Rich--house.ru

Строительный журнал Rich—house.ru
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Аустенитные нержавеющие стали: структура и свойства

Аустенитная нержавеющая сталь – для чего используется и как получается

Сделать заказ можно по телефону

Наши специалисты с радостью вам помогут

Нержавеющая сталь является универсальным компонентом, который применяется практически во всех областях промышленности. Одной из ее разновидностей является аустенитная нержавеющая сталь . Этот материал получают из высоколегированных сплавов и его основной особенностью является образование равномерного твердого раствора (аустенита) при кристаллизации материала. Монолитная кристаллическая решетка содержит различные легирующие примеси, которые несколько различаются в зависимости от сферы применения материала. Сталь обладает высокой пластичностью и для получения готовых изделий необходимой формы применяется термическая обработка материала.

Состав аустенитной стали

Для того чтобы материал получил необходимые свойства и укрепил гранецентрированную кристаллическую решетку в него добавляются легирующие примеси, которые изменяю свойства стали в целом:

  • Добавление в качестве примеси хрома позволяет поднять коррозионную стойкость материала;
  • Использование в качестве легирующей примеси никеля позволяет значительно усилить жаропрочность готового нержавеющего листа;
  • Для усиления специальных свойств материала дополнительно с основными легирующими металлами применяются углерод, азот, титан, молибден…

Применение аустенитной стали

Основное применение аустенитная сталь нашла:

При непродолжительном нагреве до температуры плавления материал приобретает монолитную структуру. Именно поэтому нержавеющая труба из аустенитной стали соединяется при помощи сварки без образования между шовного пространства. Соответственно структура материала не повреждается и не происходит образование условий для возникновения окислительных процессов.

Материал является стойким к изменению магнитного поля. Это позволяет использовать изделия из аустенитной стали для изготовления точной радиотехнической аппаратуры.

Благодаря образованию стойкой однородной структуры аустенитный нержавеющий металл может быть использован в качестве основного защитного материала при конструировании устройств, предназначенных для работы в сложных условиях под воздействием резких перепадов температур и воздействием сильных электромагнитных полей.

Высокая степень легирования хромом позволяет использовать материал в качестве надежной защиты от коррозии.

Аустенитная сталь: особенности и характеристики

Аустенитные стали имеют ряд особых преимуществ и могут применяться в рабочих средах, отличающихся значительной агрессивностью. Без таких сплавов не обойтись в энергетическом машиностроении, на предприятиях нефтяной и химической промышленности.

  • Описание и характеристики
  • Сплавы, устойчивые к коррозии и перепадам температур
  • Свойства термической обработки

Аустенитные стали — это стали с высоким уровнем легирования, при кристаллизации образуется однофазная система, характеризуемая кристаллической гранецентрированной решеткой. Такой тип решеток не меняется даже под воздействием очень низких температур (около 200 градусов Цельсия). В отдельных случаях имеется еще одна фаза (объем в сплаве не превышает 10 процентов). Тогда решетка получится объемноцентрированной.

Описание и характеристики

Стали разделяют на две группы относительно состава их основы и содержания легирующих элементов, таких как никель и хром:

  • Композиции, в основе которых содержится железо: никель 7%, хром 15%; общее количество добавок — до 55%;
  • Никелевые и железоникелевые композиции. В первой группе содержание никеля начинается от 55% и больше, а во второй — от 65 и больше процентов железа и никеля в соотношении 1:5.

Благодаря никелю можно добиться повышенной пластичности, жаропрочности и технологичности стали, а с помощью хрома — придать требуемую коррозийность и жаростойкость. А добавление других легирующих компонентов позволит получать сплавы с уникальными свойствами. Компоненты подбирают в соответствии со служебным предназначением сплавов.

Для легирования преимущественно используют:

  • Ферритизаторы, стабилизирующие структуру аустенитов: ванадий, вольфрам, титан, кремний, ниобий, молибден.
  • Аустенизаторы, представленные азотом, углеродом и марганцем.

Все перечисленные компоненты расположены не только в избыточных фазах, но и в твердом растворе из стали.

Сплавы, устойчивые к коррозии и перепадам температур

Широкий спектр добавок позволяет создать особые стали, которые будут применены для изготовления компонентов конструкций и будут работать в криогенных, высокотемпературных и коррозионных условиях. Поэтому составы разделяют на три типа:

  • Жаропрочные и жаростойкие.
  • Стойкие к коррозии.
  • Устойчивы к воздействию низких температур.

Жаростойкие сплавы не разрушаются под влиянием химикатов в агрессивных средах, могут использоваться при температуре до +1150 градусов. Из них изготавливают:

  • Элементы газопроводов;
  • Арматуру для печей;
  • Нагревательные компоненты.

Жаропрочные марки на протяжении длительного времени могут оказывать сопротивление нагрузкам в условиях повышенных температур, не теряя высоких механических характеристик. При легировании используются молибден и вольфрам (на каждое дополнение может отводиться до 7%). Для измельчения зерен в небольших количествах применяется бор.

Аустенитные нержавеющие стали (стойкие к коррозии) характеризуются незначительным содержанием углерода (не более 0,12%), никеля (8−30%), хрома (до 18%). Проводится термическая обработка (отпуск, закалка, отжиг). Она важна для изделий из нержавейки, ведь дает возможность хорошо держаться в самых разных агрессивных средах — кислотных, газовых, щелочных, жидкометаллических при температуре 20 градусов и выше.

У хладостойких аустенитных композициях содержится 8−25% никеля и 17−25% хрома. Применяют в криогенных агрегатах, но стоимость производства существенно возрастает, потому используются очень ограниченно.

Свойства термической обработки

Жаростойкие и жаропрочные марки могут подвергаться разным типам тепловой обработки, чтобы нарастить полезные свойства и модифицировать уже имеющуюся структуру зерен. Речь идет о числе и принципе распределения дисперсных фаз, величине блоков и собственно зерен и тому подобное.

Отжиг такой стали помогает уменьшить твердость сплава (иногда это важно при эксплуатации), а также устранить излишнюю хрупкость. В процессе обработки металл нагревается до 1200 градусов на протяжении 30−150 минут, потом его необходимо как можно быстрее охладить. Сплавы со значительным количеством легирующих элементов, как правило, охлаждаются в маслах или на открытом воздухе, а более простые — в обычной воде.

Нередко проводится двойная закалка. Сначала выполняют первую нормализацию составов при температуре 1200 градусов, затем следует вторая нормализация при 1100 градусах, что позволяет значительно увеличить пластические и жаропрочные показатели.

Добиться повышения жаропрочности и механической прочности можно в процессе двойной термической обработки (закалка и старение). До эксплуатации проводится искусственное старение всех жаропрочных сплавов (то есть выполняется их дисперсионное твердение).

Аустенитные стали

Аустенит — это твердый однофазный раствор углерода до 2 % в y-Fe. Главная его особенность заключается в последовательности, в которой располагаются атомы, т. е. в строении кристаллической решетки. Она бывает 2 типов:

  1. ОЦК a-железо (объемно — центрированная – по одному атому располагается в 8-ми вершинах куба и 1 в центре).
  2. ГЦК y-железо (гране-центрированная по одному атому находится в 8-ми вершинах куба и по одному находятся на каждой из 8-ми граней, всего 16 атомов).

Простыми словами: аустенит — это структура или состояние металла, определяющая его технические характеристики, которые получить в другом состоянии невозможно, т.к. меняя строение, металл изменяет и свойства. Без аустенита невозможна такая технология как закалка, которая является самой распространенной, дешевой, технически доступной, а в некоторых случаях и единственной технологией упрочнения металла.

Свойства аустенитных сталей и где их используют

Само состояние железа в Y-фазе (аустенит) уникально, благодаря ему металл является жаропрочным (+850 ºC), холодостойким (-100 ºC и ниже t), способен обеспечивать коррозионную и электрохимическая стойкость и другие важнейшие свойства, без которых были бы немыслимы многие технологические процессы в:

  • нефтеперерабатывающей и химической отраслях;
  • медицине;
  • космическом и авиастроении;
  • электротехнике.

Жаропрочность — свойство стали не менять своих технических свойств при критических температурах с течением времени. Разрушение происходит при неспособности металла противостоять дислокационной ползучести, т. е. смещению атомов на молекулярном уровне. Постепенно происходит разупрочнение, и процесс старения металла начинает происходить все быстрее. Это происходит с течением времени при низких или высоких температурах. Так вот, насколько этот процесс растянется во времени — это и есть способность металла к жаропрочности.

Коррозионная стойкость — способность металла противостоять разрушению (дислокационной ползучести) не только с течением времени и при криогенных и высоких температурах, но еще и в агрессивных средах, т. е. при взаимодействии с веществами активно вступающих в реакцию с одним или несколькими компонентных элементов. Разделяют 2 типа коррозии:

  1. химическая — окисление металла в таких средах, как газовая, водная, воздушная;
  2. электрохимическая — растворение металла в кислотных средах, имеющих положительно или отрицательно заряженные ионы. При разности потенциалов между металлом и электролитом, происходит неизбежная поляризация, приводящая к частичному взаимодействию двух веществ.

Холодостойкость — способность сохранять структуру при криогенных температурах с течением длительного времени. Из-за искажения кристаллической решетки структура стали холодостойкой способна принимать строение присущее обычным малолегированным сталям, но уже при очень низких температурах. Но этим сталям присущ один недостаток — иметь полноценные свойства они могут только при минусовых температурных значениях, t — ≥ 0 для них недопустимы.

Методы получения аустенита

Аустенит — это структура металла, которая в малолегированных марках возникает в диапазоне температур 550-743 ºC. Как можно сохранить эту структуру и, соответственно, свойства за границами этих t? — Ответ: методом легирования. При наполнении решетки аустенита атомами других элементов, образуются структурные искажения, а процесс восстановления ОЦК–решетки (естественное строение при нормальных температурах) сдвигается на сотни градусов.

Как эти свойства проявляются и в каком состоянии, зависит от добавочных т. е. легирующих элементов и термической обработки детали, которую она может дополнительно получать. Причем влияют не только элементы, но их соотношение, так аустенитная сталь подразделяется на:

  • хромомарганцевую и хромникельмарганцевую (07Х21Г7AН5, 10X14AГ15, 10X14Г14H4T);
  • хромоникелевую (08Х18Н12Б, 03Х18Н11, 08X18H10T, 06X18Н11, 12X18H10T, 08X18H10;
  • высококремнистую (02Х8Н22С6, 15Х18Н12C4Т10);
  • хромоникельмолибденовую (03Х21Н21М4ГБ, 08Х17Н15М3Т, 08X17Н13M2T, 03X16H15M3, 10Х17Н13М3Т).

Химические элементы и их влияние на аустенит

Пособников у аустенита немного, использоваться они могут как совместно, так и частично, в зависимости от того какие свойства нужно получить:

  • Хром — при его содержании более 13 % на поверхности образует оксидную пленку, толщиной 2-3 атома, которая исключает коррозию. В аустените хром находится свободном состоянии, при условии минимального содержания углерода, так как тот сразу образует карбид Cr23C6, что приводит к сегрегации хрома и обедняет большие участки матрицы, делая ее доступной для окисления, сам карбид Cr23C6 способствует межкристаллитной коррозии аустенита.
  • Углерод (максимальное его значение не более 10 %). Углерод в аустените находится в соединенном состоянии, основная его задача — образование карбидов, которые обладают предельной прочностью.
  • Никель — основной элемент, который стабилизирует желаемую структуру. Достаточно содержание 9-12 %, чтобы перевести сталь в аустенитный класс. Измельчает и сдерживает рост зерна, что обеспечивает высокую пластичность;
  • Азот заменяет атомы углерода, присутствие которых в сталях электрохимически стойких снижено до 0,02 %;
  • Бор — уже в тысячных процентах увеличивает пластичность, в аустените, измельчая его зерно;
  • Кремний и марганец не указываются как основные легирующие элементы в маркировке, но они являются основными или обязательными легирующими элементами аустенита, которые придают прочность и стабилизируют структуру.
  • Титан и ниобий — при температуре выше 700 °С карбид хрома распадается и образуется стойкий TiC и NiC, который не вызывает межкристаллитную коррозию, но их использование не всегда оправданно холодостойких сталях, т.к. оно повышает границу распада аустенита.

Термическая обработка

Аустенит подвергают обработке только по необходимости. Основные операции это высокотемпературный отжиг (1100-1200 °С в течение 0,5-2,5 часа) при котором устраняется хрупкость. Далее закалка с охлаждением в масле или на воздухе.

Аустенитную сталь, легированную алюминием, подвергают двойной закалке и двойной нормализации:

  1. при t 1200 °С;
  2. при t 1100 °C.

Механическая окончательная обработка проводится до закалки, но после отжига.

Изделия из аустнитных сталей

Полуфабрикаты, в которых поставляется сталь, представляет собой:

  • Листы, толщиной 4-50 мм с гарантированным химическим составом и механическими свойствами.
  • Поковки. Ввиду сложной обработки этих сталей методом сварки, изготовление некоторых деталей представляет собой получение практически готовых изделий уже на этапе литья. Это роторы, диски, турбины, трубы двигателей.

Методы соединения аустенита:

  • Припой – очень сильно ограничивает использование металла при t более 250 °С;
  • Сваривание – возможно в защитной атмосфере (газовой, флюсовой), при последующей термической обработке.
  • Механическое соединение – болты и другие крепежные элементы, изготовленные из аналогичного материала.

Аустенитные стали одни из самых дорогих технических сталей, использование которых ограничивается узкой специализацией оборудования.

Аустенитная сталь

Аустенитная сталь – одна из модификаций железа с высокой степенью легирования. Обладает гранецентрированной кристаллической решеткой. Она легко сохраняет свою структуру даже при очень низких температурах. Аустениты располагают высокими показателями прочности. Он устойчивы как высоким температурам и большим нагрузкам.

Свойства аустенитных сталей

Сталь аустенитного класса образует 1-фазную структуру во время процесса кристаллизации. Ее кристаллическая решетка не изменяется даже при резком охлаждении до отрицательных температур (–200 °C). Основными компонентами аустенитных железных сплавов являются хром и никель. От доли их содержания зависят технологичность, пластичность, прочность и жаростойкость материала. Для легирования применяют следующие материалы:

  1. Ферритизаторы: титан, кремний, молибден, ниобий. Они стабилизируют структуру аустенитов и формируют объемноцентрированную кубическую решетку.
  2. Аустенизаторы: азот, марганец и углерод. Они присутствуют в избыточных фазах, формирующихся во время термообработки железных сплавов.

По свойствам материалов аустенитные модификации железа делятся на следующие типы:

  1. Коррозионностойкие (нержавеющие). В их состав входит хром (18%), никель (30%) и углерод (0,25%). Эти высоколегированные стали применяются в промышленном производстве с 1910 г. Их главным преимуществом является устойчивость к коррозии. Материал сохраняет это свойство даже при сильном нагревании, что обусловлено низким содержанием углерода. Коррозионностойкие железные сплавы производятся, согласно ГОСТ 5632-2014. В них могут присутствовать добавки из кремния, марганца, и молибдена.
  2. Жаростойкие. Они обладают ГЦК-решеткой и устойчивы к воздействию высоких температур. Этот материал можно нагревать до 1100 °C. Жаропрочные аустенитные стали применяются при изготовлении печных устройств, турбин роторов электростанций и иных приборов, работающих при помощи дизельного топлива. При производстве данной модификации железа используются дополнительные добавки из бора, ниобия, ванадия, молибдена и вольфрам. Эти химические элементы повышают жаропрочность материала.
  3. Хладостойкие. В составе этих высоколегированных сталей присутствуют хром (19%) и никель (25%). Главным достоинством материала является высокая вязкость и пластичность. Также эта модификация железа располагает высокой стойкостью к коррозии. Хладостойкие металлы сохраняют данные свойства даже при резком понижении температуры. Их главным недостатком является низкая прочность во время работы при комнатной температуре.

Аустенитная высоколегированная сталь является одной из самых дорогих модификаций железа, потому что в них содержится большое количество дорогостоящих материалов: хрома и никеля. Также на ее стоимость влияет количество дополнительных легирующих компонентов, позволяющих создавать железные сплавы с особыми свойствами. Дополнительные элементы легирования подбираются в зависимости от сложности работ, где применяются аустенит.

В аустенитных сталях могут осуществляться следующие разновидности превращений:

  1. Образование феррита при нагреве железного сплава до высоких температур.
  2. При нагреве до температуры 900 °C из аустенита начинают выделяться избыточные карбидные фазы. Во время этого процесса на аустенитной поверхности образуется межкристаллическая коррозия, постепенно разрушающая материал.
  3. Во время охлаждения аустенита до температуры 730 °C происходит эвтектоидный распад. В результате образуется перлит – модификация железных сплавов. Его микроструктура представлена в виде небольших пластин или округлых зерен.
  4. При резком понижении температуры металлического изделия формируется мартенсит – микроструктура, состоящая из пластин игольчатого или реечного вида.

Время, требуемое для превращения аустенитной стали в иные модификации железа, определяется содержанием углерода в твердом растворе и количеством дополнительных легирующих компонентов. Чем ниже эти показатели, тем быстрее охлаждается металлическое изделие.

Методы получения аустенита

Стали аустенитного класса образуются в процессе появления и роста зерен исходной микроструктуры металлического изделия. Формирование аустенита осуществляется на поверхности раздела фаз феррита и карбида. Карбидные частицы постепенно растворяются в твердом растворе аустенита.

Получить аустенит также можно из эвтектоидной модификации железа, состоящей из феррита и цементита. Для этого исходную металлическую заготовку необходимо нагреть до температуры 900 °C. Важно, чтобы в сплаве присутствовала минимальная концентрация углерода, равняющаяся 0,66%. Во время этого процесса феррит превращается в аустенит, а цементит полностью растворяется. В итоге сформируется нержавеющая аустенитная сталь.

При производстве металлических заготовок из аустенитных сталей, стабилизированных титаном, необходимо в вакуумно-индукционной печи переплавить металл. Полученный расплав выдерживают в течение длительного периода для его деазотирования. Количество времени, требуемого для этого процесса, зависит от массы исходного изделия. После выдержки в расплавленный аустенит вводится смесь из титана и нитридообразующих химических элементов.

Для получения устойчивой аустенитной структуры в состав исходной модификации железа добавляются хром и никель. При этом важно соблюдать пропорции. Процентное содержание никеля должно составлять не менее 20%, хрома – не более 19%. Эти химические вещества повышают устойчивость аустенита к высоким температурам и большим нагрузкам. Также они увеличивают выделение карбидов. Материал становится коррозионностойким.

При добавлении хрома и никеля в состав железной модификации нужно выдерживать материал в течение более длительного времени. Очень часто в полученный раствор добавляется смесь из молибдена или фосфора. Эти химические вещества увеличивает вязкость и усталостную прочность железного сплава. Для снижения износа полученного аустенита используют дополнительные легирующие материалы и энергоемкие карбиды.

Применение сплавов

Стали аустенитного класса используются при изготовлении устройств, работающих при высоких температурах, начиная от 200 °C: парогенераторов, роторов, турбин и сварочных механизмов. Недостатком использования аустенита в этих механизмах является низкая прочность металла. При длительном контакте железных сплавов различными гидроокисями могут образоваться дополнительные трещины, что приведет к поломке рабочих поверхностей устройств. Устранить этот недостаток можно при добавлении в раствор железа дополнительных химических элементов: ванадия и ниобия. Они формируют карбидную фазу, увеличивающих показатели прочности стали.

Нержавеющие аустенитные стали используются в механизмах, функционирующих в сложных условиях и при сильных перепадах температурных показателей. Чаще всего они используются при сварке коррозионностойких труб. Во время этого процесса между крепежными элементами образуется шовное пространство. При нагревании нержавеющих труб из аустенита до температуры плавления они приобретают монолитную структуру, защищающей металл от процессов окисления и высоких перепадов температур.

Также аустенитные стали обладают высокой устойчивостью к электромагнитным излучениям. Поэтому ее применяют при производстве отдельных деталей для радиоэлектронного оборудования. Аустенит улучшает прочность механизмов радио и не теряет свои свойства при изменениях структуры магнитного поля. По этой причине радиотехническая аппаратура будет легко принимать необходимые сигналы.

Аустенитные сплавы железа нашли широкое применение в производстве механизмов, работающих в водной среде. Нержавеющая сталь устойчива к образованию коррозии. Она используется в качестве защитного материала. При правильном соотношении хрома и никеля аустенит может сформировать тонкий слой, снижающим влияния водной среды на рабочую поверхность металлического приспособления. В результате снижается износ устройства. Но при значительном вымывании никеля материал полностью теряет устойчивость к коррозии.

В современных корпусах турбин также используются аустенитные стали с большим пределом текучести. Они позволяют избежать коробления данного устройства и улучшить показатели его прочности. Благодаря наличию крупнозернистой структуры, при помощи аустенита с высоким пределом текучести также можно укрепить конструкцию ротора турбины. Недостатком этой технологии является значительное повышение стоимости механизмов из-за использования большого количества дорогой аустенитной стали.

Читать еще:  Для безопасности и комфорта – перила из металла

Марки аустенитной стали

Регламент изготовления аустенита определен в ГОСТ 5632-2014. В нем указываются следующие марки сталей аустенитного класса:

  • 12Х18Н9Т;
  • 08Х18Н10Т;
  • 12Х18Н10Т;
  • 12Х18Н9;
  • 17Х18Н9;
  • 08Х18Н10;
  • 03Х18Н11.

Нержавеющая сталь — марки, виды и характеристики

Нержавеющие (коррозионностойкие) стали – сплавы на основе железа и углерода, содержащие, помимо основных компонентов и стандартных примесей, легирующие элементы. Основной добавкой является хром (Cr), которого в коррозионностойком сплаве должно быть не менее 10,5%. В таком количестве Cr оказывает существенное влияние на диаграмму состояния «железо-углерод». Хром и никель, также в большинстве случаев присутствующие в нержавеющих сталях, повышают не только устойчивость металла к коррозии, но и другие технические характеристики.

Правила маркировки коррозионностойких сталей

Обозначение состоит из цифр и букв. Двузначное число в начале маркировки – количество углерода в сотых долях процента. Далее следуют буквы, характеризующие определенные легирующие элементы. После них ставятся цифры, равные процентному содержанию легирующих элементов, округленному до целого числа. Если процент добавки находится в пределах 1-1,5, то после буквы цифра не ставится. Для условного обозначения легирующих компонентов в российской нормативной документации используется русский алфавит:

  • Х – хром;
  • Н – никель;
  • Т – титан;
  • В – вольфрам;
  • Г – марганец;
  • Д – медь;
  • М – молибден.

Группы коррозионностойких сталей по структуре

Структура коррозионностойких сталей, их свойства и области применения определяются процентным содержанием углерода, перечнем и количеством легирующих добавок. По структуре нержавейка делится на несколько типов. Основные: ферритная, мартенситная, аустенитная. Существуют промежуточные варианты.

Ферритная

Эта группа относится к малоуглеродистым сплавам – C до 0,15%. Содержание хрома – до 30%. Объемнокристаллическая структура обеспечивает сочетание достаточно высокой прочности и пластичности. Нержавеющие стали ферритных марок относятся к ферромагнитным.

  • способность к холодной деформации;
  • основной тип термообработки – отжиг, снимающий наклеп;
  • хорошая коррозионная стойкость;
  • относительно невысокая стоимость.

Основная причина потери рабочих характеристик сталями ферритного класса – межкристаллитная коррозия (МКК), в результате которой разрушение происходит по границам зерен. Для устранения этого негативного явления избегают резкого охлаждения металла от +800°C, проводят стабилизирующий отжиг, находят оптимальный баланс между содержанием углерода и хрома. Полностью устранить склонность к МКК позволяет введение карбидообразующих элементов – титана и ниобия.

По стандарту AISI ферритные стали относятся к серии 400:

  • 403-420 – содержание хрома 11-14%, никель отсутствует;
  • 430 и 440 – 15-18% C, никель отсутствует;
  • 630 – содержит 3-5% никеля. Хорошо обрабатывается, устойчива к коррозии в различных средах, схожа по свойствам с 08Х18Н10.

Эти материалы используются при производстве широкого сортамента труб, листов, профилей.

Таблица марок нержавеющих сталей ферритного класса по ГОСТу и AISI, основные сферы использования

Марка по ГОСТу 5632Марка по AISIОбласти применения
08Х13409Столовые приборы
12Х13410Емкости для жидких алкогольсодержащих продуктов
12Х17430Емкости для высокотемпературной обработки пищевой продукции

Мартенситная

К этой группе относятся металлы с содержанием хрома до 17%, углерода – до 0,5% (в отдельных случаях – выше). Мартенсит – структура, получаемая путем закалки заготовки с последующим отпуском. Для нее характерно сочетание высокой твердости, прочности, упругости и устойчивости к коррозии. Сплавы используются при производстве ответственной металлопродукции, предназначенной для работы в агрессивных средах. Это пружины, валы, ножи, фланцы. При повышении содержания C в структуре появляется карбидная фаза, обеспечивающая высокую твердость и износостойкость. Проведение низкого отпуска после закалки (+200…+300°C) обеспечивает высокую твердость – 50-52 HRC, высокого (+500…+600°С) – меньшую твердость (28-30HRC) и большую вязкость. Закалка производится при температурах +950…+1050°C.

Таблица марок мартенситных сталей по ГОСТу и AISI, их основные области применения

Марка по ГОСТу 5632Марка по AISIОбласти применения
20Х13420Кухонное оборудование
30Х13
40Х13
14Х17Н2 (мартенситно-ферритная)431Детали компрессорных установок, оборудование, эксплуатируемое в агрессивных средах и при пониженных температурах

Аустенитный класс

Этот обширный класс коррозионностойких сталей (по AISI – класс 300 и представитель класса 200 – AISI 201) обладает высокой устойчивостью к коррозии, пластичностью в холодном и горячем состоянии, прочностью, хорошей свариваемостью, способностью контактировать без разрушения с азотной кислотой. Немагнитность существенно расширяет области применения материала. Экономически выгодным является сочетание 18% Cr и 8% Ni. При необходимости получения стабильного состояния аустенита количество никеля повышают до 9%. Такие стали бывают нестабилизированными и стабилизированными. Стабилизированная группа легируется титаном и ниобием, снижающими склонность аустенитных марок к межкристаллитной коррозии.

Закалка осуществляется при температурах +1050…+1100°C с быстрым охлаждением, которое закрепляет состояние пресыщенного твердого раствора. Особенность этой группы – отсутствие упрочнения при закалке. В данном случае этот вид ТО является смягчающей операцией, направленной на снятие последствий наклепа. С этой же целью может применяться отжиг. Закалке подвергают мелкие детали, отжигу – массивные.

Таблица марок аустенитных сталей по ГОСТу и AISI, их основные области применения

Марка по ГОСТу 5632Марка по AISIОбласти применения
12Х18Н10Т321Технологические линии химической индустрии и предприятий нефтепереработки
08Х18Н10304Технологические трубопроводные системы в химической и пищевой индустрии, ограниченный ассортимент посуды, не включающий изделия для горячей обработки пищи
08Х17Н13М2316Технологическое оборудование химической индустрии, использование в качестве «пищевого» материала
12Х15Г9НД201Емкости и трубопроводы, контактирующие с органическими кислотами и умеренно агрессивными средами

Краткие характеристики некоторых видов аустенитных нержавеющих сталей:

  • 304 – распространенный представитель этого класса. Прекрасно поддается глубокой вытяжке, поэтому применяется для изготовления объемных изделий. Подвержен щелевой коррозии в теплых средах с повышенным содержанием хлора, поэтому не рекомендуется к применению в морской воде и в отраслях, в которых используются чистящие составы с хлором.
  • 321 и 347 – усовершенствованные варианты марки 304, отличающиеся добавками ниобия или титана.
  • 316 – проявляет максимальную устойчивость к коррозии среди массово используемых коррозионностойких сталей.
  • 201 – относительно недорогой аналог сталей 304 и 321. Показывает хорошие рабочие характеристики в средах средней агрессивности, благодаря сбалансированному химическому составу и новым технологиям изготовления.

Аустенитные нержавеющие стали: структура и свойства

Одной из востребованных разновидностей нержавеющей стали остается аустенитная нержавеющая. Как следует из названия, такого типа материал устойчив к возникновению коррозии. Защитный эффект достигается путем добавления в состав обычных дополнений. Здесь в качестве таких материалов выступает хром и никель. Хрома в составе 18%, а никеля 10%. На поверхности создается тонкий слой, который препятствует внешнему воздействию агрессивных сред.

Как уже было сказано выше, качества стали зависит от двух центральных добавок, процент которых в составе наиболее высок:

  • Хром. Процент содержания хрома держится на уровне до 18%. Элемент обеспечивает повышенную устойчивость к возникновению коррозии при использовании в различных средах. Помимо этого, элемент гарантирует возможность для обеспечения пассивации. Если говорить про потенциально опасные среды, то сталь с добавлением хрома может держаться даже в окислительных. Кислота может отличаться по уровню концентрации и нагрева. Таким образом, удается обеспечивать длительное использование элементов без потери качества.
  • Никель. Такого материала в составе содержится в среднем 10%. При этом, содержание элемента не может быть менее 9% и более 12%. Никель добавлен в состав не случайно. С ним повышается технологичность, а склонность к появлению существенно снижается. Более того, материал приобретает высокие служебные свойства. Подобная рецептура помогает выдерживать не только агрессивную кислотную среду, но и перепады температур – как повышенной, так и пониженной.

Состав различных типов стали может отличаться – варьируется содержание элементов, а вместе с ним и многие другие эксплуатационные параметры.

Особенности фазовых превращений в сталях аустенитного типа

Существует сразу несколько разновидностей превращений, которые могут протекать в хромоникелевого типах стали.

Среди них выделяются 3:

  • образование в аустенитной основе δ-феррита при высокотемпературном нагреве;
  • выделение избыточных карбидных фаз и σ-фазы при нагреве в интервале в интервале 450-900 ºС;
  • образование α-фазы мартенситного типа при холодной пластической деформации или охлаждении ниже комнатной температуры.

Говоря о фазовых превращениях в стали, нельзя не коснуться такой важной темы, как появление межкристаллической коррозии. Склонность к ней особенно ярко проявляется, когда происходит выделение карбидных фаз. Это отражается на том, как будет проводиться оценка стали. Стоит отталкиваться от термокинетических параметров образования в стали карбидов.

Для каждой разновидности материала определяется время, которое требуется для начала процесса межкристаллической коррозии. Оно привязано к проценту содержания углерода в твердом растворе. Чем выше содержание углерода, тем при большей температуре будет возникать межкристаллическая коррозия. Таким образом, удается применять различные варианты стали в областях, которые подвержены высоким температурам.

Зависимость времени и процента содержания углерода представлено в таблице ниже:

Содержание углерода в твердом растворе

Время появления межкристаллической коррозии

Свыше 100 минут.

Чем меньше процент содержания углерода, тем ниже будет температура, связанная с показателями минимальной изотермической выдержки. Таким образом, при покупке стоит сразу понимать, в каких температурных условиях вы будете использовать такого типа материал. Межкристаллическая коррозия способна оказать серьезное негативное воздействие на материал и привести к его постепенному разрушению, потому выбирать стоит внимательно, ориентируясь на данные приведенной выше таблицы.

Особенности процесса сварки сталей аустенитного типа

Вопрос о том, как сваривать различные виды нержавеющих материалов всегда остро стоит перед покупателями. Проведение сварки предполагает соблюдение правил, защищающих от коррозийного растрескивания и измерения параметров материала.

То, насколько безопасной для материала будет сварка, определяет уже упомянутый параметр межкристаллической коррозии. Чем выше уровень стойкость, тем более толстые сечения можно будет сваривать между собой.

В ситуации с необходимостью проведения варки рассматривается способность стали выдерживать повышенные температуры. Межкристаллическая коррозия при 500-600 градусах достигается только в том случае, если содержание углерода не превышает показатель в 0,006%. Это нужно учитывать при работе, в том числе, при использовании в областях с высокими параметрами нагрева.

Как дополнительно стабилизировать сталь?

Вопрос о стабилизации состояния стали не менее актуален, чем о сварке. Чтобы обеспечить стабилизацию применяется титан и ниобий. Введение в состав сплава таких элементов направлено на появление карбидных фаз. На то, какого типа карбиды будут выделены в процессе использования, напрямую влияет температура. Чтобы получить специальные карбиды, потребуется вести работы при температуре более 700 ºС. Важно понимать, что появление специальных карбидов, таких, как TiC и NbC не ведет к повышению склонности к межкристаллической коррозии. Таким образом, стабилизировав состояние нержавеющей стали. Можно сделать её прочнее и защитить от целого ряда негативных потенциальных последствий использования.

Особенности воздействия азота, хрома и никеля на состояние стали и её характеристики

Помимо уже упомянутого углерода, существует и еще ряд элементов, напрямую влияющих на свойства нержавеющей стали такого типа. Один из центральных – азот. Он появляется при изометрической выдержке или охлаждении. Азот способен замещать в составе карбидов углерод. При изготовлении коррозионно-стойких разновидностей материала это свойство остается очень важным. И главная причина – не столь сильное влияние азота на склонность к межкристаллической коррозии. Чтобы такая склонность появилась, содержание азота в структуре должно быть не менее 0,15%. Введение азота в структуру способно повысить прочность материала. Это используется на производстве для увеличения продолжительности срока службы и эксплуатационных характеристик.

О влиянии хрома на состояние материала уже говорилось выше. Рассмотрим содержание материала в контексте его взаимодействия с углеродом. Здесь существует пропорция – чем больше хрома, тем меньше растворимость углерода. Повышение процента хрома актуально в том случае, когда нужно упростить процесс выдерживания карбидной фазы.

При введении хрома уменьшается такой параметр, как ударная вязкость. Это объясняется с тем, что по границам зерен начинает образовывать карбидная секта.

Применение хрома – это еще один способ снизить склонность материала к развитию межкристаллической коррозии. Чем более хромированная перед вами сталь, тем лучше она будет выдерживать коррозийное воздействие.

Помимо азота и хрома, значимым в работе с углеродом остается и никель. Он также снижает растворимость углерода и ударную вязкость материала. Как и в случае с хромом, повышение концентрации никеля улучшает показатели стали. В том числе, в вопросе противодействия потенциальном образовании межкристаллической и других типов коррозии.

Главные особенности легирующих элементов

В стали содержится большое количество, так называемых, легирующих элементов. Они оказывают влияние на саму структуру материала, особенно при нагревах до высоких температур. Все представленные легирующие элементы подразделяются на две центральные разновидности. Среди них:

Вопрос о присутствии феррита стоит рассматривать на примере дельта-феррита. Его наличие в структуре дает отрицательный эффект и снижается технологичность. При появлении дельта-феррита сложно будет создавать прочные и защищенные от негативного воздействия изделия при прокатке, штамповке и ковке – везде, где применяются высокие температуры и повышенное давление на создаваемые элементы.

То, сколько феррита будет в стали, зависит от содержания никеля и хрома. В зависимости от группы сталей отличается и склонность к образованию дельта-ферритта. Среди стабильных материалов называют Х18Н11 и Х18Н12 марки. Остальные в той или иной степени меняют свою структуру при нагреве до высоких температур и оказываются склонными к появлению ферритов.

Помимо феррита, важным остается и образование аустенита. Чем больше в материале никеля, азота, углерода и хрома, тем меньше вероятность начала мартенситного превращения в результате снижения температур и различных проявления пластической деформации. Сложнее определить влияние таких элементов как ниобий и титан, традиционно связываемых с улучшением качества стали и её стабилизацией. В твердом растворе элементы повышают устойчивость к мартенситному превращению. Важным фактором здесь оказывается связь присутствующих элементов. Если они входят в состав карбонитридов, тогда температура мартенситного превращения оказывается выше.

Основные возможности и требования к термической обработке сталей

Решение вопроса о правильной термической обработке стали связано с определением её марки и состава. Для хромоникелевых аустенитных сталей возможно два варианта обработки – закалка и стабилизирующий обжиг.

Сами параметры отличаются для сталей, которые уже прошли стабилизацию с введением титана и ниобия или же остались без стабилизации. При использовании закалки удается достичь большего уровня защиты от появления межкристаллической коррозии. Сама сталь при этом становится прочнее и лучше защищается от внешнего воздействия агрессивных сред – это стоит учитывать при выборе.

Процесс стабилизирующего отжига также направлен на улучшение состояния материала. В частности, он влияет на состояние карбидов хлора. Главная цель использования – перевести карбиды хлора в состояние, которое не будет представлять опасности появления межкристаллической коррозии. Помимо этого, процесс помогает перевести карбиды хлора в специальные карбиды для стабилизированных сталей.

Рассмотрим оба процесса более подробно:

1. Закалка. Этот процесс предполагает нагрев выше той температуры, при которой карбиды хлоров начинают растворяться. После того, как нагрев до установленных показателей был произведен, начинается быстрое охлаждение. Чем выше в стали содержание углерода, тем выше будут температуры, необходимые для его обработки. Если рассматривать минимальные и максимальные, нагрев не должен быть до температуры менее 900 градусов. В то же время при закалке редко повышается температура до более чем 1100 градусов Цельсия.

Закалка напрямую связана с таким понятием, как длительность выдержки. Этот параметр отличается в зависимости от типа материала и температуры, до которой они нагреваются. Учитываются показатели толщины.

После того, как выдержка была произведена, происходит не менее значимый процесс – охлаждение. Оно обязательно должно быть быстрым. Сам принцип охлаждения отличается для стабилизированных и нестабилизированных типов стали с разным содержанием углерода. Они пользуют варианты с охлаждением в воде и в воздухе.

2. Стабилизирующий отжиг. Еще одна важная разновидность процессов, которым подвергается сталь для улучшения эксплуатационных показателей. Процесс отличается в зависимости от того, в каком типе стали он проводится.

  • Для нестабилизированных. Температурный интервал отжига варьируется между температурой стандартного нагрева при провидении закалки и той отметки, при которой у материала начинается образовываться межкристаллическая коррозия. На то, насколько велик будет такой интервал, влияет содержание в стали добавок. В частности, концентрации хрома.
  • Для стабилизированных. В таких сталях отжиг ведется специально для того, чтобы перевести карбиды хрома в другое состояние. Хром освобождается и таким образом стойкость материала к коррозии существенно увеличивается. Температура проведения процедуры редко превышает 950 градусов.

Особенность коррозийной стойкости при использовании в кислотных средах

Одна из причин, по которым аустенитные стали получили большое распространение, оказывается стойкость к использованию материала в азотной кислоте. Здесь показатели меняются при различном уровне стойкости и меняются в зависимости от того, какая разновидность стали была выбрана.

Для лучшего отражения показателей, при которых материал получает первый балл стойкости. Мы составили приведенную ниже таблицу:

Тип кислотной среды с процентным содержанием

Аустенитные стали

(стали аустенитного класса) : общая характеристика

Еще страницы по теме » Аустенитные стали (стали аустенитного класса)» :

К аустенитному классу относятся высоколегированные стали, образующие пpи кристаллизации преимущественно однофазную аустенитную структуру γ-Fe c гранецентрированной кристаллической (ГЦК) рeшеткой и сохраняющие еe при охлаждении дo криогенных температур. Кoличество другой фазы — высоколегированного феррита (δ-Fe с объемноцентрированной кристаллической (ОЦК) решеткой) изменяется от О до 10 %. Они содержат 18 . 25 % Сг, обеспечивающего жаро- и коррозионную стойкость, а также 8. 35 % Ni, стабилизирующего аустенитную структуру и повышающего жаропрочность, пластичность и технологичность сталей в широком интервале температур. Этo пoзволяет применять аустенитные стали в качествe коррозионно-стойких, жаропрочных, жаростойких, криогенных конструкционных материалов в химических, теплоэнергетических и атомных установках, гдe oни подвергаются совместному дeйствию напряжeний, высоких температур и агрессивных сред. Химичeский состав основных коррозионно-стойких и жаропрочных сталей привeден в таблицах 1 и 2.

В аустенитных сталях наряду с хромом и никелем могут находиться в твердом растворе или избыточных фазах и другие легирующие элементы: аустенитизаторы (углерод, азот, марганец) и ферритизаторы (титан, ниобий, молибден, вольфрам, кремний, ванадий), улучшающие указанные служебные свойства и действующие на стабильность аустенитной структуры эквивалентно хрому и никелю.

Ферритизаторы способствуют формированию высоколегированного феррита (δ-Fe) с ОЦК-решеткой; аустенитизаторы стабилизируют аустенитную структуру (γ-Fe) с ГЦК-решеткой. Эквивалентное содержание хрома и никеля (в %) подсчитывают по следующим формулам:

Сrэкв = %Сг + 2•(%Мо + %Nb + %AI) + 1,5•(% Si + % W) + 5•% Ti + 1•%V;

Niэкв = % Ni + 0,5•% Мn +30•(% С + % N).

Таблица 1. Жаропрочные аустенитные стали : химический состав и применение для сварных конструкций .

Марка сталиМассовая доля, %Применение
CSiMnCrNiWNbMoTiПрочих элементов
08Х16Н9М20,080,601,0.. 1,515,5.. 17,08,5.. 10,01,0.. 1,5Паропроводы
10Х14Н16Б (ЭП 694)0,07- 0,121,0.. 2,013,0 .. 15,014,0 .. 17,00,9. 1,3
10X18H12T0,120,7517,0 .. 19,011,0 .. 13,00,02
10X14H14B2M (ЭП 257)0,150,800,7013,0 .. 15,013,0 .. 16,03,0.. .4,00,45. 0,60
10Х16Н14В2БР (ЭП 17)0.07- 0,120,601,0. 2,015,0 .. 18,013,0 .. 15,02,0. 2,750,9. 1,3Трубы, поковки
09Х14Н18ВБР (ЭП 695Р)0,6013,0 .. 15,018,0. 20,0Трубы, листовой прокат
10X15H18B4T (ЭП501)0,500,5 .. 1,014,0 .. 16,04,0. 5,0Паропроводы
10Х14Н18В2БР1 (ЭП 726)0,601,0. 2,013,0 .. 15,02,0. 2,750,9. 1,3Роторы, диски, турбины
20X23H13 (ЭП 319)0,201,02,022,0. 25,012,0. . 15,00.025 ВКамеры сгорания
08X23H180,117.0. . 20,0
1Х15Н25М6А (ЭП395)0,120,5. 1,01,0. 2,015,0 .. 17,024,0 .. 27,05,5. 7,00,1 ..0,2 ВРоторы газовых турбин
40Х18Н25С2 (ЭЯЗС)0,32- 0,41,52,0. . 3,017,0. . 19,023,0 .. 26,0Литые реакционные трубы
20Х25Н20С2 (ЭП 283)0,22,0. 3,01,524,0 .. 27,018,0. 21.0
10Х12Н20Т3Р (ЭП 696А)0,101,01,010,0 .. 12,52,3 ..2,80,5 ..0,008 ВПаропроводы
10Х15Н35ВТ (ЭП 612)0,120,61.0. 2,014,0 .. 16,034,0. . 38,02,8 ..3,51,1 .. 1,5Роторы турбин
Х15Н35ВТР (ЭП 725)0,101,014,035,0. . 38,04,0. .5,01,1 .. 1,50,25 ..0,005 В
Читать еще:  Меры твердости МТР-МЕТ по Роквеллу (HRA, HRB, HRC)

Таблица 2. Коррозионнo-стойкие аустенитные стали : химический состав (по ГОСТ 5632-72) .

* Содержание титана зависит от количества углерода, азота и ниобия в металле и рассчитывается по формуле, указанной в шапке таблицы, где Д — другие.

Рис. 1. Структурная диаграмма Шеффлера для определения фазового состава аустенитных швов .

Совместное действие легируюших элементов на конечную структуру оценивают по соотношению Crэкв/ Niэкв, называемому хромоникелевым эквивалентом, и с помошью структурных диаграмм Шеффлера (рис. 1). На этой диаграмме структура стали определяется соотношением координат Crэкв и Niэкв. Стали, попадаюшие в области А, Ф и М, имеют стабильно аустенитную, ферритную или мартенситную конечную структуры соответственно.

Стали, попадаюшие в переходные области А + Ф, А + М, А + М + Ф, обладают смешанной структурой. Соотношение А + Ф дифференuировано количественно с помошью ряда веерообразно расположенных линий. Цифры над лими линиями указывают количество высоколегированного феррита (δ-Fe с ОЦК-решеткой), содержашегося в стали наряду с аустенитом (γ-Fe). Эта структурная диаграмма описывает структуры, получаемые после кристаллизаuии металла сварного шва. Для других состояний металла (прокат, поковка, литье) существуют аналогичные диаграммы, количественно отличаюшиеся от приведенной на рис. 1.

Более точно определяют oстаточoe количество δ-Fe по ферритному числу с помошью формулы:

FN = -18 +2.9(%Сг+% Мо +0.3 % Si)- 2,6(% Ni + 35 % С + 20 % N + 0,3 % Мn).

где FN — ферритное число, приблизительно равное проuентному содержанию δ-Fe.

Обладая одновременно жаропрочными и антикоррозионными свойствами, аустенитные стали (стали аустенитного класса) получают то или иное сверхвысокое свойство принципиально различным легированием и термической обработкой. В связи с этим различают две основные группы аустенитных сталей:

  • жаропрочные аустенитные стали;
  • коррозионно-стойкие аустенитные стали.

Жаропрочность — сопротивление стали разрушению при высокой температуре, зависящее не только от температуры, но и от времени. Механизм разрушения металла при высокотемпературном длительном нагружении имеет диффузионную природу и состоит в развитии дислокационной ползучести. Под действием температуры, времени, напряжений дислокации у барьеров, создавшие упрочнение, приходят в движение (совместно с облаком легируюших элементов и примесей) в результате взаимодействия с созданными нагревом подвижными вакансиями. которые обеспечивают их «переползание» в другие плоскости кристаллической решетки на границы зерен. Зто при водит к разупрочнению, развитию локальной пластической деформаuии и охрупчиванию. Дислокации выходяшие на границы зерен, создают микроступеньки и вызывают из-за соответствуюшего изменения размеров контактируюших зерен меЖJеренное проскальзывание, раскрываюшее микроступеньки в поры и трешины. чему способствуют потоки вакансий. В этих условиях прочность и пластичность металла зависят от температуры и времени. т.е. от длительности нагружения. Для предотврашения ползучести жаропрочность повышают двумя основными способами:

  • подвижности вакансий (легирование γ-твердого раствора молибденом, вольфрамом и другими элементами);
  • созданием большого количества термостойких дисперсных включений-барьеров, препятствующих переползанию и скольжению дислокаций. Эту роль выполняют карбиды и интерметаллиды. Соответственно жаропрочные стали (см. табл. 1) разделяют на гомогенные нетермоупрочняемые и гетерогенные, упрочняемые термообработкой.

Коррозионная стойкость сталей — сопротивление металла воздействию агрессивных сред. Химические составы коррозионно-стойких сталей, приведенные в табл. 2, разработаны с учетом двух видов коррозии: химической и электрохимической.

Под электрохимической коррозией понимают растворение металла в жидких электропроводных растворах кислот и расплавах, содержащих ионы с положительным и отрицательным зарядами (Н2 2+ , SO4 2- и др.). Наиболее опасны межкристаллитная и структурноизбирательная коррозии, развивающиеся по границам зерен. При контакте металла с электропроводным раствором термодинамически обусловлен и неизбежен переход ионов Fe+ из дефектных мест кристаллической решетки в раствор, что создает на металле отрицательный заряд и разность потенциалов между металлом и электролитом, препятствующую дальнейшему растворению (поляризация). Однако в других местах контактной поверхности в результате электропроводности металла и раствора действуют электростатические силы, при водящие к оседанию на поверхности металла положительно заряженных ионов (Н2 2+ и др.), образующих нейтральные молекулы Н2 . Это вызывает деполяризацию и непрерывное действие гальванической пары: металл (-) — раствор (+), т.е. коррозии. Скорость коррозии хрома в кипящей 65%-ной кислоте 5 * 10 -2 г/(м 2 * ч), а железа -10 5 г/(м 2 * ч), т.е. в 10 7 раз выше.

Поэтому при наличии в стали хрома коррозия практически не развивается. Главный фактор коррозионной стойкости стали — однородность твердого раствора хрома в железе, отсутствие его соединений с углеродом и другими элементами, приводящих к локальному обеднению стали хромом и создающих границы раздела между фазами с дефектными участками кристаллической решетки, где у атомов железа ослаблены межатомные связи. Так, образование карбида хрома Сr23С6. содержащего 94 % Сr, обедняет окружающую матрицу с 18 . 25 % Сr. Поэтому составы коррозионностойких сталей отличаются от жаропрочных минимумом углерода (до 0,02 %), являющегося для них вредной примесью, либо наличием в стехиометрическом отношении стабилизирующих элементов (титан, ниобий), образующих более прочные карбиды, чем хром, что исключает обеднение твердого раствора хромом. Для обеспечения прочности и стабильности аустенита в ряде сталей часть углерода заменена азотом. Он препятствует образованию δ-Fe, упрочняет аустенит и не образует карбидов.

Кроме того, в рассматриваемых сталях снижены пределы содержания серы и фосфора. В ряде сталей допустимо ≤10% δ-Fe, который обладает высокой концентрацией хрома и повышает коррозионную стойкость при нормальных температурах, но охрупчивает сталь при длительном нагреве до температуры >500 о С. превращаясь в σ-фазу, что снижает и коррозионную стойкость.

Аустенитные нержавеющие стали: структура и свойства

Аустенитные нержавеющие стали – это коррозионностойкие хромоникелевые аустенитные стали, которые в мировой практике известны как стали типа 18-10. Это наименование им дает номинальное содержание в них 18 % хрома и 10 % никеля.

  • Хромоникелевые аустенитные стали в ГОСТ 5632-72
  • Роль хрома в аустенитных нержавеющих сталях
  • Роль никеля в аустенитных нержавеющих сталях
  • Фазовые превращения в аустенитных нержавеющих сталях
  • Межкристаллитная коррозия в аустенитных нержавеющих сталях
  • Сварка аустенитных нержавеющих сталей
  • Межкристаллитная коррозия при 500-600 ºС
  • Стабилизация стали титаном и ниобием
  • Азот в аустенитных нержавеющих сталях
  • Влияние содержания хрома
  • Влияние содержания никеля
  • Влияние легирующих элементов на структуру стали
  • Дельта-феррит в хромомолибденовой аустенитной стали
  • Мартенсит в хромоникелевых аустенитных сталях
  • Термическая обработка хромоникелевых аустенитных сталей
  • Закалка аустенитных хромоникелевых сталей
  • Стабилизирующий отжиг аустенитных хромоникелевых сталей
  • Стойкость аустенитных хромоникелевых сталей к кислотам

Хромоникелевые аустенитные стали в ГОСТ 5632-72

В ГОСТ 5632-72 хромоникелевые аустенитные стали представлены марками 12Х18Н9Т, 08Х18Н10Т, 12Х18Н10Т, 12Х18Н9, 17Х18Н9, 08Х18Н10, 03Х18Н11.

Роль хрома в аустенитных нержавеющих сталях

Основным элементом, дающим сталям типа 18-10 высокую коррозионную стойкость, является хром. Роль хрома заключается в том, что он обеспечивает способность стали к пассивации. Наличие в стали хрома в количестве 18 % делает ее стойкой во многих окислительных средах, в том числе в азотной кислоте в большом диапазоне, как по концентрации, так и по температуре.

Роль никеля в аустенитных нержавеющих сталях

Легирование никелем в количестве 9-12 % переводит сталь в аустенитный класс. Это обеспечивает стали высокую технологичность, в частности, повышение пластичности и снижение склонности к росту зерна, а также уникальные служебные свойства. Стали типа 18-10 широко применяют в качестве коррозионностойких, жаростойких, жаропрочных и криогенных материалов.

Фазовые превращения в аустенитных нержавеющих сталях

В хромоникелевых аустенитных сталях могут происходить следующие фазовые превращения:

  • выделение избыточных карбидных фаз и σ-фазы при нагреве в интервале в интервале 450-900 ºС;
  • образование в аустенитной основе δ-феррита при высокотемпературном нагреве;
  • образование α-фазы мартенситного типа при холодной пластической деформации или охлаждении ниже комнатной температуры.

Межкристаллитная коррозия в аустенитных нержавеющих сталях

Склонность стали к межкристаллитной коррозии проявляется в результате выделения карбидных фаз. Поэтому при оценке коррозионных свойств стали важнейшим фактором является термокинтетические параметры образования в ней карбидов.

Склонность к межкристаллитной коррозии закаленной стали типа 18-10 определяется, в первую очередь, концентрацией углерода в твердом растворе. Повышение содержания углерода расширяет температурный интервал склонности стали к межкристаллитной коррозии.

Сталь типа 18-10 при выдержке в интервале 750-800 ºС становится склонной к межкристаллитной коррозии:

  • при содержании углерода 0,084 % – уже в течение 1 минуты;
  • при содержании углерода 0,054 % – в течение 10 минут;
  • при содержании углерода 0,021 5 – через более чем 100 минут.

С уменьшением содержания углерода одновременно снижается температура, которая соответствует минимальной длительности изотермической выдержки до начала межкристаллитной коррозии.

Сварка аустенитных нержавеющих сталей

Необходимую степень стойкости стали против межкристаллитной коррозии, позволяющей выполнять сварку достаточно толстых сечений, обеспечивает содержание углерода в стали типа 18-10 не более 0,03 %.

Межкристаллитная коррозия при 500-600 ºС

Снижение содержания углерода даже до 0,006 % не обеспечивает полной стойкости сталей типа 18-10 к межкристаллитной коррозии при 500-600 ºС. Это представляет опасность при длительной службе металлоконструкций в этом интервале температур.

Стабилизация стали титаном и ниобием

При введении в хромоникелевую сталь типа 18-10 титана и ниобия, которые способствуют образования карбидов, меняются условия выделения карбидных фаз. При относительно низких температурах 450-700 ºС преимущественно выделяются карбиды типа Cr23C6, которые и дают склонность к межкристаллитной коррозии. При температурах выше 700 ºС преимущественно выделяются специальные карбиды типа TiC или NbC. При выделении только специальных карбидов склонности к межкристаллитной коррозии не возникает.

Азот в аустенитных нержавеющих сталях

Азот, как и углерод, имеет переменную растворимость в аустените. Азот может образовывать при охлаждении и изотермической выдержке самостоятельные нитридные фазы или входить в состав карбидов, замещая в них углерод. Влияние азота на склонность к межкристаллитной коррозии хромоникелевых аустенитных сталей значительно слабее, чем у углерода, и начинает проявляться только при содержании его более 0,10-0,15 %. Вместе с тем, введение азота повышает прочность хромоникелевой аустенитной стали. Поэтому на практике применяют в этих сталях небольшие добавки азота.

Влияние содержания хрома

С повышением концентрации хрома растворимость углерода в хромоникелевом аустените уменьшается, что облегчает выделение в нем карбидной фазы. Это, в частности, подтверждается снижением ударной вязкости стали с повышением содержания хрома, что связывают с образованием карбидной сетки по границам зерен.

Вместе с тем, повышение концентрации хрома в аустените приводит к существенному снижению склонности стали к межкристаллитной коррозии. Это объясняют тем, что хром существенно повышает коррозионную стойкость стали. Более высокая концентрация хрома в стали дает меньшую степень обеднения им границ зерен при выделении там карбидов.

Влияние содержания никеля

Никель снижает растворимость углерода в аустените и тем самым снижает ударную вязкость стали после отпуска и повышает ее склонность к межкристаллитной коррозии.

Влияние легирующих элементов на структуру стали

По характеру влияния легирующих и примесных элементов на структуру хромоникелевых аустенитных сталей при высокотемпературных нагревах их разделяют на две группы:
1) ферритообразующие элементы: хром, титан, ниобий, кремний;
2) аустенитообразующие элементы: никель, углерод, азот.

Дельта-феррит в хромомолибденовой аустенитной стали

Присутствие дельта-феррита в структуре аустенитной хромоникелевой стали типа 18-10 оказывает отрицательное влияние на ее технологичность при горячей пластической деформации – прокатке, прошивке, ковке, штамповке.

Количество феррита в стали жестко лимитируется соотношением в ней хрома и никеля, а также технологическими средствами. Наиболее склонна к образованию дельта-феррита группа сталей типа Х18Н9Т (см. также Нержавеющие стали ). При нагреве этих сталей до 1200 ºС в структуре может содержаться до 40-45 % дельта-феррита. Наиболее стабильными являются стали типа Х18Н11 и Х18Н12, которые при высокотемпературном нагреве сохраняют практически чисто аустенитную структуру.

Мартенсит в хромоникелевых аустенитных сталях

В пределах марочного состава в сталях типа Х18Н10 хром, никель, углерод и азот способствуют понижению температуры мартенситного превращения, которое вызывается охлаждением или пластической деформацией.

Влияние титана и ниобия может быть двояким. Находясь в твердом растворе, оба элемента повышают устойчивость аустенита в отношении мартенситного превращения. Если же титан и ниобий связаны в карбонитриды, то они могут несколько повышать температуру мартенситного превращения. Это происходит потому, что аустенит в этом случае обедняется углеродом и азотом и становится менее устойчивым. Углерод и азот являются сильными стабилизаторами аустенита.

Термическая обработка хромоникелевых аустенитных сталей

Для хромоникелевых аустенитных сталей возможны два вида термической обработки:

  • закалка и
  • стабилизирующий отжиг.

Параметры термической обработки отличаются для нестабилизированных сталей и сталей, стабилизированных титаном или ниобием.

Закалка является эффективным средством предупреждения межкристаллитной коррозии и придания стали оптимального сочетания механических и коррозионных свойства.

Стабилизирующий отжиг закаленной стали переводит карбиды хрома:

  • в неопасное для межкристаллитной коррозии состояние для нестабилизированных сталей;
  • в специальные карбиды для стабилизированных сталей.

Закалка аустенитных хромоникелевых сталей

В сталях без добавок титана и ниобия под закалкой понимают нагрев выше температуры растворения карбидов хрома и достаточно быстрое охлаждение, фиксирующее гомогенный гамма-раствор. Температура нагрева под закалку с увеличением содержания углерода возрастает. Поэтому низкоуглеродистые стали закаливаются с более низких температур, чем высокоуглеродистые. В целом интервал температуры нагрева составляет от 900 до 1100 ºС.

Длительность выдержки стали при температуре закалки довольно невелика. Например, для листового материала суммарное время нагрева и выдержки при нагреве до 1000-1050 ºС обычно выбирают из расчета 1-3 минуты на 1 мм толщины.

Охлаждение с температуры закалки должно быть быстрым. Для нестабилизированных сталей с содержанием углерода более 0,03 % применяют охлаждение в воде. Стали с меньшим содержанием углерода и при небольшом сечении изделия охлаждают на воздухе.

Стабилизирующий отжиг аустенитных хромоникелевых сталей

В нестабилизированных сталях отжиг проводят в интервале температур между температурой нагрева под закалку и максимальной температуры проявления межкристаллитной коррозии. Величина этого интервала в первую очередь зависит от содержания хрома в стали и увеличивается с повышением его концентрации.

В стабилизированных сталях отжиг проводят для перевода углерода из карбидов хрома в специальные карбиды титана и ниобия. При этом освобождающийся хром идет на повышение коррозионной стойкости стали. Температура отжига обычно составляет 850-950 ºС.

Стойкость аустенитных хромоникелевых сталей к кислотам

Способность к пассивации обеспечивает хромоникелевым аустенитным сталям достаточно высокую стойкость в азотной кислоте. Стали 12Х18Н10Т, 12Х18Н12Б и 02Х18Н11 имеют первый балл стойкости:

  • в 65 %-ной азотной кислоте при температуре до 85 ºС;
  • в 80 %-ной азотной кислоте при температуре до 65 ºС;
  • 100 %-ной серной кислоте при температуре до 65 ºС;
  • в смесях азотной и серной кислот: (25 % + 70 %) и 10 % + 60 %) при температуре до 70 ºС;
  • в 40 %-ной фосфорной кислоте при 100 ºС.

Аустенитные хромоникелевые стали имеют также высокую стойкость к растворах органических кислот – уксусной, лимонной и муравьиной, а также в щелочах КОН и NaOH.

Источник: Ульянин Е.А. Коррозионностойкие стали сплавы, 1991.

Аустенитная сталь: что это такое, марки, класс, свойства, применение

При изготовлении металла на предприятии используется классификация заготовок по структурным особенностям. Обычно металлурги наблюдают за изменениями структуры в ходе металлообработки в том числе после термообработки. И одним из таких состояний является аустенит, а уже после закалки с последующим охлаждением можно получить перлит, мартенсит и прочие изменения. В статье расскажем про то, какие стали относятся к аустенитному классу, какие свойства имеют эти материалы.

Данное образование может быть получено в стальной заготовке, то есть в растворе железа с добавлением углерода. Особенность данного состояния заключается в том, как располагаются атомы этих веществ. Они последовательно образуют рисунок в одном из двух вариантов:

ОЦК А-Fe. Это объемно-центрированное строение, согласно которому атомы располагаются так: они находятся на каждой вершине куба (всего их 8), а также один находится в самом центре). Такой вариант получается не часто, в среднем в 10% случаев.

ГЦК У-Fe. Объемность строения сохраняется, но к предыдущем вершинным точкам добавляется еще такое же количество – они размещаются по центру каждой грани. А в сердцевине атома нет. Таким образом, всего их 16. Это наиболее часто появляющаяся структура – гранецентрированная. Она очень крепкая по отношению к низким и высоким температурам, а также к нагрузкам.

Если сказать, что это такое значит «аустенитная сталь» по простому, то это особенная структура металла, которая предопределяет технические характеристики сплава. При изменении его состояния (нагреве, охлаждении и т.д.) меняются и свойства. Именно благодаря прохождению через аустенит с последующим охлаждением возможна такая популярная термообработка, как закалка (нагрев выше критической точки – до изменения кристаллической решетки). Данная процедура пользуется популярностью, потому что это отличный недорогой и достаточно технологически простой способ повышения прочности металла.

Данная модификация металла отличается высокой степенью легирования (наиболее частотная легирующая добавка – хром). Ее особенность – наличие гранецентрированной решетки, а также то, что она сохраняется даже при экстремальном холоде. Из основных характеристик аустенитов – прочность, устойчивость к деформациям даже при нагреве. Все это позволяет использовать изделия из материала в самых опасных, агрессивных средах, очень активно они применяются в машиностроении, а также в химической и нефтяной промышленности.

Механические свойства аустенитных сталей

В момент кристаллизации металл проходит 1 фазу, и после этого кристаллическая решетка остается неизменной даже при воздействии сверхнизких температур, например, -200 градусов. Сплав имеет в основу железо и обязательно подвергается легированию. Наиболее часто используются такие легирующие добавки как никель и хром, в меньшей концентрации добавляются прочие примеси. В зависимости от того, насколько велики пропорции химических металлических и неметаллических веществ, меняются и характеристики – химические, физические, технологические, появляются особые свойства.

Читать еще:  Развитие мирового станкостроения в предвоенные годы (токарные станки)

В процессе легирования используют добавки:

Ферритизаторы. Они стабилизируют структуру аустенита, а также после охлаждения увеличивают долю феррита. Также они предопределяют образование ОЦК-решетки. К ним относятся следующие элементы: ванадий, вольфрам, титан, кремний, ниобий, молибден.

Аустенизаторы. Они расширяют область аустенита. Интересно, что есть даже термин аустенизация – это специальный нагрев, как во время закалки, с последующим кратковременным выдерживанием и охлаждением.

Не все марки класса аустенитных сталей обладают одинаковыми свойствами. Ведь кроме метода термообработки, важен еще и состав. Поэтому как и во всех других случаях при рассмотрении структурных разновидностей сплавов, следует учитывать входящие компоненты и пропорции. Мы отметим, какие свойства характерны некоторым из аустенитов:

Нержавеющие, устойчивые к коррозии. Производство этих популярных сталей регламентируется нормативным документом ГОСТ 5632-2014. Согласно ему, в таких составах находится 18% хрома, 30% никеля и 0,25% углерода. А еще могут быть различные примеси (как полезные, так и вредные), например, кремний, марганец и молибден. Коррозионная невосприимчивость настолько ценится, что применяется повсеместно – от изготовления изделий бытового назначения до сложных узлов в машиностроении. Вещества вступают в реакцию с кислородом и образуют на поверхности оксидную пленку. Именно она является защитной и не нарушается даже при сильных температурных перепадах. Невосприимчивость к нагреву объясняется достаточно низкой углеродистостью.

Аустенитные жаропрочные стали. У них очень высокая предельная точка нагрева, поэтому их можно использовать в сложных подвижных узлах, а также при непосредственном контакте с паром, огнем и иными раскаленными предметами. Температура вплоть до 1100 градусов им абсолютно не страшна, она не сделает существенных изменений в глубинной структуре материала. Это объясняется тем, что сплав обладает ГЦК-решеткой и такими добавками как бор, ниобий, молибден, ванадий и вольфрам. Перечисленные примеси и увеличивают устойчивость к жару. Приведем пример использования – турбины самолетов, все элементы двигателя внутреннего сгорания автомобиля и пр.

Хладостойкие. Чтобы добиться такого эффекта, следует изготовить высоколегированную сталь с высокой концентрацией никеля (25%) и хрома (19%). Интересной особенностью данных изделий является то, что высокая прочность, пластичность поддерживаются только на морозе, в то время как при комнатной температуре характеристики могут поменяться в негативную сторону.

Отметим, что состав аустенитной стали является дорогостоящим, поскольку в него добавлено большое количество легирующих компонентов. Поэтому далеко не все производственные сферы могут похвастаться наличием деталей из аустенита. Основными примесями являются хром и никель, а они дорого стоят.

Данному классу сплавов характерны различные контролируемые структурные превращения, так можно получить:

Феррит, если нагреть состав до сверхвысоких температур.

Межкристаллическая коррозия. Этого стараются не допускать, поскольку данный процесс приводит ко внутренним разрушениям структуры, глубоких слоев и поверхности. Дело в том, что когда железо нагревается более 900 градусов, то появляются избыточные фазы карбидов, которые, в свою очередь, уже влияют на коррозийные преобразования.

Перлит. Это часто используемая структура металла, которая представлена в виде небольших зерен и пластин. Его образование неизбежно при медленном, постепенном охлаждении заготовки непосредственно вместе с печью до температуры в 730 градусов. Именно на этом рубеже происходят изменения в кристаллической решетке из-за эвтектоидного распада. Также его называют перлитным превращением. В ходе данного процесса одновременно растет феррит и цементит, имеющие пластинчатую форму.

Мартенсит. Это еще один тип структуры, представленный пластинами в виде иголок или тонких реек. Он образуется, когда резко снижают температуру изделия, например, сразу из печи и в холодную воду или в масло.

Таким образом, любые превращения являются предусмотренными заранее и контролируемыми. Обычно решающим фактором процедуры является время выдержки и температура нагрева и охлаждения. Это определяется содержанием углерода и прочих легирующих добавок. Те сплавы, которые имеют наименьшее количество примесей, кристаллизуются быстрее.

Методы получения аустенитных углеродистых сталей

Весь первоначальный процесс можно описать так: чтобы получить аустенит, необходимо чтобы в первоначальной структуре сплавов начали появляться и расти зерна. Сперва зернистость меняется у поверхности при фазах появления карбидов, со временем полностью толща заготовки меняет свою структуру.

Второй способ изготовления аустенита – это нагрев до 900 градусов перлитной модификации железа (после эвтектоидного распада). Такой сплав состоит частично из цементита, на вторую часть из феррита. Чтобы такое превращение произошло, необходима минимальная углеродистость стали – не меньше, чем 0,66% содержание вещества. После того как повышается температура более чем на 900 градусов, ферритная структура перевоплощается в аустенитную, а цементитная полностью растворяется. Получается прекрасного качества нержавейка.

Есть еще один вариант – с титановой смесью. В таких случаях берется металлическая заготовка, она помещается в индукционную печь, в которой поддерживается вакуум. В ней сперва достигается высокий жар, а затем он долгий период поддерживается. За это время происходит диазотирование, то есть удаление из стального расплава атомов азота. Временной промежуток определяется индивидуально в зависимости от массы заготовки. Затем постепенно добавляются титан и другие металлические и неметаллические примеси, которые образуют нитриды в реакции с железом.

Но основной способ получения аустенитной стали базируется на создании высоколегированного хромоникелевого сплава. Легировать изделие можно с помощью добавления хрома и никеля. После того как вещества добавлены в тугой раствор, нужно продолжительное время поддерживать высокую температуру, это дает:

устойчивость к коррозии;

увеличенное выделение карбидов.

А если добавить молибден и фосфор, то можно добиться повышенной вязкости и усталостной прочности.

Химические элементы и их влияние на аустенит

Как и любая легированная сталь, в своей основе данная может иметь ряд легирующих добавок. Давайте посмотрим, как их содержание в расплаве влияет на основные качества металла:

Хром. Его высокая концентрация, превышающая 13% (но не более 19%), способствует созданию оксидной пленки. Она, как известно, препятствует возникновению коррозии. Интересно, что такое действие хрома актуально исключительно при невысоком содержании углерода. Поскольку в обратном случае эти два элемента начинают вступать в реакцию, образуя карбид, который, напротив, ускоряет процесс ржавления.

Никель. Еще один постоянно использующийся материал. Его может быть очень много, даже более 50%. Но для того чтобы получить из железа аустенит, достаточно всего 9-12 процентов. Химическое вещество очень положительно воздействует на пластичность – она становится выше. Кроме того, зернистость становится меньше, что хорошо сказывается на прочности.

Углерод. Добавляют обычно сотые, десятые доли. Этого достаточно для того, чтобы повысить прочность. Это обусловлено тем, что вещество приводит к образованию карбидов.

Азот. Он заменяет углерод, если тот нельзя добавлять в сплав по каким-либо причинам, например, если изделие должно обладать стойкостью к электрическому и химическому воздействию.

Бор. Очень хорошо увеличивает пластичность, даже если вещество находится в очень небольшом количестве, а зерно становится меньше.

Кремний и марганец. Добавляют для стабилизации аустенита, а также для повышения прочности.

Титан и ниобий. Применяют при изготовлении хладостойких сплавов.

Применение аустенитных сталей

Наиболее частое использование:

Любые элементы, которые используются при высоких температурах – более 200 градусов (вплоть до 1100). Это могут быть самолетные турбины или различные детали в двигателе. Однако следует внимательно следить за тем, какие химические реакции будут происходить при контакте с топливом, паром и другими агрессивными средами. Иногда возникают трещины. Чтобы предотвратить такую возможность, следует добавить такие примеси как ванадий и ниобий. С ними будет сформирована карбидная фаза, за счет чего происходит упрочнение поверхности.

Различные механизмы, которые подвергаются быстрым температурным перепадам. Например, при сварке некоторых материалов.

Электрическое оборудование, контакты. Их можно сделать благодаря тому, что аустенит устойчив к электромагнитным волнам.

Детали для устройств, работающих в водной среде или в условиях повышенной влажности. Это возможно из-за коррозионной устойчивости. Никель и хром, которые способствуют этой характеристики, также продлевают износ элемента.

Марки аустенитной стали

Все классы можно поделить на три категории:

Коррозионностойкие: 08Х18Н10, 12Х18Н10Т, 06Х18Н11 (они содержат хром и никель), 10Х14Г14Н4Т, 07Х21Г7АН5 (с добавкой марганца), 08Х17Н13М2Т, 03Х16Н16ЬЗ (особенность – наличие молибдена), 02Х8Н22С6, 15Х18Н12С4Т10 (в них много кремния).

Жаропрочные, например, 08Х16Н9М2, 10Х14Н16Б, 10Х18Н12Т, 10Х14Н14В2БР. Особенностью является наличие в них бора, вольфрама, ниобия, ванадия или молибдена.

Хладостойкие: 03Х20Н16АГ6 и 07Х13Н4АГ20, в них очень много хрома и никеля.

Обратите внимание на маркировку, она обусловлена нормативным документом, ниже о нем.

ГОСТ 5632-2014

Данный документ диктует требования к каждой конкретной марке. В представленных там таблицах перечисляются качества и показатели, которые отвечают за итоговый результат – прочность, износостойкость и пр. Посмотрим на маркировку и отметим, что она сочетает в себе цифры и буквы. Литеры обозначают ту легирующую добавку, которая находится в наибольшем количестве (мельчайшие примеси могут не отображаться в названии, но будут перечислены в техническом паспорте сплава). В самом начале стоит только цифра – это сотые доли углерода. Затем буква добавки с последующим уточнением – сколько процентов. Посмотрим на простом примере. 06Х18Н11, в этой марке:

Представим таблицу элементов, которые содержатся в наиболее распространенных марках:

Особенности термообработки

Несмотря на то что данный материал обладает повышенными прочностными характеристиками, он очень плохо подвергается металлообработке. Обычно, чтобы улучшить качества заготовки используется один из методов:

Отжиг. Данный процесс заключается в нагреве до высоких температур (изменения кристаллической решетки) с последующей выдержкой на протяжении нескольких часов. После этого происходит охлаждение одним из способов – в масле, воде, на воздухе при комнатных условиях. Это способствует снижению твердости аустенитных сталей.

Двойная закалка. Повторная процедура нагрева позволяет повысить жаропрочность материала. Дополнительно зачастую используют старение.

Аустенит – очень часто используемый сплав. Чтобы подробнее разобраться в теме, посмотрим видео:

Аустенитные нержавеющие стали: структура и свойства

Электронный научный журнал «ТРУДЫ ВИАМ»

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ УНИТАРНОЕ ПРЕДПРИЯТИЕ
«ВСЕРОССИЙСКИЙ НАУЧНО-ИССЛЕДОВАТЕЛЬСКИЙ ИНСТИТУТ АВИАЦИОННЫХ МАТЕРИАЛОВ»
ГОСУДАРСТВЕННЫЙ НАУЧНЫЙ ЦЕНТР РОССИЙСКОЙ ФЕДЕРАЦИИ

  • О Журнале
  • Редакционный совет
  • Правила направления, рецензирования и опубликования статей
  • Этические нормы
  • Открытый доступ к содержанию журнала
  • Свежий номер
  • Архив
  • Архив 1932-1994
  • Наши авторы
  • Контакты

Авторизация

Статьи

  • 2020
  • 2019
  • 2018
  • 2017
  • 2016
  • 2015
  • 2014
  • 2013

Рассмотрено влияние термомеханической обработки на формирование структуры, фазовый состав и свойства аустенитных сталей при изготовлении деформированных полуфабрикатов с использованием горячей и холодной пластической деформации. Показано влияние температурно-скоростных параметров деформации и фазовых превращений на кинетику процессов динамической полигонизации и динамической рекристаллизации. Указаны причины снижения технологической пластичности сталей и пути их устранения.

Аустенитные стали находят все более широкое применение в изделиях авиакосмической техники, судостроении, химической и пищевой промышленности, строительстве и медицине. Из аустенитных сталей изготовляются все виды деформированных полуфабрикатов: поковки, штамповки, плиты, листы, лента, фольга, прутки, профили, трубы, проволока. Наиболее известными широко применяемыми в мировой практике являются аустенитные хромоникелевые стали типа 18-10, легированные 18% хрома и 8–12% никеля. ГОСТ 5632–72 включает стали марок: 03Х18Н11, 04Х18Н10, 08Х18Н10Т, 08Х18Н12Б, 12Х18Н9, 12Х18Н9Т, 12Х18Н10Т. Разрабатываются и применяются также более сложнолегированные аустенитные стали с вольфрамом, молибденом, ниобием, медью, кремнием, азотом, предназначенные для работы в высокоагрессивных окислительно-восстановительных средах и при высоких температурах, содержащие до 50% легирующих компонентов (ЭИ417, ЭИ654, ЭИ696М, ЭИ787, ЭП105, ЭП703 и др.)[1, 2].

В связи с ограниченными возможностями преобразования структуры аустенитных сталей окончательной термической обработкой, определяющими факторами в формировании предпочтительной регламентированной структуры и достижении требуемого комплекса технологических и эксплуатационных свойств является управление структурообразованием при осуществлении процессов горячей и холодной пластической деформации.

Эффективным способом управления структурообразованием является регламентирование термомеханических параметров деформации – температуры, степени и скорости деформации, а также скорости охлаждения после деформации, которые определяют кинетику процессов динамической полигонизации, динамической и статической рекристаллизации, растворения и выделения вторых фаз.

В связи с этим становится очевидным, что при разработке научно-обоснованных технологических процессов деформации необходимо учитывать критические температуры структурных и фазовых превращений каждой конкретной композиции: температуры динамической полигонизации, динамической и статической рекристаллизации, температуры аустенизации, растворения и выделения вторых фаз, а также зависимость критических температур от степени и скорости деформации, структуры и фазового состава исходного слитка или заготовки, соотношение легирующих компонентов (Ti/C, Cr/Ni).

Основным механизмом горячей пластической деформации является пакетный сдвиг. При выходе пакетов сдвигов на границы исходных зерен образуется зубчатость, способствующая прохождению динамической рекристаллизации и динамической полигонизации.

Температура рекристаллизации аустенита в сталях типа 18-10 составляет порядка 950°С, а температура полной аустенизации при соотношении Ti/C=4,3–6,3 соответствует 1100°С. В процессе горячей деформации сталей этого типа динамически рекристаллизованная структура составляет 50–80% [3]. При этом отмечается, что статическая рекристаллизация в межоперационных паузах оказывает незначительное влияние на изменение структуры.

Понижение температуры в процессе деформации инициирует выделение из твердого раствора аустенита дисперсных карбидов, нитридов, карбонитридов и других фаз по границам зерен, субзерен, на плоскостях скольжения, в ликвационных зонах, сохранившихся от слитка [4].

Выделение дисперсных частиц таких фаз замедляет рекристаллизацию, вызывает интенсивное торможение сдвига, формирование неоднородной структуры, что, в свою очередь, способствует неравномерной деформации и снижению технологической пластичности, являющихся причиной образования трещин при проведении операций формоизменения заготовки.

В сталях типа 18-10 сильными карбидообразующими элементами, замедляющими рекристаллизацию и повышающими температуры аустенизации и динамической рекристаллизации, являются титан и ниобий [5]. Из сказанного следует, что решающее влияние на формирование структуры и свойства аустенитных сталей оказывают процессы динамической рекристаллизации и полигонизации. Поэтому определение температурного интервала деформации, обеспечивающего формирование структуры с заданным комплексом свойств является обязательным условием изготовления деформированных полуфабрикатов требуемого качества. При этом следует иметь ввиду, что снижение температуры ниже установленного предела может вызвать зарождение трещин на границах двойников, плоскостях скольжения и на границах зерен. Для аустенитных сталей типа 18-10 эта температура прежде всего зависит от соотношения Ti/C и скорости деформации.

Установлено [6], что при температурах 1100°С сопровождается формированием полностью динамически рекристаллизованной структуры.

Температура начала динамической рекристаллизации аустенитных сталей зависит также от скорости деформации. Чем выше скорость деформации, тем ниже температура начала динамической рекристаллизации. Температура начала динамической рекристаллизации стали Х18Н10Т с увеличением скорости деформации с 10 -3 до 5 с -1 снизилась с 990 до 930°С [6]. Из сказанного следует, что регулирование температурно-скоростных параметров горячей деформации позволяет использовать эффект динамической полигонизации и динамической рекристаллизации для формирования мелкозернистой и ультрамелкозернистой структуры в деформированных полуфабрикатах.

Температурный интервал горячей деформации, в котором могут одновременно проходить процессы динамической полигонизации и динамической рекристаллизации, также зависит от скорости деформации. При скорости 5 с -1 этот интервал для стали Х18Н12Т составляет порядка 80°С, а при скорости 10 -3 с -1 – порядка 110°С [6]. Таким образом, с увеличением скорости деформации снижается не только температура начала динамической рекристаллизации, но сужается температурный интервал перехода к полностью рекристаллизованной структуре.

Существенное влияние на динамическую рекристаллизацию оказывают размеры и ориентация исходных зерен. С увеличением размеров зерен с 33 до 110 мкм температура начала динамической рекристаллизации стали Х18Н12Т повысилась на 30°С при скорости деформации 5 с -1 и на 60°С – при скорости деформации 10 -3 с -1 [6]. Полностью динамически рекристаллизованную структуру при прокатке крупнозернистой стали удалось получить при температуре 1200°С.

Различная ориентация исходных зерен обуславливает формирование неоднородной структуры в результате динамической рекристаллизации, проходящей одновременно с динамической полигонизацией.

При разработке технологических процессов обработки давлением аустенитных сталей необходимо учитывать возможность образования повышенного количества δ-феррита (≥15–20%) при высокотемпературном нагреве, выделения σ-фазы на границах зерен, превращение аустенита в α¢-фазу при охлаждении или последующей холодной деформации [7].

Формирование такой гетерофазной структуры приводит к неравномерной деформации и снижению технологической пластичности [8]. Содержание δ-фазы в сталях типа 18-10 зависит от соотношения между содержанием хрома и никеля, а также титана и углерода. При соотношении Cr/Ni≥1,8 образование δ-феррита приводит к снижению пластичности. При нагреве стали Х18Н9Т до 1200°С содержание δ-феррита может достигать 40–50% и пластичность стали снижается более чем в 3 раза [9]. Уменьшению количества δ-феррита способствуют повышение содержания никеля и снижение углерода. Стали с более высоким содержанием никеля (Х18Н11, Х18Н12) при высокотемпературном нагреве практически сохраняют однородную аустенитную структуру.

На всех этапах разработки аустенитных сталей значительный интерес вызывает использование азота в качестве легирующего элемента. Это связано с тем, что азот стабилизирует аустенит и позволяет снизить содержание дорогостоящего никеля, препятствует образованию δ-феррита при высокотемпературном нагреве, повышает коррозионную стойкость сталей [9–11]. Пластические характеристики сталей при содержании азота до 0,45% изменяются незначительно. При более высоком содержании азота происходит значительное снижение пластичности, что вызывает трудности при изготовлении из них деформированных полуфабрикатов. Поэтому, несмотря на большой интерес к сталям с азотом, их применение в настоящее время ограничено.

Уменьшение ликвационной неоднородности и повышение технологической пластичности высоколегированных аустенитных сталей достигается проведением гомогенизирующих отжигов или более длительными выдержками при нагреве слитков под деформацию.

Значительное влияние на технологическую пластичность и эксплуатационные свойства аустенитных сталей оказывают неметаллические включения, содержание которых зависит от способа выплавки слитков. Стали, полученные вакуумно-индукционной (ВИ), вакуумно-дуговой (ВД) плавкой или электрошлаковым переплавом, проявляют более высокую технологическую пластичность при изготовлении деформированных полуфабрикатов.

С учетом более низкой теплопроводности аустенитных сталей нагрев крупных слитков и заготовок под деформацию и термическую обработку следует проводить замедленно до температуры 800–850°С и ускоренно при высоких температурах во избежание интенсивного роста зерна, снижения глубины окисленного и газонасыщенного поверхностного слоя.

Более высокое сопротивление деформации высоколегированных аустенитных сталей при всех температурах и более высокая склонность к упрочнению при температурах ниже температуры рекристаллизации вызывают необходимость применения более мощного оборудования для обработки давлением.

Оптимальные термомеханические режимы горячей деформации аустенитных сталей, применяемых в изделиях авиакосмической техники, регламентируются ОСТ 90376–87.

При изготовлении деформированных полуфабрикатов из аустенитных сталей значительное влияние на формирование структуры и свойства оказывает холодная деформация. Регламентированная холодная деформация позволяет сформировать ультрамелкозернистую и даже наноразмерную структуру [12], повысить прочность, износостойкость и другие эксплуатационные характеристики изделий. В зависимости от требований лента из сталей типа 18-8 изготовляется с различной степенью упрочнения: М – мягкая, ПН – полунагартованная, Н – нагартованная, ВН – высоконагартованная. Из рисунка видно, что наиболее интенсивное упрочнение достигается в результате холодной деформации в пределах 20–30%. При этом предел прочности стали повышается в 1,5–2 раза при сохранении пластичности на достаточном уровне.

Рисунок. Изменение свойств стали 12Х18Н10Т в зависимости от степени холодной деформации

Вместе с тем следует учитывать, что при больших степенях холодной деформации в структуре увеличивается количество различных дефектов: увеличение удельной поверхности границ зерен, образование микротрещин, увеличение количества вакансий и плотности дислокаций и т. п. В результате холодной деформации 60% плотность стали снижается на 0,4–0,6% [13].

Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector
×
×