Rich--house.ru

Строительный журнал Rich—house.ru
25 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Фрезерование титана: 10 советов по обработке

Фрезерная обработка титана

Использование титана в производстве самолётов постоянно росло в течение последних двух десятилетий. В настоящее время титановые сплавы, такие как титан 6Al-4V, наряду с INCONEL 718, NIMONIC, сплавами Waspaloy и нержавеющей сталью 316 широко используются для производства деталей, как для коммерческих, так и для военных самолётов. Эти детали бывают различной конфигурации, например, конструкции крыла, элементы шасси, крепёжные элементы, пружины и гидравлические трубки. Поскольку в аэрокосмической промышленности используются новые сплавы и методы производства, ожидается, что их использование будет быстро расти и в дальнейшем. А сохраняющийся спрос на эти материалы требует разработки новых технологий обработки, направленных на то, чтобы помочь металлообрабатывающим производствам быть более конкурентоспособными и производительными. Были разработаны новые типы фрез, марки твёрдого сплава, геометрические формы и ломающие стружку режущие кромки для облегчения производства сложных форм при сохранении жёстких допусков, требуемых промышленностью. Теперь уже можно фреза по металлу купить в виде специальной серии, предназначенной именно для обработки именно этих авиационных материалов. Например, титан 6Al-4V является наиболее распространённым материалом для аэрокосмического производства, потому что он обладает лёгким весом при высокой прочности. Возрастает потребность в деталях и компонентах, изготовленных на основе этих материалов, но их очень трудно быстро механически обработать стандартными фрезами по металлу. Это подтолкнуло современных производителей фрезерного инструмента к разработке новых твердосплавных фрез и корпусных фрез со сменными твердосплавными пластинами для решения конкретных задач по фрезерованию этих труднообрабатываемых материалов. Новая геометрия режущей кромки и передовая конструкция формы сочетаются с термостойким многослойным покрытием из нитрида титана и алюмо-нитрида титана (TiN/TiAlN). Все эти особенности позволяют минимизировать трение и вибрации, а также эффективно эвакуировать из зоны резания более короткую стружку, что особенно важно при фрезеровании прочных и труднообрабатываемых металлов, в процессе обработки которых обычно формируется длинная стружка. Специальная фреза по металлу с переменными углами наклона винтовых канавок и зубчатым профилем со стружколомами вдоль режущей кромки может обеспечивать непревзойдённые скорости удаления материала и впечатляющие значения качества обрабатываемой поверхности Ra как при чистовом, так и при черновом фрезеровании, обеспечивая при этом минимальный износ и высокую стойкость.

Особенности фрезерования титана

Использование этих материалов в аэрокосмической промышленности обусловлено специфическими свойствами, связанными с металлами. К ним относятся высокое отношение прочности к массе, коррозионная стойкость и низкое тепловое расширение. Из всех материалов, используемых в аэрокосмическом производстве, один отличается от остальных по популярности — это титан 6Al-4V. Для фрезерования титановых сплавов требуются усилия резания, превышающие те величины, которые необходимы для фрезерования сталей. Сплавы также имеют структурные характеристики, которые делают их более прочными, чем стали эквивалентной твёрдости. Титан очень легко самоупрочняется, что может создать тонкую стружку, которая контактирует с относительно небольшой поверхностью режущих кромок, даже когда его обрабатывает фреза твердосплавная. Трение, создаваемое при отделении стружки по поверхности обрабатываемой заготовки, приводит к увеличению тепла в локализованной части твердосплавной фрезы. Тепло, генерируемое при фрезеровании титана, не рассеивается быстро в воздух из-за его плохой проводимости, так что значительное количество тепла удерживается между режущей кромкой твердосплавной фрезы и поверхностью фрезеруемой заготовки. Это сочетание высоких режущих сил и тепла приводит к износу поверхности твердосплавной фрезы в предельной близости от режущей кромки, что, соответственно, приводит к быстрому разрушению самой фрезы. Что ещё хуже, так то, что титановые сплавы имеют сильную тенденцию к химической реакции с материалами покрытия и основы твердосплавной фрезы, а также к приварке стружки к режущим кромкам фрезы. Во-вторых, нагрузка на зуб от титановой стружки, как правило, распределяется неравномерно. Она выше в точке, где режущая кромка твердосплавной фрезы врезалась дальше всего в титановую заготовку, и ниже в других областях резания. Наконец, когда фреза для ЧПУ заполняет большую часть ширины паза, остаётся мало места для удаления стружки, так что вероятность повторного фрезерования титановой стружки очень высока.

Трохоидальное фрезерование

Использование трохоидального фрезерования, когда это возможно, для удаления большого объёма стружки при обработке титана, является самым современным методом фрезерной обработки. Признанием потенциала трохоидального фрезерования для обработки этих авиакосмических материалов являются разработанные в последние годы новые фрезы по металлу, такие как фреза концевая твердосплавная или а также удлинённые корпусные фрезы со сменными твердосплавными пластинами. Трохоидальное или спиральное фрезерование перемещает фрезу CNC по круговой траектории, при этом каждая окружная траектория продвигается вперёд в направлении общего движения. Одним из ключевых преимуществ трохоидального фрезерования является то, что одновременно в зацеплении участвует только небольшая площадь фрезы по металлу. Величина подачи также всегда постоянна. Кроме того, трохоидальное фрезерование позволяет использовать твердосплавную фрезу диаметром меньше ширины обрабатываемого кармана, что крайне важно для обеспечения возможности надёжного удаления титановой стружки. Несмотря на свой потенциал, трохоидальное фрезерование также создаёт некоторые проблемы. Фреза твердосплавная должна подвергаться сложному движению, которое нужно специально программировать в обеспечении ЧПУ. Кроме того, сам металлорежущий станок вместе с его шпиндельной оснасткой должен быть достаточно жёстким и достаточно быстрым, чтобы его можно было использовать для трохоидального фрезерования. Твердосплавная фреза также должна иметь конфигурацию, чтобы быть способной фрезеровать на высоких скоростях резания и высокой величине подачи. Однако, именно жёсткость металлорежущего оборудования определяет, насколько полноценно может быть использовано трохоидальное фрезерование. К другим факторам относятся размер самой твердосплавной фрезы, материал обрабатываемой заготовки и глубина резания. Основная идея трохоидального фрезерования заключается в существенном увеличении скорости резания и величины подачи. Стружка фрезеруется от максимальной толщины при первоначальном зацеплении зубьев твердосплавной фрезы с заготовкой к малой толщине на выходе из этого зацепления. Траектория фрезы по металлу оптимизирована на основе результатов предыдущих разработок и позволяет исключить лишнее фрезерование воздуха и свести к минимуму движение отгибания от вертикальной оси. Испытания показали, что трохоидальный метод фрезерования быстрее, чем обычный способ фрезерования пазов, поскольку могут быть достигнуты гораздо более высокие режимы резания.

Фрезерование титана: 10 советов по обработке

Несколько простых принципов помогут сделать фрезерование титановых сплавов эффективнее. По заявлениям компании Stellram, конструкция изображенной на рисунке высокоскоростной фрезы при обработке высокотемпературных аэрокосмических сплавов обеспечивает скорость подачи, превышающую скорость фрезерных инструментов традиционной конструкции в пять раз.

Титановые и алюминиевые сплавы в некотором отношении схожи: оба металла применяются в конструктивных элементах самолетов, и в обоих случаях для изготовления детали может требоваться удаление 90 процентов исходного материала.

Пожалуй, большинство производителей хотели бы, чтобы эти металлы имели больше общих черт. Традиционно обрабатывающие алюминий поставщики авиадеталей теперь по большей части работают с титаном, поскольку в новейших авиационных конструкциях все больше используется именно данный металл.

Менеджер компании-поставщика режущих инструментов Stellram Джон Палмер, ответственный за работу с ведущими производителями авиакосмической отрасли, отмечает, что многие из таких предприятий в действительности имеют бо́льший потенциал обработки титана, чем они реализуют на данный момент. Многие ценные и эффективные технологии обработки титана достаточно просто внедрить, но лишь немногие из них используются для повышения продуктивности. Проконсультировавшись с производителями по вопросам эффективности фрезерования разных аэрокосмических сплавов, включая сплавы титана, Палмер пришел к выводу, что работа с титаном – не такой сложный процесс. Самое главное – продумать весь процесс обработки, поскольку любой элемент может оказать влияние на общую эффективность.

По словам Палмера, ключевым фактором является стабильность. При контакте инструмента с заготовкой образуется так называемый «замкнутый круг», в который входит инструмент, державка, шпиндель, станина, направляющие, рабочий стол, зажимное приспособление и заготовка. От всех этих частей зависит устойчивость процесса. Кроме того, важными аспектами являются давление, объем и способ подачи смазочно-охлаждающей жидкости, а также вопросы методики и применения, освещенные в данной статье. Для максимальной реализации потенциала данных процессов, способных повысить производительность обработки титана, Палмер рекомендует следующее:

Зависимость скорости резания от дуги контакта

Совет № 1. Сохраняйте малую площадь контакта

Одна из основных проблем титана – его низкая теплопроводность. В этом металле лишь относительно малая часть вырабатываемого тепла отводится вместе со стружкой. По сравнению с другими металлами, при обработке титана бо́льший процент тепла передается на инструмент. Вследствие данного эффекта выбор рабочей площади контакта определяет выбор скорости резания.

Эту зависимость демонстрирует кривая на рисунке 1. Полный контакт – врезание по дуге 180º – возможен только при относительно низкой скорости резания. В то же время уменьшение площади контакта сокращает период выделения тепла режущей кромкой и обеспечивает больше времени для охлаждения перед новым врезанием в материал. Таким образом, уменьшение зоны контакта обуславливает возможность повышения скорости резания с сохранением температуры в точке обработки. Фрезерование с крайне малой площадью контакта и остро заточенной режущей кромкой при высокой скорости и минимальной подаче на зуб может обеспечить непревзойденное качество чистовой обработки.

Увеличение количества зубьев

Совет № 2. Увеличьте количество зубьев

Обычные концевые фрезы имеют четыре или шесть зубьев. Для титана этого может быть недостаточно. Наибольшую эффективность обработки данного металла обеспечивает инструмент с десятью или более зубьями (см. рисунок 2).

Увеличение количества зубьев устраняет необходимость снижения подачи на зуб. При этом в большинстве случаев слишком близкое расположение зубьев в десятизубой фрезе не обеспечивает достаточно пространства для отвода стружки. Тем не менее, продуктивному фрезерованию титана способствует малая площадь контакта (см. совет № 1), и образующаяся в результате тонкая стружка дает возможность использовать многозубые концевые фрезы для повышения производительности.

Совет № 3. Соблюдайте принцип «от толстой стружки к тонкой»

Данная идея связана с термином «попутное фрезерование» и предполагает такое расположение инструмента, при котором кромка врезается в материал в направлении подачи.

Принцип «от толстой стружки к тонкой»

Этому методу противопоставляется «встречное фрезерование», сопровождающееся образованием тонкой стружки на входе и толстой на выходе. Такой метод известен как «традиционный» и отличается высокой силой трения при снятии стружки в начале резания, в результате чего образуется тепло. Тонкая стружка не может поглотить и отвести это выработанное тепло, и оно передается на режущий инструмент. Затем на выходе, где толщина максимальна, возросшее режущее усилие создает опасность налипания стружки.

Попутное фрезерование, или способ формирования стружки «от толстой к тонкой», предполагает вход в заготовку с максимальной толщиной среза, а выход – с минимальной (см. рисунок 3). При фрезеровании периферией фреза «подминает» под себя заготовку, создавая толстую стружку на входе для максимального поглощения тепла и тонкую стружку на выходе для предотвращения налипания стружки.

Фасонное фрезерование требует тщательного контроля траектории инструмента, с тем чтобы инструмент продолжал входить в заготовку и выходить на обработанной поверхности нужным образом. Для этого следует не прибегать к сложным манипуляциям, а просто подавать материал вправо.

Врезание по дуге

Совет № 4. Используйте врезание по дуге

При работе с титаном и другими металлами срок службы инструмента сокращается в моменты резких колебаний усилия, в особенности при входе в заготовку. При прямом врезании в материал (что характерно практически для любой траектории инструмента) эффект сопоставим с ударом по режущей кромке молотком.

Вместо этого следует аккуратно проходить режущей кромкой по касательной. Нужно выбрать такую траекторию движения, чтобы инструмент входил в материал по дуге, а не под прямым углом (см. рисунок 4). При фрезеровании от толстой стружки к тонкой дуга врезания должна совпадать с направлением вращения инструмента (по часовой или против часовой стрелки). Дуговая траектория обеспечивает постепенное увеличение силы резания, предотвращая рывки и повышая устойчивость инструмента. При этом выделение тепла и толщина стружки также постепенно возрастают до момента полного погружения в заготовку.

Снятие фаски в конце прохода

Совет № 5. Снимайте фаску в конце прохода

Резкие изменения усилия могут возникать и на выходе инструмента из материала. Как бы ни было эффективно фрезерование от толстой стружки к тонкой (совет № 3), проблема данного метода заключается во внезапной остановке постепенного утоньшения стружки, когда инструмент достигает конца прохода и начинает шлифовать металл. Такой резкий переход сопровождается соответствующим резким изменением силы, в результате чего на инструмент оказывается ударная нагрузка, способная вызвать повреждение поверхности детали. Чтобы снизить резкость, примите меры предосторожности – снимите 45-градусную фаску в конце прохода, обеспечив постепенное уменьшение радиальной глубины резания (см. рисунок 5).

Совет № 6. Выбирайте фрезы с большим вспомогательным задним углом

Острая режущая кромка минимизирует усилие резания титана, но при этом она должна быть достаточно прочной, чтобы выдержать давление резания.

Фрезы с большим вспомогательным задним углом

Конструкция инструмента с большим вспомогательным задним углом, где первая область кромки с положительным углом наклона принимает на себя нагрузку, а следующая за ней вторая область с бо́льшим углом увеличивает зазор, позволяет решить обе эти задачи (см. рисунок 6). Такая конструкция довольно широко распространена, но именно в случае титана экспериментирование с различными величинами вспомогательного заднего угла позволяет достигнуть существенного увеличения производительности и срока службы инструмента.

Совет № 7. Изменяйте осевую глубину

Режущая кромка инструмента может подвергаться окислению и воздействию химических реакций. Многократное использование инструмента с одной и той же глубиной врезания может привести к преждевременному износу в зоне контакта.

Измерение осевой глубины

В результате последовательных осевых врезаний поврежденная область инструмента вызывает деформационное упрочнение и образование зазубрин, наличие которых недопустимо на деталях аэрокосмического оборудования, поскольку данный поверхностный эффект может вызвать необходимость преждевременной замены инструмента. Этого можно избежать, защитив инструмент путем изменения осевой глубины резания для каждого прохода и распределив тем самым проблемную область по разным точкам зубьев (см. рисунок 7). В процессе точения аналогичного результата можно достичь обтачиванием конической поверхности при первом проходе и обработкой цилиндрической поверхности при последующем – это позволит предотвратить образование проточин.

Читать еще:  Медь: цвет, особенности добычи, характеристика металла

Ограничение осевой глубины обработки тонких элементов

Совет № 8. Ограничьте осевую глубину обработки тонких элементов

Во время фрезерования тонкостенных и выдающихся элементов титановых деталей важно помнить о соотношении 8:1. Чтобы избежать искривления стенок пазов, фрезеруйте их последовательно в осевом направлении вместо обработки по всей глубине за один проход концевой фрезы. В частности, осевая глубина резания при каждом проходе не должна превышать конечную толщину стенки более чем в 8 раз (см. рисунок 8). Например, для достижения толщины стенки 2 мм осевая глубина соответствующего прохода должна составлять максимум 16 мм.

Несмотря на ограничение глубины, данное правило все же позволяет сохранить производительность фрезерования. Для этого тонкие стенки нужно фрезеровать так, чтобы вокруг них оставалась необработанная область, а толщина элемента в 3 или 4 раза превышала конечную толщину. Если нужно получить стенку толщиной 7 мм, согласно правилу 8:1 осевая глубина может достигать 56 мм. При обработке толстых стенок следует соблюдать небольшую глубину прохода до достижения окончательного размера.

Использование инструмента значительно меньше паза

Совет № 9. Используйте инструмент значительно меньше паза

В силу большого количества тепла, поглощаемого при обработке титана, фрезе требуется пространство для охлаждения. При фрезеровании небольших пазов диаметр инструмента не должен превышать 70 процентов от диаметра (или сопоставимого размера) паза (см. рисунок 9). При меньшем зазоре существенно возрастает риск ограничения доступа охлаждающей жидкости к инструменту, а также задерживания стружки, которая могла бы отводить хотя бы часть тепла.

Данное правило также применимо при фрезеровании открытой поверхности. При этом ширина элемента должна составлять 70 процентов от диаметра инструмента. Смещение инструмента составляет 10 процентов, что способствует утоньшению стружки.

Использование инструментальной стали

Совет № 10. Обратите внимание на инструментальную сталь

Высокоскоростные фрезы, изначально разработанные для обработки инструментальной стали при изготовлении пресс-форм, в последние годы начали активно использоваться в производстве титановых деталей. Высокоскоростная фреза не требует большой осевой глубины резания, и на такой глубине скорость подачи превышает показатели фрез традиционной конструкции.

Данные характеристики обусловлены утоньшением стружки. Ключевая особенность высокоскоростных фрез – пластины с большим радиусом закругления кромки (см. рисунок 10), способствующим распределению образуемой стружки по увеличенной площади контакта. Благодаря этому при осевой глубине резания 1 мм возможно образование стружки толщиной всего 0,2 мм. В случае титана такая тонкая стружка устраняет необходимость в низкой подаче на зуб, обычно используемой для данного металла. Таким образом, становится возможным установка скоростей подачи значительно выше стандартных.

Источник материала: перевод статьи
10 Tips for Titanium,

Modern Machine Shop

Автор статьи-оригинала:
Питер Зелински (Peter Zelinski),
главный редактор

Обработка титана на токарном станке и выбор инструмента

Технология профессиональной токарной обработки титана сопряжена с рядом трудностей. Они обусловлены изначальными свойствами материала, которые напрямую влияют на выбор режима работы и инструмента.

Трудности обработки титана

Титан — это легкий металл с серебристым оттенком. Помимо превосходной механической стойкости практически не подвержен ржавлению. Это связано с формированием пассивирующей оксидной пленки TiO2. Процесс разрушения происходит только в щелочных средах.

Перед обработкой титана следует ознакомиться с его свойствами. Главная проблема заключается в высоких прочностных характеристиках этого металла. До недавнего времени считалось, что невозможно выполнить эффективный процесс резания титана на обычном токарном станке. В большинстве случаев инструмент быстро изнашивался, а качество обработки оставляло желать лучшего.

Это напрямую связано со следующими факторами:

  • высокий показатель вязкости. В процессе резания происходит значительное повышение температуры в узкой области. В результате этого происходит налипание частиц металла на фрезу или сверло;
  • титановая пыль имеет свойство взрываться. Это же относится и к стружке. Поэтому во время обработки следует соблюдать все меры безопасности;
  • минимальная мощность оборудования. Для оптимизации процессов рекомендовано применять комплексные обрабатывающие станки. Они выполняют одновременно несколько операций, тем самым уменьшая вероятность появления вышеописанных факторов. Однако это влечет за собой удорожание оборудования.

Кроме этого, следует учитывать низкую теплопроводность материала. Практически все марки металлов и абразивов растворяются в титане. Поэтому следует выбрать специальный режущий инструмент, а также предварительно рассчитать режим его применения.

После окончательного изготовления детали она должна пройти процесс высокотемпературного оксидирования. Заготовку нагревают, а затем она проходит процесс охлаждения на открытом воздухе, это повышает износоустойчивость.

Режимы токарной обработки титана

Токарная обработка изделий из титана выполняется с применением специальных режущих инструментов. Существуют три основных этапа работ: предварительный, промежуточный и окончательный.

Для выбора оптимального режима работы необходимо знать основные технические параметры обработки. Они зависят от угла расположения инструмента в плане (Kr), величины подачи (Fn) и скорости резания (Ve). Для контроля температурного нагрева можно изменять скорость вращения заготовки, толщину образовавшейся стружки и глубину резания.

Рекомендации по значениям основных параметров токарной обработки титана в зависимости от области применения:

  • черновая – до 10 мм. Она применяется для удаления неравномерной корки на титане. С ее помощью происходит формирование кольца-свидетеля, которое отрезается для анализа состояния материала по всей глубине заготовки. Рекомендуемые параметры: Kr – 3-10 мм; Fn – 0,3-0,8 мм; Ve – 25 м/мин;
  • промежуточная – от 0,5 до 4 мм. Этот этап необходим для подготовки детали к окончательному резанию. В процессе может изменяться глубина резания, материал не должен содержать корки. Обязательно необходимо оставить припуск 1 мм для окончательного этапа. Рекомендуемые параметры: Kr – 0,5-4 мм; Fn – 0,2-0,5 мм; Ve – 40-80 м/мин;
  • окончательная – 0,2-0,5 мм. На этом этапе выполняется окончательное удаление припусков, происходит формирование детали. К нему предъявляются высокие требования. Во время его выполнения следует максимально точно рассчитать режимы: Kr – 0,25-0,5 мм; Fn – 0,1-0,4 мм; Ve – 80-120 м/мин.

Для всех вышеописанных режимов рекомендуется применять специальные охлаждающие жидкости. Это позволит уменьшить влияние температурного налипания стружки к поверхности резца.

При увеличении глубины резания необходимо снижать значение подачи. На криволинейных участках значение этого параметра может составить 50% от номинального.

Выбор инструмента для токарной обработки титановых сплавов

Важным моментом является правильный выбор токарного инструмента. Зачастую для этого применяют резцы со сменной режущей частью. Они могут иметь различную форму, которая определяет угол и степень обработки титана.

Выбор определенной модели резца зависит от текущего режима работы и характеристик оборудования. Но существуют общие рекомендации по форме и материалу изготовления режущего инструмента:

  • предварительная. Применяются пластины квадратной или круглой формы (с большим диаметром). Рекомендуемый размер — iC19. В качестве материала изготовления лучше всего использовать сплав H13A без покрытия;
  • промежуточная. Оптимальным вариантом являются круглые пластины. Для уменьшения теплового эффекта глубина вхождения резца не должна превышать 25% от диаметра инструмента. Используемые сплавы для изготовления — H13A (без покрытия) и GC1115 с PDV покрытием. Последний вариант позволит добиться оптимального соотношения точности и износоустойчивости инструмента;
  • окончательная. Применяются пластины с шлифованными режущими кромками. Применяемые сплавы: H13A (без покрытия); GC1105 (PVD, с острыми кромками); CD10 (PCD).

Для выполнения последнего этапа необходим точный станок с функцией подачи охлажденной жидкости под высоким давлением. При формировании тонкостенных деталей снижается радиальная составляющая силы резания.

В видеоматериале даются практические советы по обработке титана:

Фрезерование титана: 10 советов по обработке

Основные проблемы, возникающие при обработке титана, и средства их решения

Основной проблемой, возникающей при обработке титана, является его склонность к задиранию и налипанию на инструмент. Также одним из усложняющих факторов является его низкая теплопроводность. Большинство металлов сопротивляются плавлению в гораздо меньшей степени, поэтому при контакте с титаном растворяются в нем, образуя сплавы. Это приводит к быстрому износу применяемого инструмента.

Чтобы уменьшить задирание и налипание, а также для отвода выделяемого тепла, применяют следующие способы:

  • при резке, а также иной обработке титана используют охлаждающие жидкости;
  • заточку изделий выполняют с применением инструментов, изготовленных из твердых сплавов металлов;
  • обработку металла резцами выполняют при гораздо меньших скоростях, чтобы избежать излишнего нагрева.

Эффекты налипания и задирания титана обусловлены его высоким коэффициентом трения, который относят к серьёзным недостаткам этого металла. В своем большинстве изделия из титана быстро поддаются износу, поэтому чистый состав этого металла редко используются для изготовления изделий, которые применяются в условиях трения и скольжения. При трении титан налипает на трущуюся поверхность, вызывая связывающий эффект и уменьшая скорость движения сообщающихся деталей. Способами, которые устраняют этот негативный эффект, выступают азотирование и оксидирование титана.

Азотирование титана — технологический процесс, который заключается в нагреве изделия из титанового сплава до температуры 8500С — 9500С и его выдержке в течение нескольких суток в среде чистого газообразного азота. В результате происходящих химических реакций на поверхностях изделия образуется пленка из нитрида титана, имеющая золотистый оттенок и обладающая большей твердостью, а также большим сопротивлением к стиранию. Изделия, прошедшие такую обработку, обладают повышенной износостойкостью и не уступают по своим характеристикам изделиям, изготовленным из поверхностно упрочнённых специальных сталей.

Оксидирование титана — распространенный метод, заключающийся в нагреве титанового изделия до 8500С и его резком охлаждении в водной среде, что вызывает образование на поверхности обрабатываемой детали плотной пленки, которая хорошо связывается с основным слоем материала. При этом сопротивление стиранию и общая прочность изделия возрастает в 15-100 раз.

Трудности обработки титана

Принято считать, что титан поддаётся механической обработке подобно нержавеющим сталям. Это значит, что обрабатывать титан в 4-5 раз труднее, чем обычную сталь, но это всё же не составляет неразрешимой проблемы. Основные проблемы при обработки титана — это большая склонность его к налипанию и задиранию, низкая теплопроводность, а также то обстоятельство, что практически все металлы и огнеупорны растворяются в титане, в результате чего представляет собой сплав титана и твёрдого материала режущего инструмента. Такая обработка вызывает быстрый износ резца.

Для уменьшения налипания и задирания и для отвода большого количества тепла, которое выделяется при резании, применяют охлаждающие жидкости. Точение заготовки производят спомощью резцов из твёрдых сплавов причём скорость обработки, как правило, ниже, чем при точении нержавеющей стали.

Если необходимо разрезать листы из титана, то эту операцию осуществляют на гильотинных ножницах. Сортовой прокат больших диаметров режут механическими пилами, применяяножовочные полотна с крупным зубом. Менее толстые прутки разрезают на токарных станках.

При фрезеровании титан остаётся верным себе и налипает на зубья фрезы. Фрезы тоже изготовляют из твёрдых сплавов, а для охлаждения применяют смазки, отличающиеся большой вязкостью.

При сверлении титана основное внимание обращают на то, чтобы стружка не скапливалась в отводящих канавках, так как это быстро повреждает сверло. В качестве материала для сверления титана применяют быстрорежущую сталь.

При использовании титана как конструкционного материала титановые детали соединяют друг с другом и с деталями из иных материалов разными методами.

Основной метод — сварка. Самые первые попытки сварить титанбыли неудачными, что объяснялось взаимодействием расплавленного металла с кислородом, азотом и водородом воздуха, ростом зерна при нагреве, изменениями в микроструктуре и другими факторами, приводимые к хрупкости шва. Однако все эти проблемы, ранее казавшиеся неразрешимыми, были решены в самые короткие сроки в наши дни сварка титана — обычная промышленная технология.

Но, хотя проблемы решены, сварка титана не стала простой и лёгкой. Основная её трудность и сложность заключается в необходимости постоянного и неукоснительного предохранения сварного шва от загрязнения примесями. Поэтому при сварке титана используют не только инертный газ высокой чистоты и специальные бескислородные флюсы, но и разнообразные защитные козырьки, прокладки, которые защищают остывающие.

Чтобы максимально снизить рост зерна и уменьшить изменения в микроструктуре, сварку ведут с большой скоростью. Почти все виды сварки производят в обычных условиях, применяя специальные меры для защиты нагретого металла от соприкосновение с воздухом.

Но мировая практика знает и сварку в контролируемой атмосфере. Такая защита сварного шва обычно необходима при выполнении особо ответственных работ, когда требуется стопроцентная гарантия того, что сварной шов не будет загрязнён. Если свариваемые части не велики, сварку ведут в специальной камере, заполненной инертным газом. Сварщик хорошо видит всё, что ему нужно через специальное окно.

Когда же сваривают большие детали и узлы, контролируемую атмосферу создают в специальных вместительных герметичных помещениях, где сварщики работают, применяя индивидуальные системы жизнеобеспечения. Разумеется, эти работы ведут сварщики самой высокой квалификации, но и обычную сварку титана должны проводить только специально обученные этому делу люди.

В тех случаях, когда сварка не возможна или попросту не целесообразна, прибегают к пайке. Пайка титана осложняется тем, что он при высоких температурах химически активен и очень прочно связан с покрывающей его поверхность — окисной плёнкой. Подавляющее большинство металлов непригодно для использования в качестве припоев при пайке титана, так как получаются хрупкие соединения. Только чистые серебро и алюминий подходят для этой цели.

Читать еще:  Структура получаемая после закалки и среднего отпуска

Некоторые особенности резки и сверления титана

Нарезка заготовок является очень сложным технологическим процессом, сопровождающимся использованием специальных инструментов и оборудования. Листы разрезаются гильотинными ножницами, а заготовки из сортового проката — распиливаются механической пилой. Небольшие по диаметру пруты нарезают с помощью токарных станков.

Фрезерование титана остается наиболее сложным способом его обработки. Он налипает на зубьях инструмента (фрезы), что значительно затрудняет работу с заготовкой. Поэтому для такого способа применяют инструменты, изготовленные из твердого сплава металлов, а процесс обработки сопровождают использованием охлаждающих смазок и жидкостей, которые обладают большой вязкостью.

При выполнении операций сверления важно, чтобы стружка, образующаяся в результате сверления, не накапливалась в отводных каналах, в противном случае это может привести к преждевременному износу и поломке инструмента. При сверлении применяют фрезы, изготовленные из быстрорежущей стали.

Анодирование титана в домашних условиях

В домашних условиях анодирование осуществляется по следующей схеме:

  1. В контейнер, который не обладает электропроводимостью (стекло или пластмасса), помещают электролит.
  2. Собирается электрическая цепь, где источником электрического тока с постоянным напряжением может выступать блок питания (аккумулятор).
  3. Изделие из титана, которое нужно обработать, подключается зажимом к положительному заряду, после чего помещается в резервуар с электролитическим раствором.
  4. К отрицательному заряду крепятся пластины из нержавеющей стали из свинца, после чего также погружаются в электролит.

Если деталей, подключенных к «-», несколько, их необходимо расположить на одинаковом расстоянии от титанового сплава.

  1. Цепь активируется с помощью источника электрического тока, после чего деталь из титана начинает выделять кислород, способствующий образованию оксидного покрытия.

Не стоит забывать о предварительной подготовке изделия из титанового сплава к процедуре анодирования. Детали необходимо очистить от загрязнений и элементов ржавчины, после чего отполировать и промыть чистой водой. Титановый сплав должен несколько часов провести в щелочном растворе, после чего поверхность изделия тщательно обезжиривается.

Только после вышеперечисленных подготовительных мер титан можно погружать в электролит и приступать к анодированию.

Если у вас есть опыт проведения процедуры анодирования титана в домашних условиях, вы можете поделиться им в комментариях.

Особенности соединения титановых изделий и их элементов

Если титановое изделие выступает элементом конструкции, то соединить детали, изготовленные из титановых сплавов, позволяет применение таких методов:

  • сварка;
  • пайка
  • механическое соединение с использованием заклепок
  • соединение с применением болтового крепления.

Основным методом соединения выступает сварка, представляющая обычную промышленную технологию. Чтобы обеспечить прочность сварного шва соединение элементов выполняют в среде инертного газа или специальных бескислородных флюсов. Также для этого оберегают шов с применением различных защитных элементов. Взаимодействие расплавленного титана с такими химическими элементами как водород, кислород и азот, содержащимися в воздушной смеси, при нагреве приводит к росту зерна металла, изменению его микроструктуры и хрупкости сварного шва. Сварочные работы выполняют на большой скорости.

Также существует метод сварки в контролируемой среде, который применяется для выполнения работ, требующих большой ответственности. При необходимости соединить небольшие по своим размерам элементы, их помещают в специальные камеры, заполненные инертным газом. В случае соединения элементов большего размера сварочные работы выполняют в специальных герметично изолированных помещениях. Сварка титана — ответственная работа, которая доверяется исключительно подготовленным специалистам, имеющим необходимый практический опыт и навыки.

Пайка титана применяется в случаях, когда проведение сварочных работ невозможно или нецелесообразно. Она также осложнена химическими реакциями. Титан в расплавленном состоянии демонстрирует высокую химическую активность и прочно связан с пленкой окиси, формируемой на поверхностях обрабатываемой детали. Большинство распространенных металлов непригодны в качестве припоя для соединения титановых элементов, для этих целей используются только чистые по своему составу алюминий и серебро.

Механическое соединение элементов из титана с помощью клепок и болтовых креплений также выполняется с применением специальных материалов. В большинстве случаев заклепки изготавливают из алюминия, а применяемые болты покрываются напылением серебра или синтетического тефлона. Это вызвано тем, что при завинчивании титан проявляет свое свойство налипания и задирается, в результате соединения элементов становятся ненадежными, не обеспечивают прочной фиксации.
Перейти к списку статей >>

Технология сварки

Подготовка состоит из зачистки кромок, окислы снимают на расстоянии до 2 см от кромки, и обезжиривания (нужно протирать титан в перчатках, чтобы от пальцев не оставалось следов). Затем металл протравливают горячей смесью (60°С) соляной кислоты (в 650 мл растворяют 350 мл) и фторида натрия (50 г). Состав наносится на 10 минут.

Для сварки титана и его сплавов используют:

  • холодный метод;
  • дуговой с использованием электродов;
  • контактный;
  • лучевой.
  • Рассмотрим их подробней.

Ручная дуговая сварка

Используют тугоплавкий электрод на основе вольфрама (с итрированной или лантановой обмазкой). Его необходимо заточить под углом 45°. Сила тока удерживается на уровне 90–100 ампер. Тонкие изделия до 1,5 мм соединяют встык без присадки, остальные – с подачей прутка. Присадку по составу выбирают под сплав, перед работой ее отжигают в вакууме – удаляют водород. В герметичной упаковке она сохраняет свои свойства до 5 суток.

Шпиндельные соединения

В системном подходе важна также роль шпинделя. Обрабатывающие устройства испытывают трудности при достижении высоких скоростей удаления металла, учитывая низкую скорость резания и высокие силы резания, характерные для титана. На протяжении многих лет производители станков улучшали жесткость и демпфирование на шпинделях и станочных конструкциях. Шпиндели спроектированы с высоким крутящим моментом при низких скоростях вращения. Хотя все эти достижения повышают производительность, соединение шпинделя часто остается слабым звеном.В большинстве случаев соединение инструмента-шпинделя определяет, сколько материала может быть удалено в данной операции.

Высокопроизводительная обработка обычно характеризуется использованием высоких подач и агрессивной глубиной обработки. Благодаря постоянным достижениям в режущих инструментах существует потребность в шпиндельном соединении, которое лучше использует доступную мощность станка. За последние несколько десятилетий несколько последних типов шпиндельного соединения были разработаны или оптимизированы. Благодаря хорошей цене / выгодной позиции конусность 7/24 ISO стала одной из самых популярных систем на рынке. Однако конструкция имеет ряд ограничений, связанными с точностью на высоких скоростях. Как правило, конус шпинделя начинает прокручиваться от центробежной силы начиная от скорости вращения шпинделя в 20000 об / мин. Это дает погрешности обработки,ведь конус начинает терять контакт, позволяя инструменту перемещаться вверх по шпинделю.

Конструкция Kennametal, которая недавно был улучшена для обработки титана, представляет собой интерфейс инструмента-шпинделя «KM», который закрепляет держатель инструмента с помощью шарового механизма, который действует на поверхность отверстия. В новой KM4X-системе улучшение связано с ограничением изгибов конструкции, что важно при фрезеровании материалов с высокой силой, таких как титан.

