Тиристор для чайников: схема включения и способы управления
Тиристор. Описание, принцип работы, свойства и характеристики.
Популярные отечественные и зарубежные тиристоры. Справочные данные.
Простейшие схемы тиристорных регуляторов.
Тиристор — это довольно архаичный полупроводниковый прибор, ранее широко применявшийся в качестве силового ключа для управления мощной нагрузкой.
И хотя в настоящее время данный элемент уступает свои позиции симисторам (в цепях переменного тока) и силовым транзисторным ключам (в цепях постоянного тока), кривая совокупного радиолюбительского интереса к устройствам, выполненным на тиристорах, всё ещё находится на достаточно высоком уровне.
Приобщимся к процессу получения знаний, касающихся характеристик, принципов работы, а также способов управления тиристорами, и мы.
Итак.
Тиристор — это трёхвыводной полупроводниковый прибор, с тремя (иногда четырьмя) p-n-переходами и имеющий два устойчивых состояния:
— состояние низкой проводимости (закрытое состояние);
— состояние высокой проводимости (открытое состояние).
Рис.1
На Рис.1 показано устройство тиристора и двухтранзисторная эквивалентная модель, позволяющая пояснить работу прибора в режиме прямого запирания.
Добавим для кучи вольт-амперную характеристику тиристора и схему, реализующую самый простой способ управления тиристорами — подачу на управляющий электрод прибора постоянного тока с величиной, необходимой для его включения (Рис.2).
Рис.2
1. Для начала рассмотрим случай, когда управляющий электрод тиристора отключен (S1 на схеме разомкнут, Iу на ВАХ равен 0).
Тока через нагрузку нет (участок III на ВАХ), тиристор закрыт, и для того, чтобы его открыть, необходимо поднять напряжение на аноде тиристора настолько, чтобы возник лавинный пробой p-n-переходов полупроводника.
Оговоримся — зафиксировать нам этот процесс не удастся, потому что величина этого напряжения составляет несколько сотен вольт и, как правило, превышает амплитудное значение напряжения сети.
Тем не менее — при достижении этого уровня напряжения (точка II на ВАХ) тиристор отпирается, падение напряжения между анодом и катодом падает до единиц вольт, нагрузка подключается к сети — наступает рабочий режим открытого тиристора (участок I на ВАХ).
Чтобы закрыть тиристор нужно снизить протекающий через нагрузку ток (или напряжение на аноде) ниже тока удержания. Причём данное анодное напряжение должно быть многократно ниже отпирающего напряжения.
2. Для того, чтобы снизить величину напряжения включения тиристора, следует замкнуть S1 и, тем самым, подать на управляющий электрод ток, задаваемый значением переменного резистора R1. Чем больше ток Iу, тем при меньшем анодном напряжении происходит переключение тиристора в проводящее состояние.
А при какой-то величине тока управляющего электрода, называемой током спрямления (на ВАХ не показано), горба на характеристике больше не будет, и ВАХ тиристора станет похожа на ВАХ диода.
Абсолютно так же, как и в прошлом случае, чтобы закрыть тиристор необходимо снизить протекающий через нагрузку ток (или напряжение на аноде) ниже значения тока удержания.
Обратная часть вольт-амперной характеристики (участок IV) соответствует режиму обратного запирания полупроводника и обычно не используется. Тиристор остается закрытым, пока не наступит тепловой пробой.
Итак, определились. Для открывания тиристора следует подать на управляющий электрод прибора постоянный ток с величиной, необходимой для его включения, для закрывания — снизить протекающий через нагрузку ток (или напряжение на аноде) ниже значения тока удержания.
Т.е. в нашем случае, представленном на Рис.2 — тиристор будет открываться при замыкании S1 в каждый момент превышения анодным напряжением некоторого значения, зависящего от номинала R1, а закрываться с каждым полупериодом выпрямленного сетевого напряжения в момент приближения его уровня к нулевому значению.
Описанный способ управления тиристором посредством подачи на управляющий электрод постоянного тока прост, но обладает существенным недостатком — требуется довольно большой ток (а соответственно и мощность) управляющего сигнала (по паспорту — 200мА для КУ202).
Реальные величины тока управляющего электрода, достаточного для включения тиристора при комнатных температурах, обычно в несколько раз меньше цифр, приведенных в паспортных характеристиках (20-40мА для КУ202). Однако в большинстве случаев для управления тиристорами используется всё ж таки импульсный метод, либо метод, при котором открытый тиристор шунтирует цепь управления, не допуская бесполезного рассеивания мощности на ее элементах.
Рассмотрим подобный метод на примерах.
На Рис.3 представлена простейшая классическая тиристорная схема регулятора мощности.
Рис.3
Диодный мост Br1 преобразует двуполярное сетевое напряжение в однополярное удвоенной частоты, что позволяет регулировать напряжение на нагрузке в течение обоих полупериодов напряжения сети.
В качестве управляющего напряжения здесь используется часть анодного напряжения тиристора, поступающая через резисторы R1 и R2 на управляющий электрод полупроводника. Резистором R2 изменяют момент открывания тиристора VS1 и, следовательно, среднее значение напряжения на нагрузке.
Чем меньше будет значение R2, тем больше будет ток, поступающий на управляющий электрод, тем раньше откроется тиристор. При R2=0 — мощность в нагрузке максимальна (верхняя диаграмма).
При повороте ручки потенциометра R2, его сопротивление увеличивается, ток на управляющем электроде уменьшается, поэтому тиристор откроется уже не в начале полуволны, а спустя некоторое время, когда ток достигнет необходимого уровня.
Помимо этого, при увеличении сопротивления R2, управляющий сигнал получает дополнительную задержку, благодаря действию фазосдвигающей RC-цепочки, образованной R1, R2 и С1, что, в свою очередь, позволяет ещё больше расширить диапазон регулировки мощности.
Если нагрузка такова, что её необходимо запитать двуполярным переменным напряжением, схему можно преобразовать без какого-либо увеличения сложности.
Рис.4
Всё тоже самое, только с другой стороны.
Как мы уже упоминали, рассматриваемые устройства являются простейшими и не лишены определённых недостатков. Их основными минусами являются слабая помехозащищённость, сильная зависимость напряжения на нагрузке от температуры и необходимость индивидуального подбора резисторов для каждого экземпляра тиристора. К тому же, в связи с низким входным сопротивлением тиристора по управляющему входу, работа фазосдвигающей RC-цепи оказывается весьма неэффективной, что, в свою очередь, обуславливает недостаточно широкий диапазон регулировки мощности.
Значительно лучшим образом работают схемы, в которых формирование импульсов управления происходит посредством отдельных схем, выполненных на транзисторах, цифровых либо специализированных микросхемах. Однако, поскольку, всё имеет свои плюсы и минусы, то расплачиваться за усовершенствования приходится усложнением конструкции и необходимостью применения отдельного источника питания.
Поскольку в цепях постоянного тока тиристоры давно и без сожаления уступили место мощным транзисторам, специально спроектированным для работы в ключевых режимах, то и рассматривать их в данном контексте не имеет никакого основания.
А вот основные характеристики отечественных и зарубежных тиристоров окажутся совсем не лишними в копилке знаний пытливого радиолюбительского ума.
Тиристоры, максимальное прямое напряжение которых не дотягивает до амплитудного значения напряжения сети (300В) к рассмотрению также принимать не станем.
А на следующей странице мы рассмотрим принцип работы, свойства и характеристики симметричных триодных тиристоров — симисторов.
Как работают мощные силовые тиристоры
В схемах и технической документации часто используются различные термины и знаки, но не все начинающие электрики знают их значение. Предлагаем обсудить, что такое силовые тиристоры для сварки, их принцип работы, характеристики и маркировка этих приборов.
Что такое тиристор и их виды
Многие видели тиристоры в гирлянде «Бегущий огонь», это самый простой пример описываемого устройства и как оно работает. Кремниевый выпрямитель или тиристор очень похож на транзистор. Это многослойное полупроводниковое устройство, основным материалом которого является кремний, чаще всего в пластиковом корпусе. Из-за того, что его принцип работы очень схож с ректификационным диодом (выпрямительные приборы переменного тока или динисторы), на схемах обозначение часто такое же — это считается аналог выпрямителя.
Фото — Cхема гирлянды бегущий огонь
Бывают:
- ABB запираемые тиристоры (GTO),
- стандартные SEMIKRON,
- мощные лавинные типа ТЛ-171,
- оптронные (скажем, ТО 142-12,5-600 или модуль МТОТО 80),
- симметричные ТС-106-10,
- низкочастотные МТТ,
- симистор BTA 16-600B или ВТ для стиральных машин,
- частотные ТБЧ,
- зарубежные TPS 08,
- TYN 208.
Но в это же время для высоковольтных аппаратов (печей, станков, прочей автоматики производства) используют транзисторы типа IGBT или IGCT.
Фото — Тиристор
Но, в отличие от диода, который является двухслойным (PN) трехслойного транзистора (PNP, NPN), тиристор состоит из четырех слоев (PNPN) и этот полупроводниковый прибор содержит три p-n перехода. В таком случае, диодные выпрямители становятся менее эффективными. Это хорошо демонстрирует схема управления тиристорами, а также любой справочник электриков (например, в библиотеке можно бесплатно почитать книгу автора Замятин).
Тиристор – это однонаправленный преобразователь переменного тока, то есть он проводит ток только в одном направлении, но в отличие от диода, устройство может быть сделано для работы в качестве коммутатора разомкнутой цепи или в виде ректификационного диода постоянного электротока. Другими словами, полупроводниковые тиристоры могут работать только в режиме коммутации и не могут быть использованы как приборы амплификации. Ключ на тиристоре не способен сам перейти в закрытое положение.
Кремниевый управляемый выпрямитель является одним из нескольких силовых полупроводниковых приборов вместе с симисторами, диодами переменного тока и однопереходными транзисторами, которые могут очень быстро переключаться из одного режима в другой. Такой тиристор называется быстродействующим. Конечно, большую роль здесь играет класс прибора.
Применение тиристора
Назначение тиристоров может быть самое различное, например, очень популярен самодельный сварочный инвертор на тиристорах, зарядное устройство для автомобиля (тиристор в блоке питания) и даже генератор. Из-за того, что сам по себе прибор может пропускать как низкочастотные, так и высокочастотные нагрузки, его также можно использовать для трансформатора для сварочных аппаратов (на их мосте используются именно такие детали). Для контроля работы детали в таком случае необходим регулятор напряжения на тиристоре.
Фото — применение Тиристора вместо ЛАТРа
Не стоит забывать и про тиристор зажигания для мотоциклов.
Описание конструкции и принцип действия
Тиристор состоит из трех частей: «Анод», «Катод» и «Вход», состоящий из трех p-n переходов, которые могут переключаться из положений «ВКЛ» и «ВЫКЛ» на очень высокой скорости. Но при этом, он также может быть переключен с позиции «ВКЛ» с различной продолжительности по времени, т. е. в течение нескольких полупериодов, чтобы доставить определенное количество энергии к нагрузке. Работа тиристора можно лучше объяснить, если предположить, что он будет состоять из двух транзисторов, связанных друг с другом, как пара комплементарных регенеративных переключателей.
Самые простые микросхемы демонстрируют два транзистора, которые совмещены таким образом, что ток коллектора после команды «Пуск» поступает на NPN транзистора TR 2 каналы непосредственно в PNP-транзистора TR 1. В это время ток с TR 1 поступает в каналы в основания TR 2 . Эти два взаимосвязанных транзистора располагаются так, что база-эмиттер получает ток от коллектора-эмиттера другого транзистора. Для этого нужно параллельное размещение.
Фото — Тиристор КУ221ИМ
Несмотря на все меры безопасности, тиристор может непроизвольно переходить из одного положения в другое. Это происходит из-за резкого скачка тока, перепада температур и прочих разных факторов. Поэтому перед тем, как купить тиристор КУ202Н, Т122 25, Т 160, Т 10 10, его нужно не только проверить тестером (прозвонить), но и ознакомиться с параметрами работы.
Типичные тиристорные ВАХ
Для начала обсуждения этой сложной темы, просмотрите схему ВАХ-характеристик тиристора:
Фото — характеристика тиристора ВАХ
- Отрезок между 0 и (Vвo,IL) полностью соответствует прямому запиранию устройства;
- В участке Vво осуществляется положение «ВКЛ» тиристора;
- Отрезок между зонами (Vво, IL) и (Vн,Iн) – это переходное положение во включенном состоянии тиристора. Именно в этом участке происходит так называемый динисторный эффект;
- В свою очередь точки (Vн,Iн) показывают на графике прямое открытие прибора;
- Точки 0 и Vbr – это участок с запиранием тиристора;
- После этого следует отрезок Vbr — он обозначает режим обратного пробоя.
Естественно, современные высокочастотные радиодетали в схеме могут влиять на вольт-амперные характеристики в незначительной форме (охладители, резисторы, реле). Также симметричные фототиристоры, стабилитроны SMD, оптотиристоры, триодные, оптронные, оптоэлектронные и прочие модули могут иметь другие ВАХ.
Фото — ВАХ тиристора
Кроме того, обращаем Ваше внимание, что в таком случае защита устройств осуществляется на входе нагрузки.
Проверка тиристора
Перед тем, как купить прибор, нужно знать, как проверить тиристор мультиметром. Подключить измерительный прибор можно только к так называемому тестеру. Схема, по которой можно собрать такое устройство, представлена ниже:
Фото — тестер тиристоров
Согласно описанию, к аноду необходимо подвести напряжение положительного характера, а к катоду – отрицательного. Очень важно использовать величину, которая соответствует разрешению тиристора. На чертеже показаны резисторы с номинальным напряжением от 9 до 12 вольт, это значит, что напряжение тестера немного больше, чем тиристора. После того, как Вы собрали прибор, можно начинать проверять выпрямитель. Нужно нажать на кнопку, которая подает импульсные сигналы для включения.
Проверка тиристора осуществляется очень просто, на управляющий электрод кнопкой кратковременно подается сигнал на открытие (положительный относительно катода). После этого если на тиристоре загорелись бегущие огни, то устройство считается нерабочим, но мощные приборы не всегда сразу реагируют после поступления нагрузки.
Фото — схема тестера для тиристоров
Помимо проверки прибора, также рекомендуется использовать специальные контроллеры или блок управления тиристорами и симисторами ОВЕН БУСТ или прочие марки, он работает примерно также, как и регулятор мощности на тиристоре. Главным отличием является более широкий спектр напряжений.
Видео: принцип работы тиристора
Технические характеристики
Рассмотрим технические параметры тиристора серии КУ 202е. В этой серии представляются отечественные маломощные устройства, основное применение которых ограничивается бытовыми приборами: его используют для работы электропечей, обогревателей и т.д.
На чертеже ниже представлена цоколевка и основные детали тиристора.
Фото — ку 202
- Установленное обратное напряжение в открытом состоянии (макс) 100 В
- Напряжение в закрытом положении 100 В
- Импульс в открытом положении — 30 А
- Повторяющийся импульс в открытом положении 10 А
- Среднее напряжение =0,2 В
- Установленный ток в открытом положении
Фото — тиристор ку202н
Цена тиристора зависит от его марки и характеристик. Мы рекомендуем покупать отечественные приборы – они более долговечны и отличаются доступной стоимостью. На стихийных рынках можно купить качественный мощный преобразователь до сотни рублей.
Тиристоры: принцип действия, конструкции, типы и способы включения
Принцип действия тиристора
Тиристор является силовым электронным не полностью управляемым ключом. Поэтому иногда в технической литературе его называют однооперационным тиристором, который может сигналом управления переводиться только в проводящее состояние, т. е. включаться. Для его выключения (при работе на постоянном токе) необходимо принимать специальные меры, обеспечивающие спадание прямого тока до нуля.
Тиристорный ключ может проводить ток только в одном направлении, а в закрытом состоянии способен выдержать как прямое, так и обратное напряжение.
Тиристор имеет четырехслойную p-n-p-n-структуру с тремя выводами: анод (A), катод (C) и управляющий электрод (G), что отражено на рис. 1
Рис. 1. Обычный тиристор: a) – условно-графическое обозначение; б) – вольтамперная характеристика.
На рис. 1, b представлено семейство выходных статических ВАХ при различных значениях тока управления iG. Предельное прямое напряжение, которое выдерживается тиристором без его включения, имеет максимальные значения при iG = 0. При увеличении тока iG прямое напряжение, выдерживаемое тиристором, снижается. Включенному состоянию тиристора соответствует ветвь II, выключенному – ветвь I, процессу включения – ветвь III. Удерживающий ток или ток удержания равен минимально допустимому значению прямого тока iA , при котором тиристор остается в проводящем состоянии. Этому значению также соответствует минимально возможное значение прямого падения напряжения на включенном тиристоре.
Ветвь IV представляет собой зависимость тока утечки от обратного напряжения. При превышении обратным напряжением значения UBO начинается резкое возрастание обратного тока, связанное с пробоем тиристора. Характер пробоя может соответствовать необратимому процессу или процессу лавинного пробоя, свойственного работе полупроводникового стабилитрона.
Тиристоры являются наиболее мощными электронными ключами, способными коммутировать цепи с напряжением до 5 кВ и токами до 5 кА при частоте не более 1 кГц.
Конструктивное исполнение тиристоров приведено на рис. 2.
Рис. 2. Конструкция корпусов тиристоров: а) – таблеточная; б) – штыревая
Тиристор в цепи постоянного тока
Включение обычного тиристора осуществляется подачей импульса тока в цепь управления положительной, относительно катода, полярности. На длительность переходного процесса при включении значительное влияние оказывают характер нагрузки (активный, индуктивный и пр.), амплитуда и скорость нарастания импульса тока управления iG , температура полупроводниковой структуры тиристора, приложенное напряжение и ток нагрузки. В цепи, содержащей тиристор, не должно возникать недопустимых значений скорости нарастания прямого напряжения duAC/dt, при которых может произойти самопроизвольное включение тиристора при отсутствии сигнала управления iG и скорости нарастания тока diA/dt. В то же время крутизна сигнала управления должна быть высокой.
Среди способов выключения тиристоров принято различать естественное выключение (или естественную коммутацию) и принудительное (или искусственную коммутацию). Естественная коммутация происходит при работе тиристоров в цепях переменного тока в момент спадания тока до нуля.
Способы принудительной коммутации весьма разнообразны. Наиболее характерны из них следующие: подключение предварительно заряженного конденсатора С ключом S (рис 3, а); подключение LC-цепи с предварительно заряженным конденсатором CK (рис 3 б); использование колебательного характера переходного процесса в цепи нагрузки (рис 3, в).
Рис. 3. Способы искусственной коммутации тиристоров: а) – посредством заряженного конденсатора С; б) – посредством колебательного разряда LC-контура; в) – за счёт колебательного характера нагрузки
При коммутации по схеме на рис. 3,а подключение коммутирующего конденсатора с обратной полярностью, например другим вспомогательным тиристором, вызовет его разряд на проводящий основной тиристор. Так как разрядный ток конденсатора направлен встречно прямому току тиристора, последний снижается до нуля и тиристор выключится.
В схеме на рис. 3,б подключение LC-контура вызывает колебательный разряд коммутирующего конденсатора Ск. При этом в начале разрядный ток протекает через тиристор встречно его прямому току, когда они становятся равными, тиристор выключается. Далее ток LC-контура переходит из тиристора VS в диод VD. Пока через диод VD протекает ток контура, к тиристору VS будет приложено обратное напряжение, равное падению напряжения на открытом диоде.
В схеме на рис. 3,в включение тиристора VS на комплексную RLC-нагрузку вызовет переходный процесс. При определенных параметрах нагрузки этот процесс может иметь колебательный характер с изменением полярности тока нагрузки iн. В этом случае после выключения тиристора VS происходит включение диода VD, который начинает проводить ток противоположной полярности. Иногда этот способ коммутации называется квазиестественным, так как он связан с изменением полярности тока нагрузки.
Тиристор в цепи переменного тока
При включении тиристора в цепь переменного тока возможно осуществление следующих операций:
включение и отключение электрической цепи с активной и активно-реактивной нагрузкой;
изменение среднего и действующего значений тока через нагрузку за счёт того, что имеется возможность регулировать момент подачи сигнала управления.
Так как тиристорный ключ способен проводить электрический ток только в одном направлении, то для использования тиристоров на переменном токе применяется их встречно-параллельное включение (рис. 4,а).
Рис. 4. Встречно-параллельное включение тиристоров (а) и форма тока при активной нагрузке (б)
Среднее и действующее значения тока варьируются за счёт изменения момента подачи на тиристоры VS1 и VS2 открывающих сигналов, т.е. за счёт изменения угла и (рис. 4,б). Значения этого угла для тиристоров VS1 и VS2 при регулировании изменяется одновременно при помощи системы управления. Угол называется углом управления или углом отпирания тиристора.
Наиболее широкое применение в силовых электронных аппаратах получили фазовое (рис. 4,а,б) и широтно-импульсное управление тиристорами (рис. 4,в).
Рис. 5. Вид напряжения на нагрузке при: а) – фазовом управлении тиристором; б) – фазовом управлении тиристором с принудительной коммутацией; в) – широтно-импульсном управлении тиристором
При фазовом методе управления тиристором с принудительной коммутацией регулирование тока нагрузки возможно как за счёт изменения угла ? , так и угла ? . Искусственная коммутация осуществляется с помощью специальных узлов или при использовании полностью управляемых (запираемых) тиристоров.
При широтно-импульсном управлении (широтно-импульсной модуляции – ШИМ) в течение времени Тоткр на тиристоры подан управляющий сигнал, они открыты и к нагрузке приложено напряжение Uн. В течение времени Тзакр управляющий сигнал отсутствует и тиристоры находятся в непроводящем состоянии. Действующее значение тока в нагрузке
где Iн.м. – ток нагрузки при Тзакр = 0.
Кривая тока в нагрузке при фазовом управлении тиристорами несинусоидальна, что вызывает искажение формы напряжения питающей сети и нарушения в работе потребителей, чувствительных к высокочастотным помехам – возникает так называемая электромагнитная несовместимость.
Тиристоры являются наиболее мощными электронными ключами, используемыми для коммутации высоковольтных и сильноточных (сильнотоковых) цепей. Однако они имеют существенный недостаток – неполную управляемость, которая проявляется в том, что для их выключения необходимо создать условия снижения прямого тока до нуля. Это во многих случаях ограничивает и усложняет использование тиристоров.
Для устранения этого недостатка разработаны тиристоры, запираемые сигналом по управляющему электроду G. Такие тиристоры называют запираемыми (GTO – Gate turn-off thyristor) или двухоперационными.
Запираемые тиристоры (ЗТ) имеют четырехслойную р-п-р-п структуру, но в то же время обладают рядом существенных конструктивных особенностей, придающих им принципиально отличное от традиционных тиристоров – свойство полной управляемости. Статическая ВАХ запираемых тиристоров в прямом направлении идентична ВАХ обычных тиристоров. Однако блокировать большие обратные напряжения запираемый тиристор обычно не способен и часто соединяется со встречно-параллельно включенным диодом. Кроме того, для запираемых тиристоров характерны значительные падения прямого напряжения. Для выключения запираемого тиристора необходимо подать в цепь управляющего электрода мощный импульс отрицательного тока (примерно 1:5 по отношению к значению прямого выключаемого тока), но короткой длительности (10-100 мкс).
Запираемые тиристоры также имеют более низкие значения предельных напряжений и токов (примерно на 20-30 %) по сравнению с обычными тиристорами.
Основные типы тиристоров
Кроме запираемых тиристоров разработана широкая гамма тиристоров различных типов, отличающихся быстродействием, процессами управления, направлением токов в проводящем состоянии и т.д. Среди них следует отметить следующие типы:
тиристор-диод , который эквивалентен тиристору со встречно-параллельно включенным диодом (рис. 6.12,a);
диодный тиристор (динистор) , переходящий в проводящее состояние при превышении определённого уровня напряжения, приложенного между А и С (рис. 6,b);
запираемый тиристор (рис. 6.12,c);
симметричный тиристор или симистор , который эквивалентен двум встречно-параллельно включенным тиристорам (рис. 6.12,d);
быстродействующий инверторный тиристор (время выключения 5-50 мкс);
тиристор с полевым управлением по управляющему электроду , например, на основе комбинации МОП-транзистора с тиристором;
оптотиристор, управляемый световым потоком.
Рис. 6. Условно-графическое обозначение тиристоров: a) – тиристор-диод; b) – диодный тиристор (динистор); c) – запираемый тиристор; d) — симистор
Тиристоры являются приборами, критичными к скоростям нарастания прямого тока diA/dt и прямого напряжения duAC/dt. Тиристорам, как и диодам, присуще явление протекания обратного тока восстановления, резкое спадание которого до нуля усугубляет возможность возникновения перенапряжений с высоким значением duAC/dt. Такие перенапряжения являются следствием резкого прекращения тока в индуктивных элементах схемы, включая малые индуктивности монтажа. Поэтому для защиты тиристоров обычно используют различные схемы ЦФТП, которые в динамических режимах осуществляют защиту от недопустимых значений diA/dt и duAC/dt.
В большинстве случаев внутреннее индуктивное сопротивление источников напряжения, входящих в цепь включенного тиристора, оказывается достаточным, чтобы не вводить дополнительную индуктивность LS . Поэтому на практике чаще возникает необходимость в ЦФТП, снижающих уровень и скорость перенапряжений при выключении (рис. 7).
Для этой цели обычно используют RC-цепи, подключаемые параллельно тиристору. Существуют различные схемотехнические модификации RC-цепей и методики расчета их параметров для разных условий использования тиристоров.
Для запираемых тиристоров применяются цепи формирования траектории переключения, аналогичных по схемотехнике ЦФТП транзисторов.
Тиристоры и схемы коммутации мощной нагрузки
Главная страница » Тиристоры и схемы коммутации мощной нагрузки
Тиристоры выступают твердотельными электронными устройствами, обладающими высокой скоростью коммутации. Эти приборы допустимо использовать для управления всевозможными маломощными электронными компонентами. Однако наряду с маломощной электроникой, посредством тиристоров успешно управляется силовое оборудование. Рассмотрим классические схемы включения тиристора под управление достаточно высокими нагрузками, например, электролампами, электромоторами, электрическими нагревателями и т. п.
Тиристор – краткий обзор полупроводника
Включение полупроводника в открытое состояние возможно путём подачи импульса пускового тока небольшой величины на управляющий электрод «У». Когда тиристор пропускает ток нагрузки в прямом направлении, электрод анода A является положительным по отношению к электроду катода «K», с точки зрения регенеративной фиксации.
Как правило, триггерный импульс для электрода У должен иметь длительность в несколько микросекунд. Однако чем длиннее импульс, тем быстрее происходит внутренний лавинный пробой. Также увеличивается время открывания перехода. Но максимальный ток затвора превышать не допускается.
После переключения и полной проводки, падение напряжения на участке анод- катод держится постоянным на уровне около 1 вольта, при всех значениях анодного тока от нуля до номинального значения. Тем не менее, следует помнить: как только полупроводник начинает проводить, этот процесс продолжается даже при отсутствии управляющего сигнала «У».
Продолжается такое состояние до момента, когда ток анода уменьшится до величины меньше допустимо минимальной. Лишь на этом уровне и ниже происходит автоматическая блокировка перехода. Иначе работают лишь новые тиристоры структуры «MCT».
Инновационная разработка в группе тиристоров. Управляемая структура MCT (MOSFET Controled thyristor): 1 — управление 1; 2 — анод; 3 — управление 2; 4 — катод; 5 — подложка металл; OFF-FET — канал типа n-канал; ON-FET — канал типа p-канал
Этот фактор показывает, что в отличие от биполярных транзисторов и полевых транзисторов, тиристоры, по сути, невозможно использовать для усиления или контролируемого переключения.
Таким образом, напрашивается логичный вывод: тиристоры как полупроводниковые приборы специально разработаны для использования в составе схем коммутации высокой мощности.
Эти полупроводники могут работать только в режиме переключения, где они действуют как открытый или закрытый коммутатор. Как только этот коммутатор срабатывает, он остаётся в состоянии проводника.
Поэтому в цепях постоянного напряжения и некоторых сильно индуктивных цепях переменного напряжения, значение тока необходимо искусственно уменьшать при помощи отдельного переключателя или схемы отключения.
Тиристор в цепи постоянного напряжения
При условии питания схемы постоянным напряжением, тиристор эффективен в качестве переключателя мощной нагрузки. Здесь прибор действует подобно электронной защелке, поскольку после активации остается в состоянии «включено», вплоть до сброса этого состояния вручную. Рассмотрим практическую схему.
Схема 1: КН1, КН2 — кнопки нажимные без фиксации; Л1 — нагрузка в виде лампы накаливания 100 Вт; R1, R2 — резисторы постоянные 470 Ом и 1 кОм
Эта простая схема включения/выключения применяется для управления лампой накаливания. Между тем схему вполне допустимо использовать в качестве коммутатора электродвигателя, нагревателя и любой другой нагрузки, рассчитанной на питание постоянным напряжением.
Здесь тиристор имеет прямое смещённое состояние перехода и включается в режим короткого замыкания нормально разомкнутой кнопкой КН1. Эта кнопка соединяет управляющий электрод У с источником питания через резистор R1. Если значение R1 установить слишком высоким относительно питающего напряжения, устройство не сработает.
Стоит только активировать (нажать) кнопку КН1, тиристор переключается в состояние прямого проводника и остаётся в этом состоянии независимо от дальнейшего положения кнопки КН1. При этом токовая составляющая нагрузки показывает большее значение, чем ток фиксации тиристора.
Преимущества и недостатки использования тиристора
Одним из основных преимуществ использования этих полупроводников в качестве переключателя видится очень высокий коэффициент усиления по току. Тиристор — это устройство, фактически управляемое током.
Катодный резистор R2 обычно включается с целью уменьшения чувствительности электрода У и увеличения возможностей соотношения напряжение-ток, что предотвращает ложное срабатывание устройства.
Когда тиристор защелкнется и останется в состоянии «включено», сбросить это состояние возможно только прерыванием питания или уменьшения анодного тока до нижнего значения удержания.
Поэтому логично использовать нормально замкнутую кнопку КН2, чтобы разомкнуть цепь, уменьшая до нуля ток, протекающий через тиристор, заставляя прибор перейти в состояние «выключено».
Однако схема имеет также недостаток. Механический нормально замкнутый переключатель КН2 должен быть достаточно мощным — соответствовать мощности всей схемы.
В принципе, можно было бы просто заменить полупроводник мощным механическим выключателем. Один из способов преодолеть проблему с мощностью — подключить коммутатор параллельно тиристору.
Схема 2: КН1, КН2 — кнопки нажимные без фиксации; Л1 — лампа накаливания 100 Вт; R1, R2 — резисторы постоянные 470 Ом и 1 кОм
Доработка схемы — включение нормально разомкнутого переключателя малой мощности параллельно переходу А-К, даёт следующий эффект:
- активация КН2 создаёт «КЗ» между электродами А и К,
- уменьшается ток фиксации до минимального значения,
- устройство переходит в состояние «выключено».
Тиристоры в цепи переменного тока
При подключении к источнику переменного тока тиристор работает несколько иначе. Это связано с периодическим изменением полярности переменного напряжения.
Поэтому применение в схемах с питанием переменным напряжением автоматически будет приводить к состоянию обратного смещения перехода. То есть в течение половины каждого цикла прибор будет находиться в состоянии «отключено».
Для варианта с переменным напряжением схема тиристорного запуска аналогична схеме с питанием постоянным напряжением. Разница незначительная — отсутствие дополнительного переключателя КН2 и дополнение диода D1.
Благодаря диоду D1, предотвращается обратное смещение по отношению к управляющему электроду У. Положительным полупериодом синусоидальной формы сигнала устройство смещено прямо вперёд. Однако при выключенном переключателе КН1 к тиристору подводится нулевой ток затвора и прибор остается «выключенным».
В отрицательном полупериоде устройство получает обратное смещение и также останется «выключенным», независимо от состояния переключателя КН1.
Схема 3: КН1 — переключатель с фиксацией; D1 — диод любой под высокое напряжение; R1, R2 -резисторы постоянные 180 Ом и 1 кОм, Л1 — лампа накаливания 100 Вт
Если переключатель КН1 замкнуть, вначале каждого положительного полупериода полупроводник останется полностью «выключенным». Но в результате достижения достаточного положительного триггерного напряжения (возрастания тока управления) на электроде У, тиристор переключится в состояние «включено».
Фиксация состояния удержания остаётся стабильной при положительном полупериоде и автоматически сбрасывается, когда положительный полупериод заканчивается. Очевидный момент, учитывая падение тока анода ниже текущего значения.
На момент следующего отрицательного полупериода, устройство полностью «отключается» до прихода следующего положительного полупериода. Затем процесс вновь повторяется.
Получается, нагрузка имеет только половину доступной мощности источника питания. Тиристор действует как выпрямляющий диод и проводит переменный ток лишь во время положительных полуциклов, когда переход смещен вперед.
Тиристоры и управление половинной волной
Фазовое управление тиристором является наиболее распространенной формой управления мощностью переменного тока. Пример базовой схемы управления фазой показан ниже. Здесь напряжение затвора тиристора формируется цепочкой R1C1 через триггерный диод D1.
На момент положительного полупериода, когда переход смещен вперед, конденсатор C1 заряжается через резистор R1 от напряжения питания схемы. Управляющий электрод У активируются только тогда, когда уровень напряжения в точке «x» вызывает срабатывание диода D1.
Конденсатор C1 разряжается на управляющий электрод У, устанавливая прибор в состояние «включено». Длительность времени положительной половины цикла, когда открывается проводимость, контролируется постоянной времени цепочки R1C1, заданной переменным резистором R1.
Схема 4: КН1 — переключатель с фиксацией; R1 — переменный резистор 1 кОм; С1 — конденсатор 0,1 мкф; D1 — диод любой на высокое напряжение; Л1 — лампа накаливания 100 Вт; П — синусоида проводимости
Увеличение значения R1 приводит к задержке запускающего напряжения, подаваемого на тиристорный управляющий электрод, что, в свою очередь, вызывает отставание по времени проводимости устройства.
В результате доля полупериода, когда устройство проводит, может регулироваться в диапазоне 0 -180º. Это означает, что половинная мощность, рассеиваемая нагрузкой (лампой), поддаётся регулировке.
Существует масса способов достижения полноволнового управления тиристорами. Например, можно включить один полупроводник в схему диодного мостового выпрямителя. Этим методом легко преобразовать переменную составляющую в однонаправленный ток тиристора.
Однако более распространенным методом считается вариант использования двух тиристоров, соединенных инверсной параллелью. Самым практичным подходом видится применение одного симистора. Этот полупроводник допускает переход в обоих направлениях, что делает симисторы более пригодными для схем переключения переменного тока.
Тиристоры — полный технический расклад на видео
Видеоматериал, представленный здесь — продолжение знакомства с тиристорами непосредственно глазами. Совмещение текстовой и видео информации открывает способ лучшего понимания темы. Поэтому, рекомендовано смотреть «кино» о тиристорах:
Что такое тиристор и как он работает
Чтобы понять как работает схема, необходимо знать действие и назначение каждого из элементов. В этой статье рассмотрим принцип работы тиристора, разные виды и режимы работы, характеристики и виды. Постараемся объяснить все максимально доступно, чтобы было понятно даже для начинающих.
Что такое тиристор, его устройство и обозначение на схеме
Тиристор — полупроводниковый элемент, имеющий только два состояния: «открыто» (ток проходит) и «закрыто» (тока нет). Причем оба состояния устойчивые, то есть переход происходит только при определенных условиях. Само переключение происходит очень быстро, хоть и не мгновенно.
Так выглядят тиристоры
По способу действия его можно сравнить с переключателем или ключом. Вот только переключается тиристор при помощи напряжения, а отключается пропаданием тока или снятием нагрузки. Так что принцип работы тиристора понять несложно. Можно представлять его как ключ с электрическим управлением. Так, да не совсем.
Тиристор, как правило, имеет три выхода. Один управляющий и два, через которые протекает ток. Можно попробовать коротко описать принцип работы. При подаче напряжения на управляющий выход, коммутируется цепь через анод-коллектор. То есть, он сравним с транзистором. Только с той разницей, что у транзистора величина пропускаемого тока зависит от поданного на управляющий вывод напряжения. А тиристор либо полностью открыт, либо полностью закрыт.
Внешний вид
Внешний вид тиристора зависит от даты его производства. Элементы времен Советского Союза — металлические, в виде «летающей тарелки» с тремя выводами. Два вывода — катод и управляющий электрод — находятся на «дне» или «крышке» (это с какой стороны смотреть). Причем электрод управления меньше по размерам. Анод может находиться с противоположной стороны от катода, или торчать вбок из-под шайбы, которая есть на корпусе.
Два вида тиристоров — современные и советские, обозначение на схемах
Современные тиристоры выглядят по-другому. Это небольшой пластиковый прямоугольник с металлической пластиной сверху и тремя выводами-ножками снизу. В современном варианте есть одно неудобство: надо смотреть в описании какой из выводов анод, где катод и управляющий электрод. Как правило, первый — анод, затем катод и крайний правый — это электрод. Но это как правило, то есть, не всегда.
Принцип работы
По принципу действия, тиристор можно еще сравнить с диодом. Пропускать ток он будет в одном направлении — от анода к катоду, но происходить это будет только в состоянии «открыто». На схемах тиристор похож на диод. Также имеется анод и катод, но есть еще дополнительный элемент — управляющий электрод. Понятное дело, есть отличия и в выходном напряжении (если сравнивать с диодом).
Принцип работы тиристора в устройствах переменного напряжения: на выходе есть только верхняя часть синусоиды
В схемах переменного напряжения тиристор будет пропускать только одну полуволну — верхнюю. Когда приходит нижняя полуволна, он сбрасывается в состояние «закрыто».
Принцип работы тиристора простыми словами
Рассмотрим принцип работы тиристора. Стартовое состояние элемента — закрыто. «Сигналом» к переходу в состояние «открыто» является появление напряжения между анодом и управляющим выводом. Вернуть тиристор в состояние «закрыто» можно двумя способами:
- снять нагрузку;
- уменьшить ток ниже тока удержания (одна из технических характеристик).
В схемах с переменным напряжением, как правило, сбрасывается тиристор по второму варианту. Переменный ток в бытовой сети имеет синусоидальную форму, когда его значение приближается к нулю и происходит сброс. В схемах, питающихся от источников постоянного тока, надо либо принудительно убирать питание, либо снимать нагрузку.
После снятия отпирающего напряжения, тиристор остается в открытом состоянии (лампочка горит)
То есть, работает тиристор в схемах с постоянным и переменным напряжением по-разному. В схеме постоянного напряжения, после кратковременного появления напряжения между анодом и управляющим выводом, элемент переходит в состояние «открыто». Далее может быть два варианта развития событий:
- Состояние «открыто» держится даже после того, как напряжение анод-выход управления пропало. Такое возможно если напряжение, поданное на анод-управляющий вывод, выше чем неотпирающее напряжение (эти данные есть в технических характеристиках). Прекращается прохождение тока через тиристор, фактически только разрывом цепи или выключением источника питания. Причем выключение/обрыв цепи могут быть очень кратковременными. После восстановления цепи, ток не течет до тех пор, пока на анод-управляющий вывод снова не подадут напряжение.
- После снятия напряжения (оно меньше чем отпирающее) тиристор сразу переходит в состояние «закрыто».
Так что в схемах постоянного тока есть два варианта использования тиристора — с удержанием открытого состояния и без. Но чаще применяют по первому типу — когда он остается открытым.
Если говорить о внутреннем устройстве, то это три перехода P-N-P-N
Принцип работы тиристора в схемах переменного напряжения отличается. Там возвращение в запертое состояние происходит «автоматически» — при падении силы тока ниже порога удержания. Если напряжение на анод-катод подавать постоянно, на выходе тиристора получаем импульсы тока, которые идут с определенной частотой. Именно так построены импульсные блоки питания. При помощи тиристора они преобразуют синусоиду в импульсы.
Проверка работоспособности
Проверить тиристор можно либо при помощи мультиметра, либо создав простенькую проверочную схему. Если при прозвонке иметь перед глазами технические характеристики, можно заодно проверить сопротивление переходов.
Один из видов: силовой Т122-25
Прозвонка мультиметром
Для начала разберем прозвонку мультиметром. Переводим прибор в режим прозвонки.
На цифровых мультиметрах есть режим прозвонки, который позволяет проверять полупроводниковые приборы
Далее поочередно прикасаемся щупами к парам выводов:
- При подключении щупов к аноду и катоду, прибор должен показывать обрыв — «1» или «OL» в зависимости от мультиметра. Если отображаются иные показатели хоть в одном направлении, тиристор пробит.
- Между анодом и управляющим электродом (выводом) должно быть небольшое сопротивление в одном из направлений. В противоположном — обрыв. Если в обоих направлениях или обрыв, или небольшое сопротивление — элемент поврежден.
Проверка тиристора при помощи мультиметра. На левом рисунке на табло отображается «1», т.е. сопротивление между анодом и катодом слишком велико и прибор не может его зафиксировать. На правом рисунке сопротивление небольшое, так как подано прямое напряжение смещения между анодом и управляющим электродом
Обратите внимание, что величина сопротивления у разных серий разная — на это не стоит обращать особого внимания. Если хотите проверить и сопротивление переходов, посмотрите в технических характеристиках.
Схема проверки работоспособности тиристора мультиметром
На рисунке представлены схемы испытаний. Крайний справа рисунок — усовершенствованный вариант с кнопкой, которую устанавливают между анодом и управляющим выводом. Для того чтобы мультиметр зафиксировал протекающий по цепи ток, кратковременно нажимаем на кнопку.
При помощи лампочки и источника постоянного тока (батарейка тоже пойдет)
Если мультиметра нет, можно проверить тиристор при помощи лампочки и источника питания. Подойдет даже обычная батарейка или любой другой источник постоянного напряжения. Вот только напряжение должно быть достаточным для того, чтобы засветить лампочку. Потребуется еще сопротивление или обычный кусок проволоки. Из этих элементов собирается простая схема:
Схема проверки тиристора при помощи лампочки и источника питания
- Плюс от источника питания подаем на анод.
- К катоду подключаем лампочку, второй ее вывод подключаем к минусу источника питания. Лампочка не горит, так как термистор заперт.
- Кратковременно (при помощи куска проволоки или сопротивления) соединяем анод и управляющий вывод.
- Лампочка загорается и продолжает гореть, хотя перемычка убрана. Термистор остается в открытом состоянии.
- Если выкрутить лампочку или выключить источник питания, то лампочка, естественно, погаснет.
- Если восстановить цепь/питание, она не загорится.
Заодно с проверкой, эта схема позволяет понять принцип работы тиристора. Ведь картинка получается очень наглядной и понятной.
Виды тиристоров и их особые свойства
Полупроводниковые технологии все еще разрабатываются и совершенствуются. За несколько десятилетий появились новые разновидности тиристоров, которые имеют некоторые отличия.
- Динисторы или диодные тиристоры. Отличаются тем, что имеют только два вывода. Открываются подачей на анод и катод высокого напряжения в виде импульса. Называют еще «неуправляемые тиристоры».
- Тринисторы или триодные тиристоры. В них есть управляющий электрод, но управляющий импульс может подаваться:
- На управляющий выход и катод. Название — с управлением катодом.
- На управляющий электрод и анод. Соответственно — управление анодом.
Тиристоры могут управляться как с анода, так и с катода
Есть также разные виды тиристоров по способу запирания. В одном случае достаточно уменьшения анодного тока ниже уровня тока удержания. В другом случае — подается запирающее напряжение на управляющий электрод.
По проводимости
Мы говорили, что проводят тиристоры ток только в одном направлении. Обратной проводимости нет. Такие элементы называют обратно-непроводящие, но существуют не только такие. Есть и другие варианты:
- Имеют невысокое обратное напряжение, называются обратно-проводящие.
- С ненормируемой обратной проводимостью. Ставят в схемах, где обратное напряжение возникнуть не может.
- Симисторы. Симметричные тиристоры. Проводят ток в обоих направлениях.
Различают в основном, по типу проводимости и способу управления
Тиристоры могут работать в режиме ключа. То есть при поступлении импульса управления подавать ток на нагрузку. Нагрузка, в этом случае, рассчитывается исходя из напряжения в открытом виде. Надо также учитывать наибольшую рассеиваемую мощность. Вот в этом случае лучше выбирать металлические модели в виде «летающей тарелки». К ним удобно приделывать радиатор — для более быстрого охлаждения.
Классификация по особым режимам работы
Еще можно выделить следующие подвиды тиристоров:
- Запираемые и незапираемые. Принцип работы тиристора незапираемого немного другой. Он находится в открытом состоянии когда плюс приложен к аноду, минус — на катоде. Переходит в закрытое состоянии при смене полярности.
- Быстродействующие. Имеют малое время перехода из одного состояния в другое.
- Импульсные. Очень быстро переходит из одного состояние в другое, используется в схемах с импульсными режимами работы.
Основное назначение — включение и выключение мощной нагрузки при помощи маломощных управляющих сигналов
Основная область использования тиристоров — в качестве электронного ключа, служащего для замыкания и размыкания электрической цепи. В общем много привычных устройств построены на тиристорах. Например, гирлянда с бегущими огнями, выпрямители, импульсные источники тока, выпрямители и многие другие.
Характеристики и их значение
Некоторые тиристоры могут коммутировать очень большие токи, в этом случае их называют силовыми тиристорами. Они изготавливаются в металлическом корпусе — для лучшего отвода тепла. Небольшие модели с пластиковым корпусом — это обычно маломощные варианты, которые используют в малоточных схемах. Но, всегда есть исключения. Так что для каждой конкретной цели подбирают требуемый вариант. Подбирают, понятное дело, по параметрам. Вот основные:
- Максимальный прямой ток. Значение тока, который может протекать через анод-катод. У мощных моделей он может достигать сотен Ампер.
- Максимально допустимый обратный ток. Указывается не для всех видов, только у обратно-проводящих.
- Прямое напряжение. Это максимально допустимое падение напряжения в открытом состоянии при прохождении максимального тока.
- Напряжение включения. Минимальный уровень управляющего сигнала, при котором тиристор сработает.
Есть еще динамический параметр — время перехода из закрытого в открытое состояние. В некоторых схемах это важно. Может еще указываться тип быстродействия: по времени отпирания или по времени запирания.
Тиристоры Электрическая Схема
У мощных приборов оно достигает сотен ампер. Если в обоих направлениях или обрыв, или небольшое сопротивление — элемент поврежден.
Для борьбы с перегревом тиристора используется активная или пассивная система охлаждения. Причем оба состояния устойчивые, то есть переход происходит только при определенных условиях.
В некоторый момент в результате перезарядки конденсатора С2 высокий уровень на выводе 8 элемента DD1.
Зарядное устройство на тиристорах
Существует масса способов достижения полноволнового управления тиристорами.
Тиристор — краткий обзор полупроводника Включение полупроводника в открытое состояние возможно путём подачи импульса пускового тока небольшой величины на управляющий электрод У.
Поэтому я и решил представить эту схему.
Для сетей переменного тока выполнение этих условий не вызывает особых трудностей. Когда тиристор пропускает ток нагрузки в прямом направлении, электрод анода A является положительным по отношению к электроду катода K, с точки зрения регенеративной фиксации.
Практические примеры для повторения Наибольшей популярностью среди радиолюбителей пользуются схемы, предназначенные для управления яркостью светильника и изменения мощности паяльника. Тиристорный регулятор напряжения своими руками Нельзя сказать о том, что данная схема не обеспечит гальваническую развязку от источника питания, поэтому есть определённая опасность поражения электрическими разрядами тока.
Бюджетные сварочные полуавтоматы#4 подключение тиристора и конденсаторов
Применение тиристора
Виды и устройство. Контроллер нагрева паяльника Управление мощностью паяльника не только положительно сказывается на сроке его службы, предотвращая жало и внутренние его элементы от перегревания, но и позволяет выпаивать радиоэлементы, критичные к температуре устройства.
Таким образом, напряжение будет полноценно регулироваться на коллекторном двигателе, который оборудован специальным щелочным узлом. В принципе, можно было бы просто заменить полупроводник мощным механическим выключателем.
А это может произойти только в отрицательном полупериоде сетевого напряжения, поступающего на вывод 13 элемента DD1.
Фото — тиристор кун Цена тиристора зависит от его марки и характеристик.
Эта кнопка соединяет управляющий электрод У с источником питания через резистор R1. В этом месте находится ферритовый фильтр высокочастотных помех.
Они могли легко увидеть, что число оборотов в таких изделиях зависит, главным образом, от общей глубины нажатия на кнопку-курок в устройстве. Управляемый электрод.
Фиксация состояния удержания остаётся стабильной при положительном полупериоде и автоматически сбрасывается, когда положительный полупериод заканчивается.
Тиристорный модуль SKKT92-12E
Виды современных устройств
Эта кнопка соединяет управляющий электрод У с источником питания через резистор R1.
Рассеиваемая мощность. Регулировать яркость свечения светильников, в которых установлены энергосберегающие или светодиодные лампочками, не получится, так как в таких лампочках вмонтированы электронные схемы, и регулятор просто будет нарушать их нормальную работу. На чертеже ниже представлена цоколевка и основные детали тиристора.
Распространенные отечественные тиристоры выглядят следующим образом.
Если регулируемое устройство будет расположено на стационарном уровне, то имеет определённой смысл осуществить его подключение через выключатель с особым регулятором уровня яркости света. Вот так можно описать, как работает тиристор для чайников. Прибор, содержащий один управляющий электрод, называют триодным тиристором или тринистором [1] иногда просто тиристором, хотя это не совсем правильно. Тиристорная схема регулятора не излучающая помехи Главное отличие схемы представляемого регулятора мощности паяльника от выше представленных, это полное отсутствие радиопомех в электрическую сеть, так как все переходные процессы происходят во время, когда напряжение в питающей сети равно нулю.
У VT1 он должен быть Управляемый электрод.
R 2 — это резистор, который обладает особым показателем переменного тока около 30 кОм. Реостат — довольно универсальное приспособление. В общем много привычных устройств построены на тиристорах. Вот только напряжение должно быть достаточным для того, чтобы засветить лампочку.
Для большей мощности необходим более мощный симистор, например, ТС Это хорошо демонстрирует схема управления тиристорами, а также любой справочник электриков например, в библиотеке можно бесплатно почитать книгу автора Замятин. Тиристор — краткий обзор полупроводника Включение полупроводника в открытое состояние возможно путём подачи импульса пускового тока небольшой величины на управляющий электрод У. Предлагаемая ниже схема позволит снизить мощность любого нагревательного электроприбора.
Симметричный тринистор называется также симистором или триаком от англ. Если при помощи такого прибора, как тиристор со временем подключать нагрузку в строго определённое время, то показатель действующего напряжения будет довольно низким, так как половина от напряжения действующее значение, которое и воспроизводит нагрузку будет намного меньше, чем световое. Само переключение происходит очень быстро, хоть и не мгновенно. Важное отличие симисторных схем от тиристорных состоит в том, что нет необходимости в выпрямительном устройстве. Вторую часть полупериода тиристор начнёт проводить ток и на выходе регулятора будет возникать особое входное напряжение.
Простой регулятор напряжения на тиристоре
Принцип действия тиристора
Так что в схемах постоянного тока есть два варианта использования тиристора — с удержанием открытого состояния и без.
Покопавшись нашел импортные симисторы BTA К основным параметрам, характеризующим регуляторы электрической энергии, относят: плавность регулировки; рабочую и пиковую подводимую мощность; диапазон входного рабочего сигнала; КПД. Можно подумать, что применение тиристоров неоправданно, не проще ли использовать обычный ключ?
Значение тока, который может протекать через анод-катод. У мощных приборов оно достигает сотен ампер. Он позволяет коммутировать ток 25 А.
После переключения и полной проводки , падение напряжения на участке анод- катод держится постоянным на уровне около 1 вольта, при всех значениях анодного тока от нуля до номинального значения. Он располагается как последовательно, так и параллельно подключённой нагрузке. При большой регулируемой мощности симистор VS1 необходимо установить на радиатор. Тиристоры выполняются в различных корпусах.
Область использования тиристорных устройств
На правом рисунке сопротивление небольшое, так как подано прямое напряжение смещения между анодом и управляющим электродом Обратите внимание, что величина сопротивления у разных серий разная — на это не стоит обращать особого внимания. Это максимально допустимое напряжение на тиристоре в закрытом состоянии, при котором тиристор может работать без нарушения его работоспособности. Стабилитрон VD1 ограничивает напряжение питания на уровне 15 В. Схема собиралась не раз, работает без наладки и других проблем.
Главным отличием является более широкий спектр напряжений. В результате получается генератор прямоугольных импульсов. Вот только напряжение должно быть достаточным для того, чтобы засветить лампочку. Схемы на тиристорах Регулировать общую мощность паяльника можно довольно просто, если использовать для этого аналоговые или же цифровые паяльные станции. В результате на выходе 11 DD1.
Данная особенности заключена в том, что в нормальных производственных условиях на нагрузку могут воздействовать примерные показатели напряжения бытовой сети, которая будет меняться в соответствии с синусоидальным законом. Обычно правильной работы симистора удается добиться установкой транзистора VT2 с большим значением коэффициента передачи тока. Другое их название — диммеры. Полный технический расклад тиристора.
С вывода 1 микросхемы DD2. Один управляющий и два, через которые протекает ток.
Симистор (тиристор) вместо реле.
Принцип работы и применение управляемого тиристора
28 сентября 2018
Время на чтение:
Мигающая наружная реклама украшает городские кварталы. Забавный световой эффект «бегущие огни» сопровождает выступления эстрадных артистов. Новогодняя гирлянда на ёлке создаёт праздничное настроение. Маленькая деталь, которая управляет огромными электронными приборами, называется тиристор.
Принцип работы
Радиотехнический термин thyristor составлен из двух частей. В начале употреблено слово thyra, что означает на греческом языке «дверь» или «вход». Затем использовано окончание английского слова resistor, которое переводится как «сопротивление».
Тиристором называется полупроводниковое устройство, где на базе монокристалла собираются более двух p — n переходов. Суть электронно-дырочного соединения пары химических элементов — так расшифровывается понятие «p — n переход» — состоит в том, что при подключении прямого тока на выводах появляется разность потенциалов. При обратном токе совершается блокировка носителей заряда.
В устройство коммутируется сигнальный контакт, назначение которого состоит в управлении током пробоя границы разнозаряженных зон. На электрических схемах обозначение тиристора почти совпадает со значком диода. Различие состоит в том, что к катодному выводу пририсована стрелка управляющего электрода.
Конструкция прибора
Полупроводниковый прибор представляет собой структуру, которую образуют четыре слоя разной полярности, соединённых последовательно. Образуется цепочка p — n — p — n типа. К наружному слою с положительным зарядом подключён анодный вывод, к отрицательному полупроводнику — катод. К внутренним прослойкам допустимо присоединение до двух управляющих контактов.
Основообразующим элементом тиристора является кристалл кремния с заданной толщиной. Для формирования p-слоя применяются примеси бора и алюминия. Чтобы получить n-область используется фосфор. Нанесение добавок происходит с помощью диффузионной технологии. При температуре от 1000° C до 1300° C создаётся переходный слой глубиной 60 Мкм.
Внешний вид современных устройств непохож на детали, изготовленные два десятка лет назад. Раньше они выглядели как «летающие тарелки». Минусовый электрод и сигнальный контакт располагались на торце, а анодный вывод устанавливался с противоположной стороны или сбоку изделия. Сейчас тиристор представляет собой небольшой пластмассовый коробок с тремя электродами внизу. Расположение контактов указывается в описании устройства.
Режимы работы
Принцип действия тиристора характеризуется работой в двух устойчивых состояниях. Положение «закрыто» свидетельствует о низкой проводимости. Значение «открыто» указывает высокую электропроводность.
Как работает тиристор, для чайников объяснит диаграмма зависимости силы тока от напряжения. В исходной позиции полупроводниковый элемент заперт.
Даже значительное увеличение разности потенциалов на контактах не приведёт устройство в рабочее состояние. Линия графика почти горизонтальна.
Но стоит подать ток на управляющий вывод, как тиристор откроется. В этот момент линейный отрезок на графике круто изменяет угол наклона, близкий к вертикальному положению. От величины сигнального тока зависит уровень пробойного напряжения. Вольт-амперная характеристика объясняет, зачем требуется применение управляющего электрода. После обнуления командного сигнала устройство останется открытым, пока напряжение не уменьшится до уровня удержания.
Работа транзистора также основана на взаимодействии p — n переходов. От полупроводникового триода, который, как вентиль, плавно регулирует напряжение, тиристорный элемент отличается скачкообразным ростом разности потенциалов после появления сигнала управления. Своеобразный электронный ключ по команде открывает дорогу питанию электрической цепи.
Классификация тиристоров
Существует два варианта управления полупроводником: через катод или анод. Это зависит от полярности слоя, к которому подключено управление. Поэтому различают тиристоры с катодным или анодным управлением.
Возможен вариант отсутствия управляющего электрода. Такой прибор называется диодным тиристором, и включение устройства производит напряжение, подаваемое на основные контакты. Отсюда классификация на динисторы, не имеющие вывода управления, и тринисторы, у которых есть управляющий контакт.
По способностям пропускать ток в том или ином направлении тиристоры подразделяются на симметричные и асимметричные устройства. Симметричные полупроводники, которые профессионалы называют симисторами, способны проводить ток в обоих направлениях. В сущности, симистор — это пара тиристоров, включённых по встречно-параллельной схеме.
Асимметричные приборы пропускают ток только в одну сторону:
- прямонаправленные устройства заперты при подключении напряжения обратного направления;
- приборы, пропускающие обратный ток, открываются при подаче напряжения противоположной полярности.
В электронных схемах также используются запираемые тиристоры. Устройство открывается, когда на управляющий электрод подаётся ток. В положение «закрыто» прибор переходит при изменении полярности тока управления.
Технические характеристики
Области применения полупроводника разнообразны. В зависимости от того, для чего нужен тиристор, подбирается деталь с требуемыми техническими данными. Выбрать необходимый тип полупроводникового триода помогут рабочие параметры устройства:
- Максимальный ток от анода к катоду.
- Наибольшая величина обратного тока указывается только для типов, обладающих такой функцией.
Максимальное прямоточное напряжение в положении «открыто».
- Минимальные напряжение и сила тока раскрытия p — n перехода.
- Предельный уровень сигнального тока, приводящий к пробою тиристора.
- Ток удержания определяет уровень, ниже которого наступает состояние «закрыто».
- Мощность указывает величину допустимой нагрузки.
- Время срабатывания.
Контроль работоспособности
Перед установкой тиристора в схему необходимо убедиться в его исправности. Целостность детали проверяется мультиметром или лампочкой, подключённой к источнику питания.
На измерительном приборе устанавливают функцию прозвонки. Сначала щупы присоединяют к аноду и катоду попеременно в прямом и обратном направлении. Цифра «1» на дисплее укажет, что ток не проходит, и деталь исправна. Затем прозванивают линию от анода до сигнального контакта.
Одна из цепей должна быть оборвана, а другая покажет небольшое сопротивление. Если в обоих случаях мультиметр обнаружит одинаковый результат, то тиристор неисправен.
Работоспособность детали можно проверить, собрав простую электрическую цепь. Анодный контакт присоединяют к «плюсовому» зажиму батарейки. Катод замыкают на «минус» источника питания через лампочку. Куском провода кратковременно смыкаются анодный и управляющий выводы. Лампа должна загореться и не гаснуть после разрыва цепочки «анод — управляющий электрод».
Работающий осветительный прибор указывает на исправность тиристора. При проверке необходимо учитывать величину подаваемого напряжения, которая должна быть достаточной для включения лампы.
Практическое применение
Благодаря принципу работы тиристор используют в преобразователях напряжения и выпрямителях тока. Вместе с силовым трансформатором полупроводник способен изменять уровень тока. На этой основе собраны зарядные устройства автомобильных аккумуляторов, а также мощные электросварочные аппараты. Способность прибора изменять переменное напряжение на постоянное напряжение используется в преобразователях.
В устройствах сигнализации тиристор включается командой от внешнего датчика, изменяющего напряжение на управляющем электроде. Конструкции, которые контролируют окружающую обстановку, могут реагировать на изменение температурного режима или объёмного наполнения пространства. За освещённостью объекта наблюдает оптотиристор.
Полупроводниковый тиристор предназначен для управления большими токами слаботочным сигналом. С помощью диммерных блоков, на которые подаётся команда от светового пульта, управляются театральные прожекторы и светильники.
Поддержание заданного температурного режима в печи обеспечивается регулятором мощности дуги горения. В электрических двигателях скорость вращения ведущего вала контролирует тиристорный регулятор частоты хода.
Архимед обещал перевернуть Землю, если бы у него была точка опоры. Управляемый тиристорный полупроводник является тем рычагом, который расширяет области применения электронных устройств. Небольшая радиодеталь умножает возможности человека в развитии научно-технического прогресса.
Тиристоры: принцип работы, назначение, характеристики, проверка работоспособности
Тиристор представляет собой вид полупроводниковых приборов, предназначенный для однонаправленного преобразования тока (т.е. ток пропускается только в одну сторону).
Этот преобразователь имеет два устойчивых состояния: закрытое (состояние низкой проводимости) и открытое (состояние высокой проводимости). Назначение тиристора – выполнение функции электроключа, особенность которого – невозможность самостоятельного переключения в закрытое состояние. Прибор выполняет функции коммутатора разомкнутой цепи и ректификационного диода в сетях постоянного тока. Основным материалом при производстве этого полупроводникового устройства является кремний. Корпус изготавливается из полимерных материалов или металла – для моделей, работающих с большими токами.
Устройство тиристора и области применения
В состав прибора входят 3 электрода:
- анод;
- катод;
- управляющий электрод.
В отличие от двухслойного диода, тиристор состоит из 4-х слоев – p-n-p-n. Оба устройства пропускают ток в одну сторону. На большинстве старых моделей его направление обозначается треугольником. Внешнее напряжение подается знаком «-» на катодный электрод (область с электропроводностью n-типа), «+» – на анодный электрод (область с электропроводностью p-типа).
Тиристоры применяют в сварочных инверторах, блоках питания зарядного устройства для автомобиля, в генераторах, для устройства простой сигнализации, реагирующей на свет.
Принцип работы тиристоров
В специализированной литературе тиристор называется «однооперационным» и относится к группе не полностью управляемых радиодеталей. Он переходит в активное состояние при получении импульса определенной полярности от объекта управления. На скорость активации и последующее функционирование оказывают влияние:
- характер нагрузки – индуктивная, реактивная;
- величина тока нагрузки;
- скорость и амплитуда увеличения управляющего импульса;
- температура среды устройства;
- уровень напряжения.
Переключение из одного состояния в другое осуществляется с помощью управляющих сигналов. Для полного отключения тиристора требуется выполнить дополнительные действия. Выключение осуществляется несколькими способами:
- естественное выключение (естественная коммутация);
- принудительное выключение (принудительная коммутация), этот вариант может осуществляться множеством способов.
При эксплуатации возможны незапланированные переключения из одного положения в другое, которые провоцируются перепадами характеристик электроэнергии и температуры.
Классификационные признаки
По способу управления различают следующие виды тиристоров:
Диодные (динисторы)
Активируются импульсом высокого напряжения, подаваемым на анод и катод. В конструкции присутствуют 2 электрода, без управляющего.
Триодные (тринисторы)
Разделяются на две группы. В первой управляющее напряжение поступает катод и электрод управления, во второй – на анод и управляющий электрод.
Симисторы
Выполняют функции двух включенных параллельно тиристоров.
Оптотиристоры
Их функционирование осуществляется под действием светового потока. Функцию управляющего электрода выполняет фотоэлемент.
По обратной проводимости тиристоры разделяются на:
- обратно проводящие;
- обратно непроводящие;
- с ненормируемым обратным значением напряжения;
- пропускающие токи в двух направлениях.
Основные характеристики тиристоров, на которые стоит обратить внимание при покупке
- Максимально допустимый ток. Эта величина характеризует наибольшее значение тока открытого тиристора. У мощных устройств она составляет несколько сотен ампер.
- Максимально допускаемый обратный ток.
- Прямое напряжение. Этот параметр тиристора равен падению напряжения при максимально возможном токе.
- Обратное напряжение. Характеризует максимально допустимое напряжение на устройстве, находящемся в закрытом состоянии, при котором оно не утрачивает способность выполнять свои функции.
- Напряжение включения. Это наименьшая величина, при которой возможно функционирование тиристора.
- Минимальный ток управляющего электрода. Равен величине тока, которого достаточно для активации устройства.
- Наибольшая допустимая рассеиваемая мощность.
Проверка тиристора на исправность
Прибор можно проверить несколькими способами, один из них – использование специального самодельного тестера, собираемого по представленной ниже схеме:
Такая схема предназначена для работы при напряжении 9-12 В. Для других значений напряжения питания производят перерасчет величин R1-R3.
- К аноду подключают положительный полюс, к катоду подводят «-».
- На управляющий электрод с помощью кнопки SA подают сигнал к открытию устройства.
- Если светодиод загорается до нажатия кнопки SA или не загорается после нажатия, то прибор является неработоспособным.
Заключение
Тиристор — не полностью управляющий ключ. Если есть ток удержания, то перейдя в открытое состояние, тиристор остается в нем, даже если прекращать подавать сигнал на управляющий переход.
Была ли статья полезна?
Комментарии
Оптовая продажа электронных компонентов и радиодеталей с доставкой по всей России
Тиристор для чайников: схема включения и способы управления
Тиристор — электронный компонент, изготовленный на основе полупроводниковых материалов, может состоять из трёх или более p-n-переходов и имеет два устойчивых состояния: закрытое (низкая проводимость), открытое (высокая проводимость).
Это сухая формулировка, которая для тех, кто только начинает осваивать электротехнику, абсолютно ни о чём не говорит. Давайте разберём принцип работы этого электронного компонента для обычных людей, так сказать, для чайников, и где его можно применить. По сути, это электронный аналог выключателей, которыми вы каждый день пользуетес
Есть много типов этих элементов, обладающие различными характеристиками и имеющие различные области применения. Рассмотрим обычный однооперационный тиристор.
Способ обозначения на схемах показан на рисунке 1.
Электронный элемент имеет следующие выводы:
- анод — положительный вывод;
- катод — отрицательный вывод;
- управляющий электрод G.
Принцип действия тиристора
Основное применение этого типа элементов — это создание на их основе силовых тиристорных ключей для коммутации больших токов и их регулирования. Включение выполняется сигналом, переданным на управляющий электрод. При этом элемент является не полностью управляемым, и для его закрытия необходимо применение дополнительных мер, которые обеспечат падение величины напряжения до нуля.
Если говорить, как работает тиристор простым языком, то он, по аналогии с диодом, может проводить ток только в одном направлении, поэтому при его подключении нужно соблюдать правильную полярность. При подаче напряжения к аноду и катоду этот элемент будет оставаться закрытым до момента, когда на управляющий электрод будет подан соответствующий электрический сигнал. Теперь, независимо от наличия или отсутствия управляющего сигнала, он не изменит своего состояния и останется открытым.
Условия закрытия тиристора:
- Снять сигнал с управляющего электрода;
- Снизить до нуля напряжение на катоде и аноде.
Для сетей переменного тока выполнение этих условий не вызывает особых трудностей. Синусоидальное напряжение, изменяясь от одного амплитудного значения до другого, снижается до нулевой величины, и если в этот момент управляющего сигнала нет, то тиристор закроется.
В случае использования тиристоров в схемах постоянного тока для принудительной коммутации (закрытия тиристора) используют ряд способов, наиболее распространённым является использование конденсатора, который был предварительно заряжен. Цепь с конденсатором подключается к схеме управления тиристором. При подключении конденсатора в цепь произойдёт разряд на тиристор, ток разряда конденсатора будет направлен встречно прямому току тиристора, что приведёт к уменьшению тока в цепи до нулевого значения и тиристор закроется.
Можно подумать, что применение тиристоров неоправданно, не проще ли использовать обычный ключ? Огромным плюсом тиристора является то, что он позволяет коммутировать огромные токи в цепи анода-катода при помощи ничтожно малого управляющего сигнала, поданного в цепь управления. При этом не возникает искрения, что немаловажно для надёжности и безопасности всей схемы.
Схема включения
Схема управления может выглядеть по-разному, но в простейшем случае схема включения тиристорного ключа имеет вид, показанный на рисунке 2.
К аноду присоединена лампочка L, а к ней выключателем К2 подключается плюсовая клемма источника питания G. B. Катод соединяется с минусом питания.
После подачи питания выключателем К2 к аноду и катоду будет приложено напряжение батареи, но тиристор остаётся закрытым, лампочка не светится. Для того чтобы включить лампу, необходимо нажать на кнопку К1, сигнал через сопротивление R будет подан на управляющий электрод, тиристорный ключ изменит своё состояние на открытое, и лампочка загорится. Сопротивление ограничивает ток, подаваемый на управляющий электрод. Повторное нажатие на кнопку К1 никакого влияния на состояние схемы не оказывает.
Для закрытия электронного ключа нужно отключить схему от источника питания выключателем К2. Этот тип электронных компонентов закроется, и в случае снижения напряжения питания на аноде до определённой величины, которая зависит от его характеристик. Вот так можно описать, как работает тиристор для чайников.
Характеристики
К основным характеристикам можно отнести следующие:
Максимально допустимый прямой ток — наибольшая возможная величина тока открытого элемента;
- Максимально допустимый обратный ток — ток при максимальном обратном напряжении;
- Прямое напряжение — падение величины напряжения при максимальном токе;
- Обратное напряжение— наибольшая допустимая величина напряжения в закрытом состоянии;
- Напряжение включения — наименьшее напряжение при котором сохраняется работоспособность электронного устройства;
- Минимальный и максимальный ток управляющего электрода;
- Максимально допустимая рассеиваемая мощность.
Рассматриваемые элементы, кроме электронных ключей, часто применяются в регуляторах мощности, которые позволяют изменять подводимую к нагрузке мощность за счёт изменения среднего и действующего значений переменного тока. Величина тока регулируется изменением момента подачи на тиристор открывающего сигнала (за счёт варьирования угла открывания). Углом открытия (регулирования) называется время от начала полупериода до момента открытия тиристора.
Типы данных электронных компонентов
Существует немало различных типов тиристоров, но наиболее распространены, помимо тех что мы рассмотрели выше, следующие:
- динистор — элемент, коммутация которого происходит при достижении определённого значения величины напряжения, приложенного между анодом и катодом;
- симистор;
- оптотиристор, коммутация которого осуществляется световым сигналом.
Симисторы
Хотелось бы более подробно остановиться на симисторах. Как говорилось ранее, тиристоры могут проводить ток только в одном направлении, поэтому при установке их в цепи переменного тока, такая схема регулирует один полупериод сетевого напряжения. Для регулирования обоих полупериодов необходимо установить встречно-параллельно ещё один тиристор либо применить специальные схемы с использованием мощных диодов или диодных мостов. Все это усложняет схему, делает её громоздкой и ненадёжной.
Вот для таких случаев и был изобретён симистор. Поговорим о нем и о принципе работы для чайников. Главное отличие симисторов от рассмотренных выше элементов заключается в способности пропускать ток в обоих направлениях. По сути, это два тиристора с общим управлением, подключённые встречно-параллельно (рисунок. 3 А).
Условное графическое обозначение этого электронного компонента показано на Рис. 3 В. Следует заметить, что называть силовые выводы анодом и катодом будет не корректно, так как ток может проводиться в любом направлении, поэтому их обозначают Т1 и Т2. Управляющий электрод обозначается G. Для того чтобы открыть симистор, необходимо подать управляющий сигнал на соответствующий вывод. Условия для перехода симистора из одного состояния в другое и обратно в сетях переменного тока не отличаются от способов управления, рассмотренных выше.
Применяется этот тип электронных компонентов в производственной сфере, бытовых устройствах и электроинструментах для плавного регулирования тока. Это управление электродвигателями, нагревательными элементами, зарядными устройствами.
В завершение хотелось бы сказать, что и тиристоры и симисторы, коммутируя значительные токи, обладают весьма скромными размерами, при этом на их корпусе выделяется значительная тепловая мощность. Проще говоря, они сильно греются, поэтому для защиты элементов от перегрева и теплового пробоя используют теплоотвод, который в простейшем случае представляет собой алюминиевый радиатор.