Rich--house.ru

Строительный журнал Rich—house.ru
16 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Стабилизатор напряжения 12 вольт: как он работает?

Стабилизатор на 12 вольт. Простое решение стабилизации

Сложно представить навороченный тюнинг современных автомашин без светодиодного оформления. Отдельным доработкам нужно приложить немало усилий, к примеру, монтаж светодиодных лент в фары. И часто случается неприятный казус, если светодиоды вдруг сгорают или выходят из строя. Обычно, причина заключается в том, что схема подключения не оснащена стабилизатором.

Если в сети автомашины имеются светодиодная техника до 300 мА, то для увеличения их срока службы требуется установка ограничителя тока (резистора). При нестабильном напряжении в сети автомашины рекомендовано применять стабилизатор.

Итак, для обеспечения электрооборудования автомобиля качественным напряжением нужно использовать автономный стабилизатор. Даже такие модные сегодня элементы тюнинга, как светодиоды, лучше запитывать через стабилизатор 12 вольт.

Стабилизатор напряжения 12 вольт: как он работает?

Сегодня у нас есть некоторые замечательные электронные микросхемы, специально разработанные для применения регулирования напряжения. Такими микросхемами обеспечивается качественная стабилизация. Проектируются они на базе автопереключения секций применяемого трансформатора с помощью электронных ключей (тиристоров, симисторов и реле). Аппараты обладают быстродействием, широким диапазоном входных параметров и высоким КПД.

Имеется вариант — применить в качестве стабилизирующего ограничителя тока микросхему LM317. Принципиальная схема ниже показывает довольно простую конфигурацию, где СК 317 используется в стандартном режиме регулятора напряжения.

В предлагаемом устройстве включена микросхема LM317, которая ограничивает его от таких возможных опасностей, как перегрузка по току, перепады напряжения и короткие замыкания, обеспечивая идеальные условия для создания комфортного интерьера в автомобиле. Схема настроена на поддерживание 12 вольт на выходе. В системе предусмотрена тепловая защита (изоляция из слюды) и защита от короткого замыкания (пожарная опасность).

Упрощенный вариант стабилизатора напряжения 12 вольт

С использованием микросхемы LM196 и минимумом компонентов, как приведено ниже, конфигурация стабилизатора будет чрезвычайно простой.

где Р3 = 240 Ом, Д1, Д2 = 15 А, ІС1 = LM196.

Резисторами ограничивается ток на светодиоды, дабы они не сгорели. Мощность их должна быть не менее 0,05 Вт, поскольку при работе она находится в зависимости от разницы значений входного и выходного напряжения.

Однако два рассмотренных варианта имеют один довольно существенный недостаток – собранные по ним устройства греются. Потому что это линейные регуляторы. Импульсный же аппарат отличается от тех, что описаны выше, наряду с другими своими функциями тем, что практически не греется (лишь в случае, если очень перегрузить).

Импульсные стабилизаторы напряжения

Устройства в себе включают все что нужно. Исходя из их качеств, в большинстве случаев их и ставят для светодиодов.

Стабилизация осуществляется благодаря чередованию импульсов и пауз. Импульсные устройства обладают лучшим КПД по сравнению с линейными. Иными словами, они способны преобразовывать входное напряжение по параметрам, заданным заранее. Регулировка этих параметров легко выполняется благодаря различным вариантам электрических схем. Импульсные устройства бывают повышающие, понижающие либо инвертирующие.

Сеть автомашины довольно уязвима для всяких помех, скачков напряжения. Для защиты электросети в автомашинах применяют импульсный стабилизатор напряжения 12 вольт.

Благодаря ему нестабильное напряжение входной сети питает сеть стабильными 12 вольтами и током, около 0,3-0,4 ампера. Штатные электрические узлы автомашины, как правило, надежно защищены при установке.

Преимущества применения стабилизаторов

Стабилизаторы имеют ряд достоинств, среди которых:

  • cглаживание небольших скачков и колебаний сети;
  • защита электроприёмников внутренней сети от недонапряжения или перенапряжения;
  • надёжная защита чувствительной электронной системы от неполадок из-за сетевых перепадов;
  • исключение такого эффекта, как мерцание лампочек. И как следствие, существенное увеличение срока их службы.

Заключение

Электрическая система любого транспортного средства, вероятно, более изменчива, чем электрика в нашем доме, просто потому, что она создается из источника под названием автомобильный генератор. Выходные параметры последнего претерпевают существенные изменения в зависимости от скорости транспортного средства.

Это означает, что резкие изменения скорости или частое применение тормоза, генерируют изменение энергетических параметров на выходе генератора. Поскольку в настоящее время интерьеры нашего автомобиля или другого транспортного средства сильно наполнены сложными электронными устройствами, то нестабильные условия могут привести к нежелательным последствиям в работе этой техники, а именно повлиять на их производительность и срок службы.

Остаётся один выход: установить в автоматический стабилизатор напряжения или стабилизатор тока. Но что из них выбрать для установки?

  1. Если электроприёмник устанавливается в автомашину с нестабильным напряжением – без стабилизатора напряжения не обойтись.
  2. Если изделие рассчитано на 300 мА и выше – ставится стабилизатор тока.

Надеемся, что типовые решения для стабилизатора в автомашине, описанные в этой статье, помогут избавить вас от всех тревог и волнений.

Как сделать стабилизатор напряжения на 12 вольт своими руками

В электрической цепи автомобиля часто применяют стабилизатор напряжения 12 вольт. Необходимость установки его объясняется тем, что автомобильные источники питания (аккумуляторная батарея и генератор) различных 12-ти вольтовых электроприборов выдают постоянный ток с напряжением от 12,5 до 14 В. Такие большие колебания способны привести к повреждению и выходу из строя чувствительных и дорогостоящих светодиодных лент, противотуманных фар, магнитол. Также помимо электрических систем автомобилей подобные устройства применяются в 12-ти вольтных блоках питания, способных понижать и преобразовывать переменный ток электрической бытовой сети в более подходящий для ряда приборов постоянный.

Выбор устройства

При выборе стабилизатора учитывают следующие характеристики:

  • Размеры. Выбранный стабилизатор должен компактно размещаться в запланированном для него месте для установки с возможностью нормального доступа.
  • Вид. Из имеющихся в продаже устройств наиболее надежными, компактными и недорогими являются стабилизаторы на основе небольших микросхем.
  • Возможность самостоятельного ремонта. Так как даже самые надежные устройства выходят из строя, необходимо отдавать предпочтение ремонтопригодным стабилизаторам, радиодетали к которым имеются в продаже в достаточном количестве и по доступной цене.
  • Надежность. Выбранный стабилизатор должен обеспечивать постоянное значение напряжения без значительных отклонений от заявленного их производителем диапазона.
  • Стоимость. Для электрической системы автомобиля достаточно приобрести устройство стоимостью до 200 рублей.

Также при выборе стабилизатора необходимо учитывать отзывы их покупателей, которые можно найти на специализированных форумах и сайтах.

Разновидности 12В стабилизаторов

В зависимости от конструкции и способа поддержания 12-ти вольтного напряжения выделяют две разновидности стабилизаторов:

  • Импульсные – стабилизаторы, состоящие из интегратора (аккумулятора, электролитического конденсатора большой емкости) и ключа (транзистора). Поддержание напряжения в заданном интервале значений происходит благодаря циклическому процессу накопления и быстрой отдачи заряда интегратором при открытом состоянии ключа. По конструктивным особенностям и способу управления такие стабилизаторы подразделяются на ключевые устройства с триггером Шмитта, выравниватели с широтно-импульсной и частотно-импульсной модуляцией.
  • Линейные – стабилизирующие напряжение устройства, в которых в качестве регулирующего устройства применяются подключаемые последовательно стабилитроны или специальные микросхемы.

Наиболее распространены и популярны среди автолюбителей линейные устройства, отличающиеся простотой самостоятельной сборки, надежностью и долговечностью. Импульсный вид используется значительно реже из-за дороговизны деталей и сложностей самостоятельного изготовления и ремонта.

Классическая модель

Классические стабилизаторы – это большой класс устройств, собираемых на основе таких полупроводниковых деталей, как биполярные транзисторы и стабилитроны. Среди них основную функцию по поддержанию напряжения на уровне 12 В выполняют стабилитроны – разновидность диодов, подключаемых в обратной полярности (к катоду такого полупроводникового прибора подключается плюс источника питания, к аноду – минус), работающих в режиме пробоя. Суть работы данных полупроводниковых деталей заключается в следующем:

  • При напряжении подключенного к стабилитрону источника питания меньше 12 В он находится в закрытом положении и не участвует в регулировке данной характеристики электрического тока.
  • При превышении порога в 12 Вольт стабилитрон «открывается» и поддерживает данное значение в заданном его характеристиками диапазоне.

В случае превышения напряжения, подаваемого на стабилитрон, относительно заявленного как максимальное производителем прибор очень быстро выходит из строя из-за эффекта теплового пробоя.

Чтобы любая модель стабилитрона служила максимально долго, рекомендуется по его спецификации уточнить тот диапазон напряжений, силы тока, в котором его следует эксплуатировать.

В зависимости от подключения различают два варианта классического стабилизатора: линейный – регулировочные элементы подключаются последовательно нагрузке; параллельный – стабилизирующие напряжение устройства располагаются параллельно запитываемым приборам.

Интегральный стабилизатор

Устройства собирают с использованием небольших по размерам микросхем, способных работать при входном напряжении до 26-30 В, выдавая постоянный 12-ти вольтный ток силой до 1 Ампер. Особенностью данных радиодеталей является наличие 3 ножек – «вход», «выход» и «регулировка». Последняя используется для подключения регулировочного резистора, который используется для настройки микросхемы и предотвращения ее перегрузок.

Более удобные и надежные, собранные на основе стабилизирующих микросхем выравниватели постепенно вытесняют собранные на дискретных элементах аналоги.

Как сделать 12В стабилизатор

Простые, но при этом достаточно эффективные, надежные и долговечные стабилизирующие устройства можно сделать самостоятельно, используя при этом простые стабилитроны и специальные небольшие микросхемы типа LM317, LD1084, L7812, КРЕН (КР142ЕН8Б).

Стабилизатор на LM317

Процесс сборки такого стабилизирующего напряжение устройства состоит из следующих этапов:

  1. К среднему выходному контакту микросхемы припаивается 130-ти омное сопротивление.
  2. К входному правому контакту припаивается проводник, подающий нестабилизированное напряжение от источника питания.
  3. Левый регулировочный контакт припаивается ко второй ножке резистора, установленного на выходе микросхемы.

Процесс пайки такого стабилизатора занимает не более 10 минут и с учетом недорогой микросхемы не требует больших капиталовложений. При помощи подобного устройства запитывают светодиодные фонари, ленты.

Микросхема LD1084

Сборка устройства для стабилизации напряжения автомобильной бортовой сети с использованием микросхемы LD1084 производится следующим образом:

  1. К входному контакту микросхемы припаивается проводник с плюсовым напряжением от диодного моста.
  2. К регулировочному контакту припаивается эмиттер биполярного транзистора, базу которого через два резистора номиналом 1 кОм питает ток ближнего и дальнего света фар.
  3. К контакту выхода припаивается два резистора (один – обычный на 120 Ом, а второй – подстроечный, на 4,7кОм) и электролитический конденсатор на 10 мкФ

Для сглаживания пульсации тока после диодного моста устанавливается еще один электролитический конденсатор емкостью 10 мкф.

Стабилизатор на диодах и плате L7812

Простой интегральный выравниватель на диоде Шоттки и двух конденсаторах собирают следующим образом:

  1. К входному контакту микросхемы припаивается: диод типа 1N4007, анод которого при помощи провода соединяется с плюсом источника питания, плюсовая обкладка мощного 16-ти вольтного электролитического конденсатора емкостью 330 мкФ.
  2. К правому выходному контакту припаивается нагрузка и ножка плюсовой обкладки 16-ти вольтного электролитического конденсатора на 100 мкФ.
  3. К среднему регулировочному контакту припаивается минус, идущий от батареи, и провод от минусовых обкладок конденсаторов.

От такого простого устройства можно запитывать мощные ленты из светодиодов и магнитолу.

Самый простой стабилизатор — плата КРЕН

Схема стабилизатор напряжения на 12 вольт на основе платы крен (КР142ЕН8Б) включает в себя следующие компоненты:

  • Припаянный к входному контакту выпрямляющий диод типа 1N4007.
  • Микросхему КР142ЕН8Б либо KIA7812A.
  • Два провода, припаянные к выходному и регулировочному контакту микросхемы и соединенные с нагрузкой и минусом источника питания.

Конструкция на плате КРЕН является самой простой и быстрой в сборке. При этом эффективность и область применения у нее такая же, как и у других самодельных аналогов.

Урок 1.12 Стабилизаторы напряжения

Стабилизатор напряжения, это устройство, которое при изменении входного напряжения и тока нагрузки удерживает выходное напряжение на заданном неизменном уровне.

Простейший стабилизатор напряжения, схема:

Основным элементом стабилизатора является стабилитрон, на схеме он обозначен VD. Стабилитрон, это диод, с определенным пробивным обратным напряжением. Напряжение, при котором наступает пробой, называется напряжением стабилизации. Это напряжение остается постоянным при изменении тока через стабилитрон от значения Iст мин до Iст макс. (показано на графике ниже). Величина тока стабилизации задается балластным резистором R. Именно ограничение тока не позволяет выходить из строя стабилитрону при пробивном напряжении на нем. Пробивное напряжение у стабилитрона является рабочим и называется напряжением стабилизации.

Как работает стабилизатор напряжения, рассмотрим на конкретном примере.

Допустим, на выходе нужно иметь постоянное напряжение 12 В, при напряжении на входе 220 В. Задаем диапазон допустимого изменения напряжения на входе, например ±10%. Это значит, что напряжение будет изменяться от 198 В до 242 В. Напряжение после выпрямления диодами так же будет изменяться на ±10%. Но даже уменьшенное на 10% оно должно превышать необходимое на выходе 12 В на величину падения напряжения на балластном резисторе R. С учетом этого, для работы стабилизатора выберем трансформатор, вторичная обмотка которого будет обеспечивать после диодов 15 В, при напряжении на входе трансформатора 220 В. Тогда, при изменении напряжения на входе на ±10% напряжение после выпрямления диодами будет изменяться от 13,5 В до 16,5 В. На балластном резисторе будет падать максимум 4,5 В. Ток стабилитрона возьмем приблизительно средний, 20 мА (смотри слева на вольт-амперной характеристике). Это напряжение делим на выбранный ток стабилитрона 20 мА (0,02 А) и получаем величину сопротивления балластного резистора:

4,5 : 0,02 = 225 Ом, выбираем ближайший стандартный номинал 220 Ом, мощность рассеиваемая этим резистором составит 4,5 В × 0,02 А = 0,09 Вт, ближайший стандарт 0,125 Вт.

Для наглядности сведем эти данные в таблицу:

Напряжение сетиНапряжение после выпрямителяТок стабилитронаНапряжение на нагрузке
220 В15 В14 мА12 В
198 В13,5 В7 мА12 В
242 В16,5 В20 мА12 В

При изменении напряжения на первичной обмотке трансформатора от 198 В до 242 В, напряжение после выпрямления диодами будет меняться от 13,5 В до 16,5 В, а на выходе стабилизатора напряжение будет оставаться равным 12 В. Все лишнее напряжение будет падать на балластном резисторе R.

Другими словами при повышении напряжения ток через стабилитрон будет увеличиваться, что приведет к увеличению падения напряжения на балластном резисторе, в результате чего на выходе стабилизатора напряжение останется неизменным.

Читать еще:  Как можно обрезать газовую трубу – правила и рекомендации

Основным недостатком рассмотренной схемы является то, что ток нагрузки не может превышать 0,1 тока через стабилитрон. В нашем примере, максимальный ток нагрузки не может превышать 20 мА × 0,1 = 2 мА. Если ток будет больше, то выходное напряжение не сможет удерживаться на заданном уровне 12 В.

Стабилизатор напряжения с усилителем на транзисторе.

Чтобы стабилизатор мог обеспечивать больший ток в нагрузке, применяют усилители на транзисторах. Ниже приводится простейшая схема стабилизатора напряжения с усилителем на одном транзисторе.

Принцип работы этого стабилизатора аналогичный описанному выше. Отличие состоит в том, что ток нагрузки не течет через стабилитрон, а течет через коллектор-эмиттер транзистора. Стабилитрон поддерживает на базе транзистора стабильное напряжение, такое же стабильное напряжение, отличающееся на небольшое (меньше 1 вольта) падение напряжения на открытом pn переходе база-эмиттер транзистора, будет и на нагрузке.

Максимальный ток нагрузки будет равен току стабилитрона, умноженному на коэффициент усиления транзистора, который может быть равен 10 и намного выше.

Для повышения коэффициента стабилизации при больших токах нагрузки может применяться несколько транзисторов. Выпускаются микросхемы, внутри которых собраны все детали стабилизатора. Эти микросхемы имеют всего три вывода для подключения: вход, общий и выход. Стабилизаторы, схемы которых построены по такому принципу, называются компенсационными.

Основной недостаток компенсационных стабилизаторов – большая мощность, рассеиваемая на регулирующем элементе. При больших токах обязательно применение радиаторов для охлаждения. Такой принцип не позволяет достигать высоких значений коэффициента полезного действия (кпд).

Импульсный стабилизатор напряжения.

Для повышения кпд стабилизаторов был разработан принцип на основе широтно-импульсного модулятора.

Суть этого принципа в следующем. Переменное напряжение после выпрямления диодами подается на схему, состоящую из импульсного ключа и генератора прямоугольных импульсов частотой несколько килогерц. Эти импульсы открывают и закрывают мощный транзисторный ключ. После прохождения ключа импульсы преобразуются в постоянное напряжение. Чем больше длительность этих импульсов, тем выше постоянное напряжение. Если на выходе поставить устройство контроля за величиной постоянного напряжения и связать его с управлением длительностью импульсов генератора, то получим эффективный стабилизатор.

Например, зададим выходное напряжение 12 В. Если оно начнет по каким-либо причинам увеличиваться устройство контроля начнет уменьшать длительность импульсов генератора и вернет выходное напряжение в норму. Если выходное напряжение начнет уменьшаться, то по этой же причине длительность импульсов генератора начнет увеличиваться и компенсирует это уменьшение.

Мощный ключ в такой схеме имеет два устойчивых состояния – полностью открыт или полностью закрыт. При этом величина выходного напряжения прямо пропорциональна времени открытого состояния ключа. Падение напряжения на нем минимально и он практически не греется, что существенно повышает кпд таких стабилизаторов.

Пример структурной схемы импульсного стабилизатора напряжения показан ниже:

Стабилизатор напряжения 12 вольт

Напряжение постоянного тока для питания многих электрических устройств, гаджетов и электронных схем, требует стабилизации. Часто встречающиеся величины напряжений – 5, 9, 12 и 24 вольта. Наиболее востребованы преобразователи на 12 В. Питание генераторов, усилителей, светодиодных подсветок, зарядных устройств осуществляется именно этой величиной напряжения. Стабилизатор 12в является неотъемлемой частью схем блоков питания.

Разновидности 12В стабилизаторов

Подобные устройства могут быть собраны на транзисторах или на интегральных микросхемах. Их задача – обеспечить значение номинального напряжения Uном в нужных пределах, несмотря на колебания входящих параметров. Наиболее популярны следующие схемы:

  • линейная;
  • импульсная.

Схема линейной стабилизации представляет собой простой делитель по напряжению. Его работа заключается в том, что при подаче на одно «плечо» Uвх, на другом «плече» изменяется сопротивление. Это поддерживает Uвых в заданных пределах.

Важно! При такой схеме при большом разбросе значений между входным и выходным напряжениями происходит падение КПД (некоторое количество энергии переходит в тепло), и требуется применение теплоотводов.

Импульсная стабилизация контролируется ШИМ-контроллером. Он, управляя ключом, регулирует длительность токовых импульсов. Контроллер проводит сравнение величины опорного (заданного) напряжения с напряжением на выходе. Входное напряжение подаётся на ключ, который, открываясь и закрываясь, подаёт полученные импульсы через фильтр (ёмкость или дроссель) на нагрузку.

К сведению. Импульсные стабилизаторы напряжения (СН) обладают большим КПД, требуют меньшего отвода тепла, но электрические импульсы при работе создают помехи для электронных устройств. Самостоятельная сборка подобных схем имеет существенные сложности.

Классический стабилизатор

Такое устройство имеет в своём составе: трансформатор, выпрямитель, фильтры и узел стабилизации. Стабилизация обычно осуществляется при помощи стабилитронов и транзисторов.

Основную работу выполняет стабилитрон. Это своеобразный диод, который подключается в схему в обратной полярности. Рабочий режим у него – режим пробоя. Принцип работы классического СН:

  • при подаче на стабилитрон Uвх 12 В он открывается и удерживает заявленное напряжение постоянным.

Внимание! Подача Uвх, превышающего максимальные значения, указанные для определённого вида стабилитрона, приводит к его выходу из строя.

Интегральный стабилизатор

Все элементы конструкции таких устройств располагаются на кристалле из кремния, сборка заключена в корпусе интегральной микросхемы (ИМС). Они собраны на базе двух типов ИМС: полупроводниковых и гибридно-плёночных. У первых компоненты твердотельные, у вторых – изготовлены из плёнок.

Главное! У таких деталей всего три вывода: вход, выход и регулировка. Такая микросхема может выдавать стабильно напряжение величиной 12 В при интервале Uвх = 26-30 В и токе до 1 А без дополнительной обвязки.

Целесообразность использования LT 1083/84/85

В схеме стабилизатора напряжения на 12 вольт может быть разная ИМС. В зависимости от серии микросхемы, условия для её работы разнятся. Микросборки серии LT 1083/84/85 можно применять для изготовления стабилизатора на такое напряжение.

К сведению. Ток на выходе LT 1083 может достигать 7 А, на LT 1084 и LT 1085 допустимые токи нагрузки – 5 А и 3 А, соответственно.

Конструкторы для радиолюбителей, поставляемые из Китая, предлагают самостоятельно собрать схему простого блока питания на подобной платформе стабилизаторов.

Стабилизатор, входящий в данную схему, выдаёт на выходе ток до 7,4 А. Резистор R2, позволяющий изменять величину выходного напряжения, можно заменить постоянным, подобрав его значение так, чтобы U на выходе было равно 12 В. Диоды подбираются на напряжение не менее 50 В и ток не менее 12 А.

Внимание! СН на этой микросхеме требует разницы напряжения между входом и выходом не менее 1,5 В. При выполнении этого условия ИМС будет выдавать стабильное напряжение. При этом она имеет тепловую защиту и защиту от превышения значения выходного тока.

Простой СН, сделанный своими руками

Стабилизатор напряжения 12 вольт для светодиодов, подсветок автомобильных бортовых систем быстро и удобно выполнять, используя для этого микросхемы: LM317, LD1084, L7812, КРЕН 8Б и им подобные устройства. Несколько диодов, сопротивление и сама микросхема – вот составляющие такого СН.

Стабилизатор на LM317

В зависимости от варианта изготовления корпуса LM317 подбирают расположение деталей на плате.

Изготовление стабилизатора сводится к следующему:

  • к выходу (Vout) припаивают сопротивление с номинальным значением 130 Ом;
  • к контакту входа (Vin) присоединяют провод, подающий напряжение для стабилизации;
  • регулировочный вход (Adj) подключают ко второму выводу резистора.

При подключении в качестве нагрузки светодиодных фонарей, лент и т.д. радиатор не требуется. Сборка занимает 15-20 минут при минимуме деталей. Используя несложную формулу, можно рассчитывать величину сопротивления R для получения определённой величины допустимого тока нагрузки.

Схема на микросхеме LD1084

Поддержанию напряжения 12 В неизменным для устройств светодиодной иллюминации, подключённой к бортовой сети автомобиля, поможет применение данной микросборки.

Здесь для сборки самодельного СН в цепь обвязки микросхемы включаются:

  • два электролитических конденсатора по 10 мкФ * 25 В;
  • резисторы: 1 кОм (2 шт.), 120 Ом, 4,7 кОм (можно постоянный);
  • диодный мост RS407.

Устройство собирается следующим образом:

  • напряжение, снимаемое с диодного моста выпрямителя, подаётся на вход LD1084;
  • на контакт, управляющий режимом стабилизации (Adj), присоединяют эмиттер транзистора КТ818, база которого соединена через два одноколонных сопротивления с цепями питания света фар (ближнего и дальнего);
  • выходная цепь микросхемы соединена с резисторами R1 и R2, а также с конденсатором.

Кстати. Резистор R2 можно брать не переменный, а подстроечный, выставив с его помощью величину выходного напряжения 12 В.

Стабилизатор на диодах и сборке L7812

Подобная микросхема в связке с диодом и конденсаторами может снабжать светодиоды стабильным напряжением 12 В.

Схема построена по ниже изложенному принципу:

  • диод Шоттки 1N401 пропускает через себя ток от плюсовой клеммы аккумулятора и подаёт его на вход микросхемы. При этом «+» электролита (конденсатора на 330 мкФ) также соединён с катодом диода;
  • на выход L7812 присоединяют цепь нагрузки и «+» конденсатора ёмкостью 100 мкФ;
  • все минусовые клеммы (от аккумулятора и обоих электролитических конденсаторов) соединяются с управляющим входом микросхемы.

Электролитические конденсаторы подбирают на напряжение не ниже 25 В.

Самый простой стабилизатор – плата КРЕН

Схемы с использованием крен довольно популярны. Так называют ИМС, в маркировку которых входят сочетания букв КР и ЕН. Это мощные СН, позволяющие выдавать на нагрузку ток до 1,5 А. Они имеют на выходе стабильные 12 В при подаче на вход напряжения до 35 В.

Схема с использованием этой микросхемы собирается так:

  • напряжение с плюсовой клеммы АКБ (аккумуляторной батареи) на вход крен подаётся через диод 1N4007, он защищает цепь аккумулятора от обратных напряжений;
  • минусовая клемма АКБ соединяется с управляющим электродом КРЕН;
  • напряжение с выхода подаётся на нагрузку.

При необходимости микросхему прикручивают к радиатору.

Сборка своими руками стабилизаторов напряжения на 12 В с использованием схем линейных и интегральных СН не составляет особого труда. При этом необходимо следить за температурой нагрева корпуса элементов и при Т0С выше допустимой устанавливать их на теплоотводы (радиаторы).

Видео

Стабилизатор LM7812 на 12 вольт

Согласно техническим характеристикам микросхема lm7812 является линейным стабилизатором положительной полярности с простой схемой включения. Его корпус имеет всего три внешних вывода, поэтому многие путают его с обычным транзистором, но на самом деле это более сложное полупроводниковое устройство.

Относится к широко известной во всем мире серии интегральных микросхем 78xx. Символы «lm» в начале маркировки в настоящее время обозначают её основного производителя — Texas Instruments. Первые две цифры «78» указывают на положительную полярность, а следующие за ними «12» на поддерживаемое напряжение стабилизации – 12В.

  1. Цоколевка
  2. Технические характеристики
  3. Максимальные параметры
  4. Электрические параметры
  5. Схема включения
  6. Аналоги
  7. Производители

Цоколевка

Распиновка LM7812 следующая. Этот стабилизатор производится преимущественно в пластиковом корпусе ТО-220. Металлические выводы, если смотреть слева на право, имеют назначение: input (вход), ground (земля), output (выход). Очень редко, но встречаются идентичные изделия в упаковке ТО-263.

Стоит учитывать, что металлическая подложка у всех рассмотренных корпусов физически соединена с выводом «Ground».

Технические характеристики

7812 ещё называют регулятором с фиксированным напряжением в 12 В. При этом на вход микросхемы должно подаваться питание на 2-3 В больше, чем на выходе, иначе на нём не будет заявленных 12 В. Максимальный выходной ток может достигать 1,5 А с применением хорошего радиатора. Устройство технологически защищено: от теплового пробоя, короткого замыкания и превышения режимов безопасной работы (SOA). Что делает его практически «неубиваемым».

Максимальные параметры

Максимальными значениями характеристик для LM7812 считаются:

  • предельное напряжение на входе микросхемы не более 35 В;
  • сила тока на выходе до 1.5 А;
  • температура кристалла при работе может достигать +150 О С;
  • температура хранения от -65 до +150 О С;
  • допустимый нагрев припоя не более +230 О С, с интервалом до 10 сек.

Рассеиваемая мощность ограничена внутренней защитой (Internally limited), корпусным исполнением изделия и применением теплоотвода.

При расчёте максимальной рассеиваемой мощности работающего устройства применяют стандартную формулу PDmax = (TJmax — ТА) / θJA. Где TJmax – предельная температура кристалла, а ТА – предполагаемая для окружающего воздуха. θJA – это тепловое сопротивление к внешней среде, которое напрямую зависит от корпусного исполнения.

Например, для распространенных устройств в пластиковых ТО-220 θJA=54 О C/Вт. В случае использования радиатора, необходимо учитывать величину теплового сопротивления кристалла (θJC), которая составляет порядка 4 О C/Вт для такого корпуса.

Электрические параметры

Несмотря на то, что рассеиваемая мощность не приводится производителями в даташит вместе с максимальными параметрами, её рекомендованное значение прослеживается в электрических характеристиках LM7812. В столбце «условия тестирования» указана допустимая величина PD не более 15 Вт, при изменении напряжения на входе до 27 В и токе на выходе до 1 А. Температура кристалла, при этом, должна находится в диапазоне от 0 до +125 О С.

Данные представленные в этой таблице получены путем тестирования с двумя сглаживающими конденсаторами на входе (до 0,22 мкФ) и выходе (до 0,1 мкФ).

Схема включения

Сама по себе LM7812 представляет собой схему стабилизации напряжения и подключения к ней устройство обычно осуществляется только для этого. По сути, кроме неё для выполнения этой функции больше ничего не требуется. Начинающие радиолюбители применяют её в своих разработках без дополнительной обвязки и она в них работает, но это не совсем правильное решение.

Желательно следовать рекомендациям производителей, которые приводят схему включения 7812 с использованием двух конденсаторов на 25 В и более. Их необходимо паять как можно ближе к контактам, для более устойчивой работы микросхемы. При этом на входе необходима емкость больше, чем на выходе. Несоблюдении этого правила приводит к нестабильности выходного напряжения при резком изменении в нагрузке. Кроме того, такая емкостная обвязка выполняет защитные функции от самовозбуждения.

Читать еще:  Измерение сопротивления изоляции мегаомметром

В паспорте заявлено, что на выходе допускается вообще не устанавливать сглаживающий конденсатор. Это возможно благодаря тому, что роль силового регулирующего элемента внутри серии 78xx выполняет эмиттерный повторитель на транзисторе Дарлингтона. Но как показывает практика, небольшую емкость все же ставят для лучшего подавления выходных высокочастотных пульсаций.

Пример работы подобной схемы можно посмотреть в небольшом видеоролике.

Аналоги

У lm7812 есть полный отечественный аналог, им является линейный стабилизатор КР142ЕН8Б. В настоящее время выпускается большое количество зарубежных линейных стабилизаторов с аналогичными параметрами и функционалом. Вот некоторые из них: l7812, KA7812, MC7812, UA7812.

Производители

Скачать datasheet на lm7812 можно кликнув мышкой по ссылке с наименованием фирмы. Разброс цен на данное устройство достаточно большой. Порой её стоимость от разных производителей отличается в два-три раза. В российских радиомагазинах самой недорогой считается микросхема от китайской компании Inchange, далее следуют американские: Texas Instruments, Fairchild Semiconductor и др.

Как сделать стабилизатор напряжения 12 вольт?

  1. Самый простой стабилизатор напряжения 12 вольт
  2. Схема блока питания с регулятором напряжения
  3. Стабилизатор 12 В для светодиодов
  4. Схема подключения стабилизатора напряжения
  5. Видео с пошаговой инструкцией

Всем известно, что светодиоды не могут работать просто от включения в электросеть. Они обязательно подключаются через стабилизаторы напряжения (драйверы). Последние препятствуют перепадам напряжения, выходу из строя компонентов, перегреву и т. п. Об этом и о том, как собрать простую схему своими руками, и пойдёт речь в статье.

Схема и пошаговая инструкция пригодятся, если у вас нет желания покупать готовое устройство, но хочется сделать простенький стабилизатор на 12 В самому. Импульсный стабилизатор в авто сложно изготовить своими руками. Именно поэтому стоит присмотреться к подборке любительских схем и конструкций линейных стабилизаторов напряжения. Самый простой и распространенный вариант стабильника состоит из готовой микросхемы и резистора (сопротивления).

  • Читайте также, как сделать повышающий/понижающий преобразователь напряжения своими руками

Самый простой стабилизатор напряжения 12 вольт своими руками

Сделать стабилизатор напряжения для светодиодов своими руками проще всего на микросхеме LM317. Сборка деталей осуществляется на перфорированной панели или универсальном печатном плато.

Устройство позволяет сохранить равномерное свечение и предотвращает моргание лампочек.

Схема блока питания 5А с регулятором напряжения от 1,5 до 12 В

Для самостоятельной сборки такого устройства понадобятся детали:

  • плато размером 35х20 мм;
  • микросхема LD1084;
  • диодный мост RS407 или любой небольшой диод для обратного тока;
  • блок питания, состоящий из транзистора и двух сопротивлений.

Последний предназначен для отключения колец при включении дальнего или ближнего света.

При этом 3 светодиода соединяются последовательно с токоограничивающим резистором, выравнивающим ток. Такой набор, в свою очередь, параллельно соединяется со следующим таким же набором светодиодов.

Стабилизатор 12 В для светодиодов на микросхеме L7812 в авто

Стабилизатор тока для светодиодов может быть собран на базе 3-контактного регулятора напряжения постоянного тока (серии L7812). Устройство навесного исполнения отлично подходит для питания как светодиодных лент, так и отдельных лампочек в автомобиле.

Необходимые компоненты для сборки такой схемы:

  • микросхема L7812;
  • конденсатор 330 мкф, 16 В;
  • конденсатор 100 мкф, 16 В;
  • диод выпрямительный на 1 ампер (1N4001, к примеру, или аналогичный диод Шоттки);
  • провода;
  • термоусадка 3 мм.

Вариантов на самом деле может быть много.

Схема подключения стабилизатора напряжения 12 В на базе LM2940CT-12.0

Корпус стабилизатора можно выполнить практически из любого материала, кроме дерева. При использовании более 10-ти светодиодов, рекомендуется к стабильнику приделать алюминиевый радиатор.

Некоторые считают, что можно запросто обойтись без лишних заморочек, напрямую подключив светодиоды. Но в этом случае последние большую часть времени будут находиться в неблагоприятных условиях, а значит прослужат недолго или вовсе сгорят. А ведь тюнинг дорогих авто выливается в довольно крупную сумму!

По поводу описанных схем, их главное достоинство — простота монтажа. Для изготовления не требуется особых навыков и умений. Впрочем, если схема слишком сложная, то собирать её своими руками становится не рационально.

  • Узнайте больше о стабилизаторе L7812

Идеальный вариант подключения светодиодов в авто — через стабилизатор напряжения 12 вольт. Устройство уравновешивает колебания, с его использованием уже не будут страшны броски тока. При этом необходимо соблюдать требования к электропитанию. Это позволит подстроить свой стабилизатор под сеть.

Аппарат должен обеспечивать максимальную надежность, устойчивость и стабильность, желательно на долгие годы. Стоимость собранных устройств зависит от того, где детали будут покупаться.

Видео с пошаговой инструкцией спайки простого стабилизатора напряжения 12 В:

Сообщества › Светодиодный Тюнинг › Блог › FAQ: Че ставить-то? Стабилизатор напряжения или тока? Мотаем на ус!

Авторство: Shuffle Оригинал статьи: здесь

Каждый раз, читая новые записи в блогах сообщества я сталкиваюсь с одной и той же ошибкой — ставят стабилизатор тока там, где нужен стабилизатор напряжения и наоборот. Постараюсь объяснить на пальцах, не углубляясь в дебри терминов и формул. Особенно будет полезно тем, кто ставит драйвер для мощных светодиодов и питает им множество маломощных. Для вас — отдельный абзац в конце статьи. =)

СТАБИЛИЗАТОР НАПРЯЖЕНИЯ
Исходя из названия — стабилизирует напряжение.
Если написано, что стабилизатор 12В и 3А, то значит стабилизирует именно на напряжение 12В! А вот 3А — это максимальный ток, который может отдать стабилизатор. Максимальный! А не «всегда отдает 3 ампера». То есть от может отдавать и 3 миллиампера, и 1 ампер, и два… Сколько ваша схема кушает, столько и отдает. Но не больше трех.
Собственно это главное.
Описанию видов стабилизаторов напряжения:
Линейные стабилизаторы (те же КРЕН или LM7805/LM7809/LM7812 и тп)

Самый распространенный вид. Они не могут работать на напряжении ниже, чем указанное у него на брюхе. То есть если LM7812 стабилизирует напряжение на 12ти вольтах, то на вход ему подать нужно как минимум примерно на полтора вольта больше. Если будет меньше, то значит и на выходе стабилизатора будет меньше 12ти вольт. Не может он взять недостающие вольты из ниоткуда. Потому и плохая это идея — стабилизировать напряжение в авто 12-вольтовыми КРЕНками. Как только на входе меньше 13.5 вольт, она начинает и на выходе давать меньше 12ти.
Еще один минус линейных стабилизаторов — сильный нагрев при хорошей такой нагрузке. То есть деревенским языком — все что выше тех же 12ти вольт, то превращается в тепло. И чем выше входное напряжение, тем больше тепла. Вплоть до температуры жарки яичницы. Чуть нагрузили ее больше, чем пара мелких светодиодов и все — получили отличный утюг.

Импульсные стабилизаторы — гораздо круче, но и дороже. Обычно для рядового покупателя это уже выглядит как некая платка с детальками.

Светодиод питается ТОКОМ. Нет у него параметра НАПРЯЖЕНИЕ. Есть параметр — падение напряжения! То есть сколько на нем теряется.
Если написано на светодиоде 20мА 3.4В, то это значить что ему надо не больше 20 миллиампер. И при этом на нем потеряется 3.4 вольта.
Не для питания нужно 3.4 вольта, а просто на нем «потеряется»!
То есть вы можете питать его хоть от 1000 вольт, только если подадите ему не больше 20мА. Он не сгорит, не перегреется и будет светить как надо, но после него останется уже на 3.4 вольта меньше. Вот и вся наука.
Ограничьте ему ток — и он будет сыт и будет светить долго и счастливо.

Вот берем самый распространенный вариант соединения светодиодов (такой почти во всех лентах используется) — последовательно соединены 3 светодиода и резистор. Питаем от 12 вольт.
Резистором мы ограничиваем ток на светодиоды, чтобы они не сгорели (про расчет не пишу, в интернете навалом калькуляторов).
После первого светодиода остается 12-3.4= 8.6 вольт.
Нам пока хватает.
На втором потеряется еще 3.4 вольта, то есть останется 8.6-3.4=5.2 вольта.
И для третьего светодиода тоже хватит.
А после третьего останется 5.2-3.4=1.8 вольта.
И если захотите поставить четвертый, то уже не хватит.
Вот если запитать не от 12В а от 15, то тогда хватит. Но надо учесть, что и резистор тоже надо будет пересчитать. Ну вот собственно и пришли плавно к…
Простейший ограничитель тока — резистор. Их часто ставят на те же ленты и модули. Но есть минусы — чем ниже напряжение, тем меньше будет и ток на светодиоде. И наоборот. Поэтому если у вас в сети напряжение скачет, что кони через барьеры на соревнованиях по конкуру (а в автомобилях обычно так и есть), то сначала стабилизируем напряжение, а потом ограничиваем резистором ток до тех же 20мА. И все. Нам уже плевать на скачки напряжения (стабилизатор напряжения работает), а светодиод сыт и светит на радость всем.
То есть — если ставим резистор в автомобиле, то нужно стабилизировать напряжение.

Можно и не стабилизировать, если вы расчитаете резистор на максимально-возможное напряжение в сети автомобиля, у вас нормальная бортовая сеть (а не китайско-русский тазопром) и сделаете запас по току хотя бы в 10%.
Ну и к тому же резисторы можно ставить только до определенной величины тока. После некоторого порога резисторы начинают адски греться и приходится их сильно увеличивать в размерах (резисторы 5Вт, 10Вт, 20Вт и тд). Плавно превращаемся в большой утюг.

Есть еще вариант — поставить в качестве ограничителя что-нибудь типа LM317 в режиме токового стабилизатора.

Постоянно наблюдаю такую картину — задают ток драйвером для мощных светодиодов (скажем — 350мА) и ставят несколько веток светодиодов без ограничительных резисторов и прочего. И ведь люди, то вроде бы и не самые ламеры, а совершают одну и ту же ошибку раз за разом. Рассказываю, почему это плохо и к чему может привести:

Из закона Ома для полной цепи:
Сила тока в неразветвленной цепи равна сумме сил тока на ее параллельных участках.
Многие так и считают — «каждая ветка по 20мА, у меня 20 веток. Драйвер отдает 350мА, значит на каждую ветку придется даже меньше — по 17.5мА. Бинго!»
А вот и не Бинго!, а Жопа ! Почему?

Сила тока в каждой ветке будет равна, если у вас идеальнейшие светодиоды с абсолютно одинаковыми параметрами. Тогда и ток будет во всех ветках одинаков, и никаких ограничителей тока не надо — взяли и поделили общий ток на количество одинаковых веток. Но такое — только в сказках.
Если параметры чуть-чуть отличаются — получили в одной ветке 19мА, в другой 17, в третьей 20…
Общее количество тока так и остается неизменным — 350мА, а вот в ветках творится безумная кака. На взгляд и не определишь, вроде светят одинаково… И вот у вас одна ветка, самая прожорливая, начинает греться сильнее остальных. И жрать больше. И греться еще сильнее. А потом раз — и потухла. И все эти ее миллиамперы разбежались по остальным веткам. И вот еще одна ветка, недавно вроде нормально горевшая берет и тухнет следом. И уже вдвое больший ток уходит на другие ветки, ведь общий ток жестко задан 350мА. Процесс лавинообразный и вот уже пришел кирдык всей этой схеме, потому что все 350мА усосались в оставшиеся светодиоды и никто-никто их не спас… А стояли бы, как полагается, по отдельному стабилизатору (хотя бы банальному резистору) на каждой ветка — работала бы и дальше.

Именно это мы и видим в китайских модулях и кукурузинах, которые горят как спички через неделю/месяц работы. Потому что светодиоды имеют адский разброс, а китайцы на драйверах экономят покруче, чем кто либо еще. Почему не горят фирменные модули и лампы Osram, Philips и тд? Потому что они делают довольно мощную отбраковку светодиодов и от всего дичайшего количества выпущенных светодиодов остается 10-15%, которые по параметрам практически идентичны и из них можно сделать такой простой вид, какой и пытаются сделать многие — один мощный драйвер и много одинаковых цепочек светодиодов без драйверов. Но только вот в условиях «купил светодиоды на рынке и запаял сам» как правило будет им нехорошо. Потому что даже у «некитая» будет разброс. Может повезти и работать долго, а может и нет.

Да и токовый драйвер по-сравнению со стабилизатором напряжения и копеечными резисторами как правило дороже. Ну нафига стрелять в мишень для мелкокалиберной винтовки из танка? Цель-то поразим, вопросов нет. Но вместе с ней еще и воронку оставим. =))

Да и просто — сделать правильно и сделать «смотрите как я сэкономил, а остальные — дураки» — это несколько разные вещи. Даже очень сильно разные. Учитесь делать не как пресловутые китайцы, учитесь делать красиво и правильно. Это сказано давно и не мной. Я лишь попробовал в стотыщпятьсотый раз объяснить прописные истины. Уж звиняйте, если криво объяснял =)

Ну и напоследок тем, кому даже такое изложение было слишком заумным.
Запомните следующее и старайтесь следовать этому (здесь «цепочка» — это один светодиод или несколько ПОСЛЕДОВАТЕЛЬНО-соединенных светодиодов):
1. КАЖДОЙ цепочке — свой ограничитель тока (резистор или драйвер…)
2. Маломощная цепочка до 300мА? Ставим резистор и достаточно.
3. Напряжение нестабильно? Cтавим СТАБИЛИЗАТОР НАПРЯЖЕНИЯ
4. Ток больше 300мА? Ставим на КАЖДУЮ цепочку ДРАЙВЕР (стабилизатор тока) без стабилизатора напряжения.

Вот так будет правильно и самое главное — будет работать долго и светить ярко!
Ну и надеюсь, что все вышенаписанное убережет многих от ошибок и поможет сэкономить средства и нервы.

Читать еще:  Сверло по дереву – определяем, выбираем и затачиваем!

Ну ладно, рябятке.
Нюансов еще очень много, а я и так уже немаленькую статью-то накатал.
Засим откланиваюсь,
Всегда ваш — ЛедЗлыдень Борисыч.

PS: И да, для злопыхателей. Этот пост конечно же не о правильном подключении светодиодов, а тупо реклама моего личного блога. Вы как всегда правы, а я как всегда корыстен. Ага (шутка) =)))

Что такое стабилизатор напряжения и для чего он нужен

Что такое стабилизатор напряжения, для чего он нужен и где применяется. Принцип работы стабилизаторов напряжения релейного, сервоприводного и инверторного типа.

Стабилизатор сетевого напряжения 220В — это устройство, которое выравнивает напряжение из питающей сети, до определенного значения, и отдаёт потребителям стабильные 220 вольт, независимо от скачков и просадок на линии. Установка такого прибора обеспечит защиту электрических приборов от ненормальных режимов работы, таких как перепады напряжения в сети и высокий или низкий его уровень. В этой статье мы рассмотрим устройство и принцип работы стабилизаторов напряжения, а также разновидности данных устройств и область их применения. Содержание:

  • Определение
  • Классификация
  • Принцип действия
  • Релейные
  • Сервоприводные
  • Инверторные

Определение

Стабилизатор напряжения (СН) — это устройство, предназначенное для преобразования входного нестабильного напряжения из электросети: заниженного, завышенного или с периодическими скачками, в стабильное по величине на выходе устройства и подключенных к нему электроприборах.

Перефразируем для чайников: стабилизатор делает так, чтобы для подключенных к нему приборов напряжение всегда было одинаковым и близким к 220В независимо от того, каким оно поступает на его вход: 180, 190, 240, 250 Вольт или вообще плавает.

Отметим, что 220В или 240В это стандартная величина для РФ, Беларуси, Украины и так далее. Но в некоторых странах ближнего и дальнего зарубежья оно может быть другим, например 110В. Соответственно «наши» стабилизаторы там работать не будут.

Стабилизаторы бывают разных видов: как для работы в цепях постоянного тока (линейные и импульсные, параллельного и последовательного типов), так и для работы в цепях переменного тока. Последние часто называют «стабилизаторы сетевого напряжения» или просто «стабилизаторы 220В». Если говорить простым языком, то такие стабилизаторы подключают к электросети, а уже к нему подключают потребители.

В быту СН используют для защиты как отдельных приборов, например, для холодильника или компьютера, так и для защиты всего дома, в этом случае мощный стабилизатор устанавливается на ввод.

Классификация

Конструкция стабилизаторов зависит от физических принципов, на которых они работают. В связи с этим они подразделяются на:

  • электромеханические;
  • феррорезонансные;
  • инверторные;
  • полупроводниковые;
  • релейные.

По количеству фаз могут быть однофазными и трехфазными. Большой диапазон мощностей позволяет выпускать стабилизаторы как для дома, так и для небольших бытовых приборов:

  • для телевизора;
  • для газового котла;
  • для холодильника.

Так и для для крупных объектов:

  • промышленных агрегатов (например, трехфазные промышленные стабилизаторы Сатурн);
  • цехов, зданий.

Стабилизаторы достаточно энергоэффективны. Потребление электроэнергии составляет от 2 до 5%. Некоторые стабилизирующие устройства могут иметь дополнительные защиты:

  • от перенапряжений;
  • от перегрузок;
  • от коротких замыканий;
  • от перепадов частоты.

Принцип действия

Стабилизаторы напряжения бывают разных типов, каждый из которых отличается принципом регулирования. Эти отличия мы рассмотрим далее. Если обобщить принцип работы и структуру всех типов, то стабилизатор сетевого напряжения состоит из 2 основных частей:

  1. Система управления — отслеживает уровень входного напряжения и даёт команду силовой части увеличить или уменьшить его, чтобы на выходе получились стабильные 220В в пределах установленной погрешности (точности регулирования). Эта погрешность лежит в пределах 5-10% и у каждого прибора отличается.
  2. Силовая часть — в сервоприводных (или сервомоторных), релейных и электронных (симисторных) — это автотрансформатор, с помощью которого входное напряжение повышается или понижается до нормального уровня, а в инверторных стабилизаторах, или как их еще называют «с двойным преобразованием» — используется инвертор. Это устройство, которое состоит из генератора (ШИМ-контроллер), трансформатора и силовых ключей (транзисторов), которые пропускают или отключают ток через первичную обмотку трансформатора, формируя выходное напряжение нужной формы, частоты и, что самое главное — величины.

Если напряжение на входе в норме, то у некоторых моделей стабилизаторов есть функция «байпас» или «транзит», когда входное напряжение просто подаётся на выход до тех пор, пока не выйдет из заданного диапазона. Например, от 215 до 225 вольт будет включен «байпас», а при больших колебаниях, допустим, при просадке до 205-210В — система управления переключит цепь на силовую часть и начнет регулировку, повысит напряжение и на выходе будут уже стабильные 220В с заданной погрешностью.

Плавная и самая точная регулировка выходного напряжения у инверторных СН, на втором месте — сервоприводные, а у релейных и электронных регулировка происходит ступенчато, и точность зависит от количества ступеней. Как упоминалось выше, лежит в пределах 10%, чаще около 5%.

Кроме упомянутых выше двух частей в стабилизаторе напряжения 220В есть и блок защиты, а также источник вторичного электропитания для цепей системы управления, тех же защит и других функциональных элементов. Общее устройство наглядно демонстрирует картинка ниже:

В то же время схема работы в простейшей форме выглядит так:

Вкратце рассмотрим, как работают стабилизаторы напряжения основных типов.

Релейные СН обычно регулируют электроэнергию в пределах ± 15% с точностью на выходе от ± 5% до ± 10%.

Преимущества релейных стабилизаторов:

  • дешевизна;
  • компактность.
  • медленная реакция на колебания напряжения;
  • небольшой срок службы;
  • низкая надежность;
  • при переключениях возможны кратковременное отключение питания приборов;
  • неспособны выдерживать перенапряжения;
  • шум, щелчки при переключениях.

В сервоприводном СН один конец первичной обмотки трансформатора подключен к жесткому ответвлению автотрансформатора, а второй конец первичной обмотки подключен к подвижному контакту (графитовой щетке), который передвигается серводвигателем. Один вывод вторичной обмотки трансформатора подключен к входному источнику питания, а второй вывод подключен к выходу стабилизатора напряжения.

Плата управления сравнивает входное и опорное напряжение. При любых отклонениях от заданных вступает в работу сервопривод. Он перемещает щетку по ответвлениям автотрансформатора. Серводвигатель будет продолжать работать, пока разность между опорным и выходным напряжением станет равным нулю. Весь этот процесс, от поступления электроэнергии плохого качества до выхода стабилизированного тока, проходит за десятки миллисекунд и ограничен скоростью перемещения щетки сервоприводом.

Сервоприводные стабилизаторы сетевого напряжения производят в различном исполнении.

  1. Однофазные. Состоят из одного автотрансформатора и одного сервопривода.
  2. Трехфазные. Подразделяются на два типа. Сбалансированные – имеют три трансформатора и один сервопривод и одну цепь управления. Регулирование осуществляется на всех трех фазах одновременно. Используются для защиты трехфазных электрических аппаратов, станков, приборов. Несимметричные – имеют три автотрансформатора, три серводвигателя и три цепи управления. То есть стабилизация происходит в каждой фазе, независимо друг от друга. Область применения: защита электрооборудования зданий, цехов, промышленных объектов.

Достоинства сервоприводных стабилизирующих устройств:

  • быстродействие;
  • высокая точность стабилизации;
  • высокая надежность;
  • стойкость к перенапряжениям;
  • нуждаются в периодическом обслуживании;
  • требуют минимальных навыков настройки устройства.

конденсатора. После этого выпрямленный ток поступает на инвертор, где опять преобразуется в переменный и подаётся в нагрузку. При этом выходное напряжение стабильно как по величине, так и по частоте.

В следующем ролике вы узнаете о принципе работы одного из вариантов реализации преобразователя напряжения из 12В постоянного тока, в 220В переменного тока. Который от инверторного стабилизатора напряжения отличается в первую очередь входным напряжением, в остальном принцип работы во многом похож и видео позволит понять как работает этот тип устройств:

  • быстродействие (самое высокое из перечисленных);
  • большой диапазон регулируемого напряжения (от 115 до 300В);
  • высокий коэффициент полезного действия (более 90%);
  • бесшумная работа;
  • малые габариты;
  • плавное регулирование.
  • уменьшение диапазона регулирования при увеличении нагрузки;
  • высокая стоимость.

Вот мы и рассмотрели, как работает стабилизатор напряжения, для чего он нужен и где применяется. Надеемся, предоставленная информация была для вас полезной и интересной!

Стабилизатор напряжения

Стабилизатор напряжения – важнейший радиоэлемент современных радиоэлектронных устройств. Он обеспечивает постоянное напряжение на выходе цепи, которое почти не зависит от нагрузки.

Стабилизаторы семейства LM

В нашей статье мы рассмотрим стабилизаторы напряжения семейства LM78ХХ. Серия 78ХХ выпускается в металлических корпусах ТО-3 (слева) и в пластмассовых корпусах ТО-220 (справа). Такие стабилизаторы имеют три вывода: вход, земля (общий) и вывод.

Вместо “ХХ” изготовители указывают напряжение стабилизации, которое нам будет выдавать этот стабилизатор. Например, стабилизатор 7805 на выходе будет выдавать 5 Вольт, 7812 соответственно 12 Вольт, а 7815 – 15 Вольт. Все очень просто.

Схема подключения

А вот и схема подключения таких стабилизаторов. Эта схема подходит ко всем стабилизаторам семейства 78ХХ.

На схеме мы видим два конденсатора, которые запаиваются с каждой стороны. Это минимальные значения конденсаторов, можно, и даже желательно поставить большего номинала. Это требуется для уменьшения пульсаций как по входу, так и по выходу. Кто забыл, что такое пульсации, можно заглянуть в статью как получить из переменного напряжения постоянное.

Характеристики стабилизаторов

Какое же напряжение подавать, чтобы стабилизатор работал как надо? Для этого ищем даташит на стабилизаторы и внимательно изучаем. Нас интересуют вот эти характеристики:

Output voltage – выходное напряжение

Input voltage – входное напряжение

Ищем наш 7805. Он выдает нам выходное напряжение 5 Вольт. Желательным входным напряжением производители отметили напряжение в 10 Вольт. Но, бывает так, что выходное стабилизированное напряжение иногда бывает или чуть занижено, или чуть завышено.

Для электронных безделушек доли вольт не ощущаются, но для прецизионной (точной) аппаратуры лучше все таки собирать свои схемы. Здесь мы видим, что стабилизатор 7805 может нам выдать одно из напряжений диапазона 4,75 – 5,25 Вольт, но при этом должны соблюдаться условия (conditions), что ток на выходе в нагрузке не будет превышать 1 Ампера. Нестабилизированное постоянное напряжение может “колыхаться” в диапазоне от 7,5 и до 20 Вольт, при это на выходе будет всегда 5 Вольт.

Рассеиваемая мощность на стабилизаторе может достигать до 15 Ватт – это приличное значение для такой маленькой радиодетали. Поэтому, если нагрузка на выходе такого стабилизатора будет кушать приличный ток, думаю, стоит подумать об охлаждении стабилизатора. Для этого ее надо посадить через пасту КПТ на радиатор. Чем больше ток на выходе стабилизатора, тем больше по габаритам должен быть радиатор. Было бы вообще идеально, если бы радиатор еще обдувался вентилятором.

Работа стабилизатора на практике

Давайте рассмотрим нашего подопечного, а именно, стабилизатор LM7805. Как вы уже поняли, на выходе мы должны получить 5 Вольт стабилизированного напряжения.

Соберем его по схеме

Берем нашу Макетную плату и быстренько собираем выше предложенную схемку подключения. Два желтеньких – это конденсаторы, хотя их ставить необязательно.

Итак, провода 1,2 – сюда мы загоняем нестабилизированное входное постоянное напряжение, снимаем 5 Вольт с проводов 3 и 2.

На Блоке питания мы ставим напряжение в диапазоне 7,5 Вольт и до 20 Вольт. В данном случае я поставил напряжение 8,52 Вольта.

И что же у нас получилось на выходе данного стабилизатора? 5,04 Вольта! Вот такое значение мы получим на выходе этого стабилизатора, если будем подавать напряжение в диапазоне от 7,5 и до 20 Вольт. Работает великолепно!

Давайте проверим еще один наш стабилизатор. Думаю, Вы уже догадались, на сколько он вольт.

Собираем его по схеме выше и замеряем входное напряжение. По даташиту можно подавать на него входное напряжение от 14,5 и до 27 Вольт. Задаем 15 Вольт с копейками.

А вот и напряжение на выходе. Блин, каких то 0,3 Вольта не хватает для 12 Вольт. Для радиоаппаратуры, работающей от 12 Вольт это не критично.

Как сделать блок питания на 5, 9,12 Вольт

Как же сделать простой и высокостабильный источник питания на 5, на 9 или даже на 12 Вольт? Да очень просто. Для этого Вам нужно прочитать вот эту статейку и поставить на выход стабилизатор на радиаторе! И все! Схема будет приблизительно вот такая для блока питания 5 Вольт:

Два электролитических конденсатора для для устранения пульсаций и высокостабильный блок питания на 5 вольт к вашим услугам! Чтобы получить блок питания на большее напряжение, нам нужно также на выходе трансформатора тоже получить большее напряжение. Стремитесь, чтобы на конденсаторе С1 напряжение было не меньше, чем в даташите на описываемый стабилизатор.

Для того, чтобы стабилизатор напряжения не перегревался, подавайте на вход минимальное напряжение, указанное в даташите. Например, для стабилизатора 7805 это напряжение равно 7,5 Вольт, а для стабилизатора 7812 желательным входным напряжением можно считать напряжение в 14,5 Вольт. Это связано с тем, разницу напряжения, а следовательно и мощность, стабилизатор будет рассеивать на себе.

Как вы помните, формула мощности P=IU, где U – напряжение, а I – сила тока. Следовательно, чем больше входное напряжение стабилизатора, тем больше мощность, потребляемая им. А излишняя мощность – это и есть нагрев. В результате нагрева такой стабилизатор может перегреться и войти в состояние защиты, при котором дальнейшая работа стабилизатора прекращается или вовсе сгореть.

Заключение

Все большему числу электронных устройств требуется качественное стабильное питание без всяких скачков напряжения. Сбой того или иного модуля электронной аппаратуры может привести к неожиданным и не очень приятным последствиям. Используйте же на здоровье достижения электроники, и не парьтесь по поводу питания своих электронных безделушек.

Где купить стабилизатор напряжения

Купить дешево эти интегральные стабилизаторы можно сразу целым набором на Алиэкспрессе по этой ссылке. Здесь есть абсолютно любые значения даже для отрицательного напряжения.

Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector
×
×