В торцевых фрезерованиях, где длительность проецирования длинна, ограничивающим фактором является этот изгиб. Новая система KM4X обеспечивает высокую силу зажима и сопротивление помехам для обеспечения высокой жесткости и высокой изгибающей способности для повышения производительности при обработке титановых сплавов.

Обработка титана на токарном станке

Существует группа металлов обработка которых требует создание особых условий с учетом повышенной твердости их структуры. Одним из элементов данной группы является титан, обладающий высокой прочностью и требующий применения специальной технологии обработки, с использованием токарных станков с ЧПУ и особо прочный инструмент. Обработка титана на токарном станке широко используется в технологических процессах для изготовления необходимых изделий в различных отраслях промышленности. Титан применяется в аэрокосмической отрасли, где его использование достигает 9 % от общего объема материалов.

Особые условия обработки металла

Титан – особо прочный, легкий, серебристый метал стойкий к воздействию процесса ржавления. Высокая устойчивость к воздействию внешней среды обеспечивается за счет образования на поверхности материала защитной пленки TiO2. Негативное воздействие на титан могут оказывать вещества содержащие щелочь, что приводит к потере прочностных характеристик.

Высокая прочность титана требует создания особых условий во время резания детали с использованием токарного станка с ЧПУ и инструмент из сверхпрочного сплава.

В обязательном порядке необходимо учитывать:

  • металл очень вязкий и когда производится его токарная обработка с использованием токарного станка, сильно нагревается, что приводит к налипанию титановых отходов на режущий инструмент;
  • мелкая дисперсная пыль, образующаяся во время обработки, может детонировать, что требует особой осторожности и соблюдения мер безопасности;
  • для резания титана требуется специальное оборудование, обеспечивающее необходимый режим резания;
  • титан обладает низкой теплопроводностью, что требует для резания специально подобранный режущий инструмент.

После выполнения процесса, когда завершена обработка изделия из титана для создания прочной защитной пленки деталь нагревают, а затем охлаждают на открытом воздухе.

Соблюдение технологии обработки титановых сплавов

Для резания заготовок из титана применяются токарные станки с ЧПУ и специальный режущий инструмент, а процесс делится на ряд операций, каждая из которых выполняется по особой технологии.

Операции обработки на токарных станках делятся:

  • предварительные;
  • промежуточные;
  • основные.

Необходимо также учитывать возникающую вибрацию при обработке заготовок из титановых сплавов, появляющуюся при операциях на токарных станках. Частично эту проблему удается решить с помощью многоступенчатого крепежа заготовок с расположением как можно ближе к шпинделю. Для уменьшения влияния температуры при обработке лучшим вариантом является использование резцов из мелкозернистых твердых сплавов без покрытия и пластин со специальным покрытием PVD.

При резании 85-90% всей энергии превращается в тепловую энергию, которая поглощается частично стружкой, резцом, обрабатываемой деталью и охлаждающей жидкостью. Температура в зоне обработки детали может достигать 1000-1100 °С.

При обработке заготовок на токарном станке учитываются три основных параметра:

  • угол фиксации инструмента (Kr);
  • размерность подачи (Fn);
  • скорость резания (Ve).

С помощью регулирования данных параметров производится изменение температурного режима резания. Для различных режимов, когда проводится обработка, устанавливаются и регулирующие параметры:

  • предварительного – до 10 мм производится снятие верхнего слоя с титановой заготовки с образованием припуска 1 мм (Kr -3 -10 мм, Fn – 0,3 — 0,8 мм, Ve — 25 м/мин);
  • промежуточного – 0,5 – 4 мм, удаляется верхний слой с образованием ровной поверхности с припуском 1 мм (Kr – 0,5 – 4 мм, Fn – 0,2 – 0,5 мм, Ve — 40 — 80 м/мин).
  • основного – 0,2 – 0,5 мм, чистовая обработка с удалением припуска (Kr – 0,25 – 0,5 мм, Fn – 0,1 – 0,4 мм, Ve — 80 — 120 м/мин).

Обработка заготовок из титана ведется с обязательной подачей специальной эмульсии охлаждающей инструмент под давлением для обеспечения нормального температурного режима. При использовании более глубокого реза необходимо снижать скорость обработки титана, меняя режимы работы.

Подбор необходимого инструмента

Требования к обрабатывающему инструменту для титана достаточно высоки и для работы в основном применяются резцы, со сменными головками используемые на станках с ЧПУ. Инструмент в ходе рабочего процесса подвергается изнашиванию: абразивному, адгезийному и диффузному. При диффузном изнашивании происходит взаимное растворение материала режущего инструмента и титановой заготовки. Особо активно эти процессы протекают при температуре 900 — 1200 °С.

Подборка ведется с учетом режима обработки:

  • при предварительном процессе используются пластины круглой или квадратной формы (iC 19) изготовленные из специального сплава H 13 A без покрытия;
  • при промежуточном процессе, используются пластины круглой формы, изготовленные из сплава H 13 A, GC 1115 с покрытием PDV;
  • при основном процессе, используются пластины со шлифовальными режущими кромками изготовленные из сплавов H 13 A, GC 1105 и CD 10.

При процессе воздействия на титановую заготовку с использованием специальных резцов применяются высокоточные токарные станки с ЧПУ и различные режимы обеспечивающие автоматизацию проводимых операций и высокое качество изготавливаемых деталей. Размеры готовой детали должны иметь нулевое или минимальное отклонение от заданных параметров согласно техническому заданию.

Титан: сложности и методы его обработки

Среди неспециалистов бытует мнение, что титан имеет явное сходство с нержавеющей сталью. А значит, его можно подвергать механической обработке. При этом такой металл все же прочнее стали, поэтому сама работа с ним примерно раз в пять труднее. Тем не менее, особых проблем металлообработка вызывать не должна.

Сложности обработки титановых изделий

На самом же деле все обстоит несколько сложнее, чем представляется на первый взгляд. Металл этот отличается сниженной теплопроводностью, способен задираться и налипать. Кроме того, сложность заключается и в том, что титан необычайно прочен и способен при термических работах спаиваться с режущим инструментом (ведь резец также состоит из металла и практически всегда оказывается более мягким, чем обрабатываемая деталь). В результате инструмент особенно быстро изнашивается и требует постоянной замены.

Говоря об обработке металла, профессионалы подразумевают несколько разных видов работ с титановыми деталями. У них существуют свои секреты, позволяющие нейтрализовать отрицательные свойства этого металла или свести их к минимуму. Например, специальные охлаждающие составы помогут уменьшить задирание либо налипание металла, а также снизить тот объем тепла, который выделяется при резке титана.

Титановые листы разрезают с помощью гильотинных ножниц. Прокатный сортовой металл крупного диаметра обычно подвергают резке специальными пилами механического типа. Этот инструмент отличается тем, что зуб полотна у него достаточно крупный. Если пруток имеет меньший диаметр, в ход можно пустить токарный станок. Кстати, токарная обработка данного металла осуществляется резцами, изготовленными из особо прочных сплавов. Но даже при этом обстоятельстве скорость работы должна быть снижена и обычно уступает той скорости, которая наблюдается при обработке стали-нержавейки.

Фрезеровка титановых деталей также вызывает сложности: на фрезерные зубцы металл начинает налипать. Чтобы избежать этого, необходимо использовать фрезу, изготовленную из сплавов высокой твердости. В качестве охладителей применяют жидкости, уровень вязкости которых повышен.

Читать еще:  Уникальные свойства бериллиевой бронзы

Отдельное внимание следует уделить сверлению титановых элементов. В канавках может скапливаться стружка, вследствие чего сверло начинает деформироваться. Сверлить титан можно с помощью стальных быстрорежущих инструментов.

Титан можно использовать также и в качестве материала для составляющих каких-либо конструкций. Детали из этого металла требуется соединять, и здесь применяют несколько методов. Стоит рассмотреть этот вопрос подробнее.

Особенности сварочных работ по титану

Сварка является наиболее часто используемым вариантом соединения титановых деталей. Поначалу любая попытка титановой сварки заканчивалась неудачей. Причины этого назывались разные. Считалось, что в микроструктуре металла происходят изменения, что титан вступает в реакцию в азотом, кислородом и водородом, которые содержатся в воздухе. Среди других факторов называлось возрастание зернистости при разогреве металла. В любом случае, швы оказывались предельно хрупкими. Однако все эти проблемы удалось достаточно быстро решить с помощью новых технологий. Поэтому в настоящее время сварка титановых элементов не вызывает особых сложностей и считается обыденной.

Вместе с тем, определенные нюансы при проведении сварочных работ все же наблюдаются. Чаще всего, это выражается в том, что сварочный шов требуется постоянно оберегать от примесей, которые его загрязняют. Чтобы избежать этого, сварщики применяют флюсы, действующие без кислорода, а также чистый инертный газ. Используются также специализированные прокладки и козырьки для защиты – они позволяют прикрывать остывающие швы и препятствуют загрязнению.

Подобные услуги по металлообработке предполагают повышенную скорость сварки. Это позволяет снизить возрастание зернистости и задержать любые деформации микроструктуры материала. Сварка осуществляется в стандартных условиях. Для того чтобы защитить горячий металл от вступления в реакцию с воздухом, используются отдельные предупреждающие меры.

Сварка может осуществляться и в атмосфере полной контролируемости. Соблюдать ее необходимо, когда требуется избежать даже возможности загрязнения шва. Такие требования выдвигаются для самых ответственных сварочных работ при гарантии чистоты в 100%.

В случае, если нужно соединить небольшие по объему детали, работа проводится в особой камере, которая полностью заполняется инертным газом. Чтобы сварщику был виден весь фронт работ, камеру оснащают специальным окошком.

Если же необходимо соединить крупные элементы конструкции, работа проводится в помещении, герметично закрытом. Любая сварка должна осуществляться подготовленными людьми, а в данной ситуации к работе допускаются лишь профессиональнее сварщики с внушительным опытом. Для них в помещении предусматриваются системы жизнеобеспечения.

Другие способы соединения титановых деталей

Иногда сварка титана выглядит нецелесообразной. В этом случае зачастую используют пайку. Такой вид обработки титанового материала является довольно сложным. Причина в том, что при температурном воздействии оксидная пленка на поверхности детали приводит к весьма непрочному соединению вне зависимости от того, с каким металлом спаивается титан. Поэтому из всех металлов, идеально взаимодействующих с титаном при пайке, подходят лишь алюминий и серебро повышенной чистоты.

Еще один способ соединения титановых изделий между собой или с деталями из иных металлов – это клепка. Этот метод, как и применение болтов, является механическим. Если ставится заклепка из титана, работа существенно удлиняется. При использовании болтов необходимо покрывать их тефлоном либо серебром, в противном случае не избежать налипания титана, а само соединение окажется достаточно хрупким.

Способы нейтрализации минусов титана

Недостатком этого уникального металла является задирание, налипание, которое возникает при трении. В результате происходит ускоренное изнашивание титанового сплава. Если применяется фрезеровка металла, это обстоятельство нельзя не учитывать. Скользя по металлической поверхности, титан вступает в реакцию и начинает налипать, постепенно поглощая всю деталь.

Однако верхний слой титана можно сделать более прочной, устойчивой к истиранию и налипанию. В том числе, для этой цели используется азотирование. Метод состоит в выдерживании детали в азотном газе. Изделие должно быть разогрето в среднем до 900 градусов, а время выдержки составляет свыше суток. В результате азотирования поверхность элемента покрывается нитридной пленкой, придающей титану особую твердость. Как следствие – повышение износостойкости титановой детали.

Еще один метод, позволяющий повысить свойства металла, – это его оксидирование. Оно помогает устранить задирание. Титановую деталь необходимо нагреть, чтобы на ее поверхности возникла оксидная пленка. Она плотно покрывает верхний слой металла, не пропуская внутрь воздух.

Оксидирование может быть низко- и высокотемпературным. В последнем случае изделие выдерживают в течение нескольких часов в нагретом состоянии, а после чего опускают его в холодную воду. Это помогает ликвидировать окалину. Оксидированная таким образом деталь становится более устойчивой к изнашиванию сразу на несколько порядков.

Фрезерование титановых деталей

Титан применяется в самых разных промышленных сферах, в том числе, в самолетостроении и космонавтике. В этих отраслях чаще всего используются детали, выполненные из титана.

Нужно учитывать, что фрезерная обработка металла отличается сложностью. Поэтому для таких работ требуется применять острые фрезы с повышенной скоростью. Следует также максимально снизить контакт детали с резцом. Фрезерование начинается по дуге, а в конце работы фаска должна сниматься под определенным углом.

Квалификация фрезеровщика играет серьезную роль не только в выполнении самих работ, но и в определении их стоимости. Многое будет также зависеть и от того, насколько сложной выглядит геометрия создаваемого из титана элемента.

Фрезерование титана: 10 советов по обработке

quote: Originally posted by Н.Ежелев:
Кто как фрезерует-сверлит?

Трудно

Грубо говоря: режимы для титана отличаются от нержи так же, как нержа от углеродки.

сверловку делаю обычными сверлами, просто почаще точу.

резьбы да, очень проблемно резать, и то, я меньше М3 не режу.

quote: Originally posted by alex-wolff:

свёрла и фрезы с кобальтовым покрытием и малые обороты

может таки быстрорез с кобальтом в составе, а покрытие таки какое-то другое?

quote: на токарнике (на фото как раз он) точу мелкие деталюшки, оси, втулки, бонки. резцы с твердосплавными напайками.
сверловку делаю обычными сверлами, просто почаще точу..

дык режимы скажи!))скорости какие ?

quote: Originally posted by Гриня:

может таки быстрорез с кобальтом в составе, а покрытие таки какое-то другое?

дык режимы скажи!))скорости какие ?

а кто его знает.
движка от «стиралки», ремешок резиновый, шкив.

quote: Originally posted by alex-wolff:

так что, за что купил как говорится, за то и продаю.

цитирую вашу ссылку, конкретно описание товара

quote: Originally posted by Гриня:

Технические характеристики
bla-bla-bla

Всё зависит от сплава.

Металл — Мерзопакостный! В мех.обработке.
Главное снимайте по чуточке. Что называется,надо «выйти на режим».

P.S.
Про обороты и охлаждение -всё вышесказанное Верно!

Тонкая стружка может загореться почти,как магний.

Советы по фрезеровке титана

Фрезеровка титана представляет некоторую сложность в силу особенностей этого металла. При его обработке нужно учитывать следующие моменты.

Малая площадь контакта

Титан имеет низкую теплопроводность. Лишь малая часть тепла отводится со стружкой, большая его часть отдается на инструмент. Малая рабочая площадь контакта гарантирует стабильную температуру. Также она увеличивает скорость резания.

Увеличенное количество зубьев

Для обработки титана не рекомендуется использовать обычные фрезы с четырьмя или шестью зубьями. Этого будет недостаточно. Оптимальное количество – десять зубьев и более. Это устраняет необходимость снижения подачи на зуб.

Может показаться, что десять плотно расположенных зубьев будут мешать нормальному отводу стружки, но это не так. Помним, что площадь контакта невелика, а значит, стружка будет достаточно тонкой, чтобы не препятствовать использованию многозубых фрез.

Попутное фрезерование

При таком методе обработки кромка врезается в материал в направлении подачи. В итоге сначала образуется толстая стружка, которая на выходе становится тонкой. Большая толщина на входе позволяет поглотить тепло, тогда как при обратном способе, встречном фрезеровании, стружка получается слишком тонкой для его вывода. А малая толщина на выходе предупреждает налипание стружки.

Снятие фаски в конце прохода

Попутное фрезерование эффективно, однако чревато внезапной остановкой постепенного утоньшения стружки. Из-за резкого перехода на инструмент оказывается ударная нагрузка, что может вызвать повреждение детали. Для уменьшения резкости нужно снять фаску в 45° в конце прохода.

Врезание по дуге

Если инструмент будет врезаться в титан прямо, нагрузка будет такая, словно по режущей кромке бьют молотком. Так что инструмент должен входить в материал по дуге. Это повышает его устойчивость и предотвращает рывки. Дуга врезания должна совпадать с направлением вращения инструмента.

Фрезы с большим вспомогательным задним углом

Такой инструмент минимизирует усилие резания титана и при этом успешно выдерживает давление резания. Первая область кромки с положительным углом наклона принимает на себя нагрузку, а вторая область с большим углом увеличивает зазор.

Изменение осевой глубины

Если использовать инструмент с одной и той же глубиной резания раз за разом, он будет быстро изнашиваться в зоне контакта. Если менять осевую глубину резания для каждого прохода, нагрузка будет распределяться по разным точкам зубьев.

Эти советы помогут улучшить обработку титановой заготовки и повысят точность оборудования.

Как обойти проблемы при фрезеровании титана

Фрезерование титановых сплавов считается одной из самых сложных металлообрабатывающих операций. Необходимо учесть все особенности этого металла, чтобы обеспечить необходимое качество готового изделия.

Пройдемся по основным характеристикам титановых сплавов, чтобы правильно подобрать режущий инструмент и режимы обработки.

Высокая прочность

Это свойство титана приводит к высоким нагрузкам на инструмент, т.к. приходится применять значительные усилия для резания этого металла. И тут без качественных износостойких фрез не обойтись. Лучше выбрать твердосплавный инструмент, хотя фрезы из прочных сталей с упрочняющим покрытием тоже неплохой выбор.

Из-за значительных усилий в процессе обработки температура в зоне резания сильно растёт. Учитывая, что титан практически не обладает теплопроводностью, это лишь усугубляет обстановку, способствуя дальнейшему перегреву.

Сильный нагрев ведет к деформации фрезы, а также увеличивает вероятность образования дефектов на поверхности обрабатываемой заготовки. Дело в том, что расплавленный металл может налипать на режущую кромку инструмента, портя качество обработки и изменяя геометрию детали.

Регулировать температуру приходится снижением скорости обработки, а также непрерывным применением смазочно-охлаждающей эмульсии. Кроме того, предъявляются требования и к самому режущему инструменту. Фрезы должны обладать высокой красностойкостью и без проблем работать даже в условиях сильнейшего нагрева.

Сильные вибрации

По причине высокой прочности процесс обработки сопровождается повышенными вибрациями. Это значительно сокращает срок службы инструмента, особенно, если он изготовлен из твёрдых сплавов.

Проблему можно минимизировать, если усилить крепление детали на станке. Предпочтительно расположить заготовку максимально близко к шпинделю станка.

Как правило, механическая обработка выполняется на оборудовании, оснащённом шпинделем с конусом ISO 50 с укороченным вылетом.

Коварная стружка

Пара слов о титановой стружке. Во-первых, она взрывоопасна. Поэтому при обработке титана нужно обязательно соблюдать все требования безопасности на производстве.

Кроме того, типичное свойство титановых сплавов – способность окисляться при сильном нагреве. А, как мы уже отмечали выше, во время фрезерования температуры достигают запредельных отметок. Это приводит к тому, что титановая стружка становится непригодной для дальнейшей переработки и использования.

Хотя процесс фрезерования титановых сплавов сопровождается большими трудозатратами, их можно минимизировать, если использовать качественный металлорежущий инструмент

ВЫСОКИЕ ТЕХНОЛОГИИ

  • Индустрия 4.0
  • Мишиностроение
  • Автоматизация проектирования
  • Управление производством
  • Станки
  • Разное
  • Новости


Фрезерование титана

И как мы уже отмечали титан и титановые сплавы это перспективный материал, он прочный и легкий, коррозионностойкий, а титановые сплавы еще и жаропрочны. Поэтому данный материал нашел широкое применение в том числе и в самых ответственных изделиях в различных сферах деятельности. Титан хорошо подвергается обработке давлением, сварке.

Основным износом фрезерного инструмента является – выкрашивание режущей кромки. Поэтому при проектировании обработки титана необходимо считаться со всеми вышеперечисленными сложностями, для этого применяют различные меры.

ВАЖНО ЗНАТЬ, ПОМНИТЬ И ПРИМЕНЯТЬ:

1. Использовать оптимизированные конструкции и геометрии, и материалы инструментов по титану (стружколомы, сплавы по титану и т.д.)

2. Организовать подачу СОЖ в зону резания под давлением, через шпиндель.

3. Для черновых операций выбирать станки с конусом шпинделя ISO 50 и выше, большим крутящим моментом, большой мощностью для работы большими инструментами торцевыми фрезами и т.д. Для чистовых – с высокими оборотами ввиду использования мелкого инструмента.

4. Организовать жёсткое закрепление заготовок, обеспечить высокую жёсткость всей технологической системы, отсутствие вибраций, смещений и т.д.

5. При больших вылетах инструментов по титану использовать жесткие оправки и/или антивибрационные оправки.

6. Обеспечение более благоприятных условий работы инструментов методами программирования — врезания, отходы, оптимальные траектории и т.д.

7. Обеспечение оптимальных режимов резания для конкретных условий (глубина резания, ширина резания, скорость, подача), обеспечивающих оптимальное соотношение качество-производительность-стойкость.

8. А также использовать ряд других мер для обеспечения благоприятных условий работы инструмента в Ваших конкретных условиях.

Обеспечение данных мер позволит повысить скорость, подачу, стойкость, производительность обработки титана.

Рекомендации по выбору подачи на зуб

Толщина стружки является очень важным параметром:

— Занизив толщину стружки получим низкую производительность и стойкость тоже.

— Завысить толщину стружки получим высокую нагрузку на инструмент и его поломку.

Утончение стружки позволяет увеличить подачу – это достигается применением пластин с прямолинейной режущей кромкой и углом в плане менее 90 градусов, применением круглых пластин или пластин с большим радиусом при вершине и небольшой глубине резания, а также при периферийной работе фрезы с небольшой шириной резания.

0 0 голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты