

Сигнал на выходе:

  1. Ток будет течь через открытый коллектор, когда напряжение на входе плюс (+) ниже, чем напряжение на входе минус (-).
  2. Ток не будет протекать через открытый коллектор, когда напряжение на входе плюс выше, чем напряжение на входе минус.

Входное напряжение смещения компаратора

Компараторы не являются совершенными устройствами, и их работа может иметь недостаток от последствий такого параметра, как входное напряжение смещения. Входное напряжение смещения для многих компараторов может составлять всего несколько милливольт и в большинстве схем может быть проигнорировано.

В основном проблема, связанная с входным напряжением смещения возникает, когда входное напряжение изменяется очень медленно. Конечным результатом входного напряжения смещения является то, что выходной транзистор не полностью открывается или закрывается, когда входное напряжение находится недалеко от опорного напряжения.

Следующая диаграмма иллюстрирует эффект смещения входного напряжения возникающий в результате медленного изменения входного напряжения. Этот эффект возрастает при увеличении выходного тока транзистора. Поэтому, для уменьшения этого эффекта, необходимо обеспечить максимальное сопротивление резистора R4.

Последствия входного напряжения смещения можно уменьшить, добавив в схему гистерезис. Это приведет к тому, что опорное напряжение будет меняться, когда выход компаратора переходит на высокий или низкий уровень.

Входное напряжение смещения и гистерезис

Для большинства схем построенных на компараторах, величина гистерезиса является разностью напряжений входного сигнала, при котором выход компаратора либо полностью включен или полностью выключен. Гистерезис в компараторах, как правило, нежелателен, но он может потребоваться, когда необходимо уменьшить чувствительность к шуму или при медленном изменении входного сигнала.

Внешний гистерезис использует положительную обратную связь (ПОС) с выхода на неинвертирующий вход компаратора. В результате полученный триггер Шмитта обеспечивает дополнительную помехоустойчивость и более чистый выходной сигнал.

Эффект от использования гистерезиса в том, что при постепенном изменении входного напряжения, а опорное напряжение будет быстро изменяться в противоположном направлении. Это обеспечивает чистое переключение выхода компаратора.

Механический аналог гистерезиса может быть обнаружен в разнообразных тумблерах. Как только рукоятка тумблера перемещается мимо центральной точки, пружина в тумблере переводит контакты реле в гарантированное положение (открытое или закрытое).

Гистерезис является неотъемлемой частью большинства компараторов составляющая всего несколько милливольт и он обычно влияет только на схемы, где входное напряжение поднимается или падает очень медленно или имеет скачки напряжения, известные как «шум»…

Читать еще:  Запуск и обкатка бензопилы после покупки

Индикатор заряда для Li-ion аккумуляторов

Всем привет, мы давно не делали индикаторы разряда автомобильного аккумулятора. Но в этой статье мы будем делать такой, же индикатор только для одной банки LI-ION аккумуляторов с напряжением 3,7 вольт. Такие индикаторы конечно можно купить и на рынке, но, а для тех, кто не прочь поработать руками и мозгами, двигаемся дальше.

Данная схема мало чем отличается от стандартных индикаторов заряда для автомобильных аккумуляторов, но некоторые отличия все же есть. Схема этого индикатора построена на базе компаратора LM-339.

Микросхема LM339 содержит четыре отдельных компаратора, каждый из них имеет два входа и один выход.

Если меняется напряжение на одном входе, это моментально приводит к изменению состояния выхода компаратора. В случаем микросхемы LM 339 на выходе может быть либо вообще ничего, либо масса или минус питания. Такой компаратор называется с открытым коллектором, поэтому светодиоды подключены катодами к компаратору.

На некоторых входах компаратора нужно формировать стабильное или опорное напряжение.

Как правило, для этих целей используется стабилитрон, но дело в том, что мы собираемся контролировать напряжение на низковольтном источнике. Сам стабилитрон также должен быть низковольтным. Точнее говоря напряжение стабилизации стабилитрона должно быть меньше чем напряжение максимально разряженного аккумулятора.

В случае же обычных LI-ION аккумуляторов это около 3-х вольт. Исходя из выше написанного, для сборки необходимо найти стабилитрон с напряжением стабилизации на 2,5 и меньше вольт. (в нашем случае был использован стабилитрон на 3,3 вольт ).

Решение такое – использовать светодиод в качестве источника опорного напряжения. Для красных, желтых и зеленых светодиодов минимальное напряжение свечения – в пределах 2 вольт, только светодиод уже подключается в прямом направлении в отличие от стабилитрона. Резистивные делители на входах компаратора пришлось пересчитать под литиевый аккумулятор. Была сделана новая плата, рассчитанная для работы с банками 3,7 вольт. Еще один момент на плате есть две перемычки, обозначенные желтыми линиями.

Диод VD1 защищает микросхему, в случае если вы перепутаете полярность подключения к аккумулятору.

Как нам известно, напряжение полностью заряженного литий-ионного аккумулятора должно быть в районе 4,2 вольт, поэтому делители подобраны в очень узком диапазоне, при том использованы резисторы с погрешностью всего в 1 %., что гарантирует высокоточную работу индикатора. На плате имеем 4 индикаторных светодиода (цвета могут быть разными).

Для проверки работоспособности индикатора, его необходимо вначале подключить к лабораторному источнику питания, с выставленным напряжением 4,2 вольт имитируя полностью заряженный литий ионный аккумулятор.

Как видно, все светодиоды горят. Далее постепенно снижаем напряжение, имитируя разряд аккумулятора, и сразу видим поочередное потухание светодиодов при определенных напряжениях. Все работает.

Такой индикатор можно пристроить под какую-нибудь самоделку или использовать в качестве пробника для литиевых банок.

Вот и все, Не забывайте поделиться с друзьями и посвить лайк тем самым, вы поддержите проект.

Индикаторы разряда автомобильного аккумулятора ВАРИАНТ – 1 , ВАРИАНТ – 2 , ВАРИАНТ – 3.

Прикрепленные файлы – СКАЧАТЬ

Схема индикатора заряда аккумулятора на светодиодах

Успешный пуск автомобильного двигателя во многом зависит от состояния заряда аккумулятора. Регулярно проверять напряжение на клеммах с помощью мультиметра – неудобно. Гораздо практичнее воспользоваться цифровым или аналоговым индикатором, расположенным рядом с приборной панелью. Простейший индикатор заряда аккумулятора можно сделать своими руками, в котором пять светодиодов помогают отслеживать постепенный разряд либо заряд батареи.

Принципиальная схема

Рассматриваемая принципиальная схема индикатора уровня заряда представляет собой простейшее устройство, отображающее уровень заряда аккумулятора (АКБ) на 12 вольт. Её ключевым элементом является микросхема LM339, в корпусе которой собрано 4 однотипных операционных усилителя (компаратора). Общий вид LM339 и назначение выводов показан на рисунке. Прямые и инверсные входы компараторов подключены через резистивные делители. В качестве нагрузки используются индикаторные светодиоды 5 мм.

Диод VD1 служит защитой микросхемы от случайной смены полярности. Стабилитрон VD2 задаёт опорное напряжение, которое является эталоном для будущих измерений. Резисторы R1-R4 ограничивают ток через светодиоды.

Принцип работы

Работает схема индикатора заряда аккумулятора на светодиодах следующим образом. Застабилизированное с помощью резистора R7 и стабилитрона VD2 напряжение 6,2 вольт поступает на резистивный делитель, собранный из R8-R12. Как видно из схемы между каждой парой этих резисторов формируются опорные напряжения разного уровня, которые поступают на прямые входы компараторов. В свою очередь, инверсные входы объединены между собой и через резисторы R5 и R6 подключены к клеммам аккумуляторной батарее (АКБ).

В процессе заряда (разряда) аккумулятора постепенно изменяется напряжение на инверсных входах, что приводит к поочередному переключению компараторов. Рассмотрим работу операционного усилителя OP1, который отвечает за индикацию максимального уровня заряда АКБ. Зададим условие, если заряженный аккумулятор имеет напряжение 13,5 В, то последний светодиод начинает гореть. Пороговое напряжение на его прямом входе, при котором засветится этот светодиод, рассчитаем по формуле:
UOP1+ = UСТ VD2 – UR8,
UСТ VD2 =UR8+ UR9+ UR10+ UR11+ UR12 = I*(R8+R9+R10+R11+R12)
I= UСТ VD2 /(R8+R9+R10+R11+R12) = 6,2/(5100+1000+1000+1000+10000) = 0,34 мА,
UR8 = I*R8=0,34 мА*5,1 кОм=1,7 В
UOP1+ = 6,2-1,7 = 4,5 В

Это означает, что при достижении на инверсном входе потенциала величиной более 4,5 вольт компаратор OP1 переключится и на его выходе появится низкий уровень напряжения, а светодиод засветится. По указанным формулам можно рассчитать потенциал на прямых входах каждого операционного усилителя. Потенциал на инверсных входах находят из равенства: UOP1- = I*R5 = UБАТ – I*R6.

Печатная плата и детали сборки

Печатная плата изготавливается из одностороннего фольгированного текстолита размером 40 на 37 мм, которую можно скачать здесь. Она предназначена для монтажа DIP элементов следующего типа:

  • резисторы МЛТ-0,125 Вт с точностью не менее 5% (ряд Е24)
    R1, R2, R3, R4, R7, R9, R10, R11– 1 кОм,
    R5, R8 – 5,1 кОм,
    R6, R12 – 10 кОм;
  • диод VD1 любой маломощный с обратным напряжением не ниже 30 В, например, 1N4148;
  • стабилитрон VD2 маломощный с напряжением стабилизации 6,2 В. Например, КС162А, BZX55C6V2;
  • светодиоды LED1-LED5 – индикаторные типа АЛ307 любого цвета свечения.

Данную схему можно использовать не только для контроля напряжения на 12 вольтовых аккумуляторах. Пересчитав номиналы резисторов, расположенных во входных цепях, получаем светодиодный индикатор на любое желаемое напряжение. Для этого следует задаться пороговыми напряжениями, при которых будут включаться светодиоды, а затем воспользоваться формулами для пересчёта сопротивлений, приведенные выше.

Счетверенный компаратор LM339N

Согласно техническим характеристикам микросхема lm339n и ее стандартные схемы включения разработаны американской компании Texas Instrument(TI). Она представляет собой счетверенный компаратор напряжения. Предназначен для создания функциональных генераторов. Широко применяется в устройствах автоматики и различной радиоэлектронной аппаратуре.

  1. Описание
  2. Максимальные параметры
  3. Принцип работы
  4. Аналоги
  5. Применение
  6. Производители

Описание

Микросхема с маркировкой «LM339N» выпускается в стандартной пластиковой упаковке для дырочного монтажа PDIP, и с «LM339» для поверхностного – SOIC, SOP, SSOP. Такое обозначение на корпусе является основным отличием данных устройств, которые по электрическим параметрам полностью идентичны. Развернутая распиновка, с указанием назначения выводов, представлена на рисунке.

Максимальные параметры

LM339(N) нельзя использовать в режиме линейного усиления как обычный ОУ. Наиболее частое применение в качестве электронного ключа, предъявляют ему немного другие требования. Одним из которых является высокое быстродействие. Приведём основные значения его предельно допустимых характеристик:

  • постоянное напряжение питания (VCC) до 36 В (или ± 18 В);
  • дифнапряжение на входе (VIN) от -36 В до +36 В;
  • диапазон синфазного напряжения (VI) от -0,3 В до +36 В;
  • выходной ток (IO) до 20 мА;
  • бесконечная длительность КЗ вывода «Output» на землю;
  • температура: кристалла при работе (TJ) до 150 o C; при хранении (TSTG) от -65 o C до +150 o C.

Принцип работы

Какова схема включения компаратора lm339 и как работает? В основе работы каждого из 4 входящих в ее элементов лежит простейший операционный усилитель (ОУ), заточенный на функционирование в режиме переключателя с большой скоростью.

Разберемся, как работает такой «переключатель». Вариант одной из схем применения компаратора, для наглядности и понимания процесса, представлен на рисунке ниже. Как видно, у него есть два входа, обозначенные символами «+IN» и «-IN». На них подается разные по величине потенциалы, относительно «GND», которые устройство сравнивает и выдает сигнал на выход «Output». Питающее напряжение 12 В подано на контакты «VCC» и «GND».

Если сравниваемое напряжение на «+IN» больше, чем на «-IN», относительно «Gnd», то на выходе «Output» появится положительный потенциал – «логическая единица». Через светодиод VD2 с ограничивающим резистором R1 на землю «GND» потечёт ток (IOUT) питающего напряжения. VD2 при этом засветится, а VD1 будет выключен.

При изменении ситуации, когда сравниваемое напряжение на «-IN» будет больше, чем на «+IN», на выходе «Output» появится отрицательный потенциал — «логический ноль». Соответственно загорится светодиод VD1, а VD2 будет погашен.

По такому принципу работает, например — одноканальный отечественный 140уд7. Однако существуют компараторы, у которых на выходе нельзя сформировать «логическую единицу», т.е. получить положительный сигнал. Возможно только «ноль» или ничего. Именно такими устройствами, их также называют «с открытым коллектором», оснащен четырехканальный LM339.

Данная особенность объясняется наличием у компараторов микросхемы внутреннего транзистора Q8. Его коллектор является выводом «Output», а эмиттер подключен к «GND». Он открывается только при большем потенциале на «-IN», относительно «+IN». При отсутствии сигнала — закрыт. Структурная схема из datasheet на LM339 представлена на рисунке.

Контакт «-IN» обычно называют инвертирующим, а «+IN» неинвертирующим.

Аналоги

Аналогом LM339(N) считаются следующие устройства: KIA339 (KEC), HA17339A (Renesas), UPC339GR (NEC). Немного хуже по параметрам, но иногда подходят в качестве замены: китайская SDP339 (Shaoxing Devechip Microelectronics Co.) или узбекская К1401СА1 (ОАО «Фатон» г.Ташкент). Многие известные зарубежные компании выпускают её со стандартной маркировкой по лицензии TI.

Читать еще:  Как вытащить сверло из дрели: полезные советы

Применение

Одну из возможных схем применения LM339 для индикатора заряда батареи на 12 В можно скачать по ссылке. Опорное напряжение 4,7 В в ней подается на неинвертирующие входы. Оно получено за счёт использования стабилитрона KC147 и сопротивления R5. Светодиоды разного цвета подключены катодом на открытый коллектор компаратора, а анодом на плюс источника питания через токоограничивающие резисторы.

Схема работает от источника питания, уровень которого она же и контролирует. Через резистивные делители к инвертирующим входам микросхемы подключены источники тестируемого напряжения. При полном заряде батареи загорится зеленый светодиод, при разряде — красный.

Производители

LM339(N) широко распространена в России от компании Texas Instrument. Вместе с тем, она так же встречаются от таких производителей: STM, On Semiconductor, Fairchild, Motorolla. Скачать даташит можно кликнув по наименованием.

Индикатор напряжения для сборок литиевых батарей 1-7S

Иногда заказываю для сборок аккумуляторов небольшие измерители и вот дошли руки протестировать их, ну и заодно написать микрообзор.
Осмотр, немножко тестов и выводов, надеюсь что будет полезно.

К сожалению доставка в магазине платная, потому заказывал сразу по нескольку штук чтобы компенсировать это.
На момент заказа у продавца вроде были только четыре версии, 1S, 2S, 3S, 4S, но сейчас появились 6S и 7S, при этом странно что нет в продаже версии 5S, подозреваю что скоро появится.

Большая часть измерителей отдал товарищу, но по одной штучке оставил и себе.
Каждый измеритель упакован в отдельный пакет, из отличий только наклейка с маркировкой на китайском и указанием диапазона измеряемого напряжения.
1S — 3.3-4.3 Вольта
2S — 6.6-8.4 Вольта
3S — 11.1-12.6 Вольта
4S — 13.2-16.8 Вольта

Также имеется маркировка цвета свечения (предположительно), но у продавца они только в одном варианте.

Если покупается несколько разных вариантов, то лучше их пометить сразу, так как сами по себе они ни маркировки, ни внешних отличий нет.

На одной из сторон платы есть место под кнопку, скорее всего для включения индикатора, но ни кнопки, ни сопутствующих компонентов на плате нет.

Когда получил индикаторы, то немного удивил размер, почему-то я ожидал что они будут меньше, тем более зная как в китайских магазинах любят делать фото.
Размеры самого индикатора — 31.5х20 мм, общие размеры — 43.5х20х9.5мм, расстояние между крепежными отверстиями — 36мм.

Чтобы не запутаться где какой индикатор, пришлось маркером сделать отметки на каждом из них.

Общее качество на троечку, есть следы флюса, пайка так себе, индикатор на некоторых платах припаян криво относительно самих плат.

Схемотехника довольно проста, стабилизатора напряжения питания нет, потому яркость зависит от напряжения питания. Имеется источник опорного напряжения на базе регулируемого стабилитрона TL431, а также защита от неправильной подачи питания.
Что за чип занимается измерением я определить не смог, сначала думал что это четырехканальный компаратор LM339, но у него выходы выведены на 1, 2, 13 и 14 контакты, а у чипа обозреваемой платы на 1, 7, 8, 14 выводы.

Ниже на фото две платы, 1S и 4S, чтобы понять в чем между ними отличия.
1. Резисторы через которые питаются сегменты индикатора (R1-R5).
2. Резистор R9.

Все остальные компоненты идентичны на всех платах.
При этом номинал резистора питания TL431 одинаков для всех плат и из-за этого ток потребления будет зависеть от входного напряжения.

Индикатор пятисегментный, один общий в виде символа батарейки и четыре сегмента для индикации уровня заряда (собственно потому я и думал что здесь применен LM339), но при этом существует и индикатор с пятью сегментами уровня заряда, мне такой попадался на Таобао.
Мало того, есть еще и много вариантов цветов индикации.

Размеры индикатора платы в обзоре и показанного выше очень похожи, 30.8х17.8мм против 31.5х20мм у обозреваемой платы.

Теперь немного тестов.
Индикатор обозреваемой платы имеет два цвета свечения, символ батарейки — красный, сегменты — синий. При этом символ батарейки состоит из шести параллельно включенных светодиодов.

Яркость достаточная, но у самой низковольтной версии сильно зависит от напряжения питания, но это вполне предсказуемо, остальные ведут себя гораздо стабильнее.
Есть и небольшая сложность, из-за того что цвета свечения синий и красный, то лучше использовать нейтральный светофильтр.
Для примера ниже четыре варианта —
1. Без светофильтра
2. Зеленый светофильтр, видны все сегменты, но яркость сильно падает и становятся более заметны светодиоды подсветки символа батарейки.
3. Красный светофильтр — виден только символ батарейки
4. Синий светофильтр, отлично видны сегменты, но символ батарейки почти не виден.

Измерения, для начала ток потребления.
Ниже на фото результат измерений для четырех режимов из пяти — только символ батарейки, + один сегмент, + два сегмента и + четыре сегмента, фото с тремя сегментами выкладывать не стал, но думаю что можно принять среднее между третьим и четвертым фото.
На всех фото где включены сегменты измерен ток сразу после его включения.
1-4, 1S
5-8, 2S
9-12, 3S
13-16, 4S

Видно что ток постоянно растет, хотя номиналы резисторов, через которые питаются светодиоды сегментов, разные. Происходит это из-за того, что резистор питания TL431 один и тот же на всех платах. Если необходимо уменьшить ток потребления, то можно номинал этого резистора (R14) пропорционально увеличить, например для платы 2S поставить 2кОм.

А теперь напряжение включения сегментов. Сразу сделаю отступление, гистерезиса или нет или он очень мал, потому у самой низковольтной версии бывает «дрожание» яркости, хотя в тесте я поднимал напряжение с дискретностью в 10мВ.

Также я сделал пересчет зависимости напряжения индикации к одному аккумулятору в зависимости от версии измерителя и у меня получилось:
1S. 2S. 3S. 4S
3.35 — 3.36 — 3.43 — 3.37
3.57 — 3.53 — 3.64 — 3.57
3.72 — 3.70 — 3.81 — 3.76
3.92 — 3.90 — 4.03 — 3.97

Видно что результаты немного «плавают», но в целом картина довольно ясна, диапазон измерения примерно 3.4-4.0 Вольта, что примерно соответствует почти полностью разряженному и заряженному аккумулятору. Напряжение литиевого аккумулятора обычно резко снижается с 4.2 до 4 Вольт, затем идет относительно плавное снижение до 3.3-3.4 Вольта и далее опять более резкое падение. Я бы сказал, что индикатор отображает примерно диапазон от 15 до 90%.

Уже позже было найдено еще пару вариантов более простых измерителей.
Например влагозащищенный — ссылка.

И вариант «с циферками» — ссылка

Мой читатель из Франции прислал вариант схемы данного измерителя, изначально он настроен на сборку 4S, за что ему большое спасибо 🙂

По итогам осмотра и тестов могу сказать, что индикаторы вполне работоспособны и полезны, но есть несколько замечаний:
1. Заметны отдельные светодиоды у символа батарейки
2. Ток потребления заметно растет с ростом напряжения, исправляется заменой резистора R14
3. Нет кнопки включения.

По последнему пункту поясню. Так как нет кнопки «программно» включающей индикатор, то сделать это можно только подачей питания, но обычно нет смысла держать его всегда включенным, а обычная мелкая кнопка имеет относительно высокое сопротивление и результат измерения будет сильно зависеть как от силы нажатия не кнопку, так и от срока ее службы.

В остальном вещь полезная и на мой взгляд недорогая, а большой выбор вариантов дает возможность использовать в разных устройствах, например в шуруповерте.

На этом у меня все, надеюсь что обзор пыл полезен, как всегда жду вопросов и просто комментариев.

Записки программиста

Знакомство с компараторами на примере чипа LM339

Ранее мы с вами познакомились с такими интегральными схемами, как таймер 555, счетчик 4026, логические вентили, а также сдвиговые регистры и декодеры. Теперь же пришло время узнать о компараторах. Несмотря на кажущуюся простоту, компараторы — куда более интересные устройства, чем может показаться на первый взгляд. Читайте далее, и сможете убедиться в этом самостоятельно.

Крайне наглядная картинка, объясняющая работу компаратора, была найдена в книге Чарльза Платта Электроника: логические микросхемы, усилители и датчики для начинающих. С некоторыми изменениями эта иллюстрация приведена ниже:

Компаратор имеет два входа, обозначаемые знаками минус (инвертирующий вход) и плюс (неинвертирующий вход), и один выход. Для нормальной работы выход компаратора обязательно должен быть подключен к плюсу источника питания через подтягивающий резистор. Почему нельзя было сделать это просто внутри микросхемы, скоро станет понятно.

Используется компаратор следующим образом. На инвертирующий вход подается эталонное напряжение. Когда напряжение на втором, неинвертирующем, входе больше эталонного, выход компаратора имеет высокое напряжение. Если же напряжение на неинвертирующем входе ниже эталонного, выход компаратора имеет низкое напряжение. Проще говоря, компаратор сравнивает два значения напряжения и на выходе говорит, какое больше. Входы компаратора можно использовать и наоборот, тогда выход компаратора будет инвертирован.

В качестве типичной микросхемы, содержащей внутри себя целых 4 компаратора, можно назвать LM339. Данный чип выпускается как в виде SMD-компонента, так и варианте для монтажа через отверстия. Распиновка у LM339 следующая:

На практике компараторы чаще всего используют одним из следующих образов:

Важно! По неудачному стечению обстоятельств, компаратор обозначается на схемах точно так же, как и операционный усилитель. Однако операционные усилители работают иначе, нежели компараторы, и их не следует путать. Определить, что именно используется в схеме, обычно можно по указанному названию чипа.

В левой части схемы изображен компаратор, чей выход соединяется с неинвертирующим входом через потенциометр или резистор. Это — так называемая положительная обратная связь. Благодаря ей достигается гистерезис. То есть, если напряжение на неинвертирующем входе будет колебаться в некотором коридоре возле эталонного, выход компаратора не будет постоянно изменяться. Если помните, триггер Шмитта (чип 74HC14) делает то же самое.

Читать еще:  Ступенчатое сверло 5-35 мм vs гетинакс. Рассверливаем, сохраняем соосность.

Кстати, можно заметить, что одна из связей на потенциометре в положительной обратной связи как бы лишняя. Как объяснил мне Melted Metal, так принято делать на случай потери контакта движка потенциометра с резистивной дорожкой.

Что же касается правой части схемы, на ней изображена схема двухпорогового компаратора. Если вход схемы, обозначенный, как signal, имеет напряжение между low и high, на выходе схемы образуется высокое напряжение. В противном случае напряжение на выходе низкое.

На следующем фото изображена первая схема, собранная на макетной плате:

Потенциометр слева задает напряжение на инвертирующем входе, а потенциометр справа — на неинвертирующем. Потенциометр по центру участвует в положительной обратной связи. Напряжение на обоих входах отображается при помощи миниатюрных цифровых вольтметров. Поскольку напряжение на неинвертирующем входе выше эталонного, светодиод, подключенный к выходу компаратора, горит.

Обратите внимание, что на входы неиспользованных компараторов также подается высокое и низкое напряжение. Это увеличивает надежность работы схемы и уменьшает потребляемую ею электроэнергию. Не имеет значения, на какой из входов подается высокое напряжение, а на какой — низкое. Главное, чтобы выход каждого отдельного компаратора был строго определен.

Вторую схему в собранном виде здесь я не привожу. Так что, вам придется поверить мне на слово, что она работает 🙂

Помимо всех озвученных выше, следует иметь в виду еще пару важных моментов:

  • Через компаратор не следует пропускать слишком большой ток. Ток больше 20 мА может его сжечь;
  • Напряжение на выходе компаратора может быть как выше, так и ниже напряжения на любом из входов. То есть, выход можно питать от совершенно другого источника питания. А питание на саму микросхему при этом может идти от третьего. Для правильной работы микросхемы нужно только, чтобы все эти источники имели общую землю;

Последнее обстоятельство позволяет использовать компаратор в качестве преобразователя уровня сигнала. Кроме того, теперь наконец-то стало ясно, зачем были все эти сложности со внешним подтягивающим резистором.

Вообще, компаратор можно рассматривать, как очень простой вольтметр или АЦП. В частности, с его помощью не представляет труда собрать индикатор уровня заряда Li-Ion аккумулятора. Если же у вас есть лишний фоторезистор (см заметку Мои первые страшные опыты с Arduino) или фототранзистор, на базе компаратора можно сделать датчик освещения. Если же вместо фоторезистора воспользоваться термометром типа TMP36, можно собрать устройство, управляющее кулером или кондиционером, способное регулировать температуру.

Наконец, компаратор можно использовать в качестве логического элемента НЕ, а также, если соединить выходы нескольких компараторов, в качестве элемента И. Отсюда несложно получить ИЛИ, по форуме x || y = !(!x && !y) , ровно как и любую другую булеву функцию. Само собой разумеется, при желании можно придумать и другие применения.

А какие безумные варианты использования компараторов приходят вам на ум?

SMD практикум № 2! Индикатор уровня заряда аккумулятора для автомобилиста

Длительная эксплуатация аккумуляторной батареи автомобиля достигается её поддержанием в заряженном состоянии. При этом вредны как перезаряд, так и переразряд аккумулятора.
Автолюбителям, особенно весьма далеким от техники, удобна простая оценка уровня заряда аккумулятора по принципу: «пониженный», «норма», «повышенный».

Если для наглядности использовать светодиоды разных цветов, оценить ситуацию можно, бросив взгляд на устройство.

Конструкция выполнена на элементах для поверхностного монтажа, отличается простотой, малым током потребления, достаточной точностью определения технического состояния аккумуляторной батареи и удобством считывания результатов.

Содержание / Contents

  • 1 Принципиальная схема индикатора напряжения аккумулятора
  • 2 Детали индикатора
  • 3 Сборка индикатора
  • 4 Налаживание индикатора напряжений
  • 5 Итоги
  • 6 Файлы
  • 7 Источники

↑ Принципиальная схема индикатора напряжения аккумулятора

Устройство индикации HL1 – HL5 реализовано таким образом, что срабатывание каждой последующей ячейки вызывает погасание предыдущей. При этом засвечивание двух индикаторов одновременно исключено.

Для крайних (аварийных) диапазонов индикации использованы светодиоды HL1, HL5 красного свечения.
Для диапазона менее 10,8 В применен мигающий светодиод HL1, а более 14,8 В – обычный HL5.
Далее, следуя логике технического состояния аккумулятора: HL2 – оранжевый светодиод, HL3 – желтый и HL4 – зеленый (норма).

Резисторы R8 – R11 – токоограничивающие. Токоограничивающий резистор R12 для мигающего светодиода HL1 в принципе не нужен, но не мешает его работе и позволяет при необходимости установить обычный светодиод.

Указанные на принципиальной схеме рис. 1 номиналы делителя R1 – R5 обеспечивают достаточную точность срабатывания компараторов для указанных выше пороговых напряжений и опорном напряжении Uоп=5 В.

Вид передней панели индикатора показан на рис. 2.

Расчет делителя напряжения приведен в прилагаемом файле «Расчет делителя.xls».
При необходимости делитель легко пересчитывается указанием других требуемых порогов срабатывания компараторов.

Например, пороги срабатывания устройства, выбранные на основе опыта бывалых автоэлектриков, изображены на рис. 3.

Резисторы делителя R1 – R5 могут быть пересчитаны для контроля аккумуляторной батареи на работающем двигателе автомобиля (рис. 4).

В таблице приведены параметры резисторов делителя R1 – R5 для реализации трех указанных выше применений индикатора.

Диод VD1, шунтирующий блокировочный конденсатор С1, предотвращает его переполюсовку, а также защищает входы DA1. Диод VD2 берет под защиту цепи питания микросхем DA1 и DA2.
Теперь «переполюсовка» совершенно не страшна индикатору.

Параметры индикатора автомобилиста:
Диапазон входных напряжений: 6…20 В;
Потребляемый ток: 15 мА.

↑ Детали индикатора

Все резисторы SMD удобного для монтажа типоразмера 1206. Резисторы делителя R1 – R5 имеют точность 1%, остальные — 5%.

Конденсаторы С1, С3 танталовые типоразмера В на напряжение 25 В, С2 – керамический.

Светодиод HL1 – красный мигающий, HL2 – HL5 практически любые требуемых цветов свечения.

Я применил обычные светодиоды, но печатная плата позволяет установить и элементы для поверхностного монтажа.

↑ Сборка индикатора

Вначале монтируют все элементы, за исключением резистора R7, подбираемого при налаживании. Все элементы, кроме двух перемычек, устанавливают со стороны печатных дорожек.

↑ Налаживание индикатора напряжений

Для налаживания понадобится регулируемый источник питания.
Целесообразно на время налаживания, на место резистора R7 включить реостатом переменный резистор 1 кОм.
С помощью регулируемого источника питания устанавливается напряжение 14,8 В, и вращением ручки переменного резистора добиваются начала зажигания светодиода HL5.

Измеряют сопротивление рабочей части резистора и устанавливают на место R7 резистор ближайшего номинала.
Далее проверяют другие пороги срабатывания индикатора и убеждаются в их соответствии выбранным.
При допуске резисторов R1 – R5 в 1% уточнения сопротивлений делителя обычно не требуется.

↑ Итоги

Предлагаемый SMD практикум позволяет получить опыт в создании надежной и полезной конструкции.
Контроль за состоянием аккумулятора автомобиля рекомендуется осуществлять минимум два раза в год (весной и осенью). Своевременное приведение аккумулятора в рабочее состояние продлевает срок его эксплуатации.
Внешний вид собранного индикатора уровня заряда аккумулятора приведен во вводной части статьи.

↑ Файлы

Схему, печатную плату и файл с расчетом делителя можно взять тут:
▼ Файловый сервис недоступен. Зарегистрируйтесь или авторизуйтесь на сайте.

↑ Источники

Камрад, рассмотри датагорские рекомендации

🌻 Халва для своих! +1800.00₽ для новичка на Aliexpress

Камрад, регистрируйся на Али по этой нашей ссылке. Ты получишь купон на 1800.00₽ на первый заказ. Не тяни, время действия купона ограничено.

🌼 Полезные и проверенные железяки — можно брать!

Куплено и опробовано читателями или в лаборатории редакции.

Поделки своими руками для автолюбителей

Простой и точный индикатор заряда-разряда АКБ

Сегодня статья будет с процессом сборки простого индикатора уровня заряда аккумуляторов, но с более высокоточной схемой, которая пригодна для реального использования и может стать отличным дополнением на панели приборов вашего автомобиля.

Индикатор построен на базе микросхемы ELM339, она в свою очередь представляет из себя четыре отдельных компаратора в едином корпусе.

Компаратор имеет два входа и один выход, он просто сравнивает напряжение на входах, исходя из этого на выходе получаем либо логический 0, либо единицу.

Использованный в схеме компаратор можно найти на платах компьютерного блока питания, ориентируйтесь по цифрам 339, буквы могут отличаться в зависимости от производителя.

В качестве индикаторов задействованы 3 миллиметровые светодиоды.

Схема работает очень простым образом, имеем источник опорного напряжения в лице стабилитрона, цепочки из резисторов представляют из себя делители, которые создают на входах компараторов определенное напряжение, назовем их пороговыми.

Компаратор постоянно сравнивает эти напряжения с напряжением, которые образуют делитель на резисторах R5 и R6, этот делитель снижает напряжение тестируемой батареи в три раза, если напряжение на прямом входе компаратора больше чем на инверсном, то на выходе получаем логическую единицу или напряжение питания.

Светодиод светится, если всё наоборот, то на выходе получаем логическую 0 или массу питания, светодиод в данном случае не светится.

Входные делители подобраны в узком диапазоне, поскольку схема предназначена для работы в качестве индикатора заряда 12-вольтовых аккумуляторов.

Маломощный диод 4148 защищает микросхему компаратора от обратной полярности.

Токо-ограничивающие резисторы для светодиодов подбираются с сопротивлением от 1 до 2,2 килом, можно ограничиться всего одним резистором.

Печатная плата довольно компактна, рисовал на скорую руку, но разводка неплохая, кстати её вы можете скачать в конце статьи.

Для проверки этой платы нам нужен лабораторный источник питания на котором нужно выставить напряжение около 13,5 — 14 вольт, имитируя полностью заряженный автомобильный аккумулятор.

Загораются сразу все светодиоды, постепенно снижая напряжение на блоке питания мы можем наблюдать потухание светодиодов при определенных напряжениях.

Горение только красных светодиодов означает, что аккумулятор почти разряжен.

Можно пересчитать входные делители и использовать схему для аккумуляторов с иным напряжением, кстати эту схему можно также применить и в зарядных устройствах.

Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector