Rich--house.ru

Строительный журнал Rich—house.ru
26 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Производство и использование сплава меди и цинка

Производство меди и сплавов на ее основе

Медь добывают из оксидных и сульфидных руд. Из сульфидных руд выплавляют 80% всей добываемой меди. Как правило, медные руды содержат много пустой породы. Поэтому для получения меди используется процесс обогащения.

Процесс состоит из ряда операций: обжига, плавки, конвертирования, огневого и электролитического рафинирования. В процессе обжига большая часть примесных сульфидов превращается в оксиды. Так, главная примесь большинства медных руд пирит FeS2 превращается в Fe2O3. Газы, образующиеся при обжиге, содержат CO2, который используется для получения серной кислоты. Получающиеся в процессе обжига оксиды железа, цинка и других примесей отделяются в виде шлака при плавке. Жидкий медный штейн (Cu2S с примесью FeS) поступает в конвертор, где через него продувают воздух. В ходе конвертирования выделяется диоксид серы и получается черновая или сырая медь. Для извлечения ценных (Au, Ag, Te и т.д.) и для удаления вредных примесей черновая медь подвергается сначала огневому, а затем электролитическому рафинированию. В ходе огневого рафинирования жидкая медь насыщается кислородом. При этом примеси железа, цинка и кобальта окисляются, переходят в шлак и удаляются. А медь разливают в формы. Получающиеся отливки служат анодами при электролитическом рафинировании.

Основным компонентом раствора при электролитическом рафинировании служит сульфат меди — наиболее распространенная и дешевая соль меди. Для увеличения низкой электропроводности сульфата меди в электролит добавляют серную кислоту. А для получения компактного осадка меди в раствор вводят небольшое количество добавок.

Латунь — это соединение в процессе плавки в индукционной печи промышленной частоты меди и цинка, причем количество цинка в зависимости от требуемой прочности конечного изделия может меняться в пределах 10-40%.

В процессе производства в печь сначала вводят и расплавляют медь. Цинк и свинец предварительно разогревают до температуры в 100 градусов, а в расплавленную медь вводят в конце процесса изготовления латуни. Весь процесс производится с помощью древесного угля, укрывающего расплавленный металл и вводимого в печь с начальной порцией меди. А если речь идет о производстве кремнистой латуни, то вместо древесного угля используют специальные флюсы. Добавление цинка в процессе производства сплава позволяет придать меди более высокую прочность и сделать ее более твердой.

Бронза – появляется в процессе добавления к расплавленной меди олова (его количество может составлять до 10%), свинца и алюминия. В зависимости от типа добавляемого к меди металла, изменяется и процесс производства бронзы, и оборудование, которое для этого требуется. Например, для изготовления бронзы из сплава меди и олова применяются индукционные электрические печи, а для сплава меди с алюминием применяются дуговые электропечи, а также коксовые или нефтяные печи. Различные составляющие части сплава помещаются в печь в определенном порядке, установленном технологией производства.

Производство алюминияи сплавов на его основе

При промышленном производстве бокситы сначала подвергают химической переработке, удаляя из них примеси оксидов кремния (Si), железа (Fe) и других элементов. В результате такой переработки получают чистый оксид алюминия Al2O3 — основное сырье при производстве металла электролизом. Однако из-за того, что температура плавления Al2O3 очень высока (более 2000°C), использовать его расплав для электролиза не удается.

Выход ученые и инженеры нашли в следующем. В электролизной ванне сначала расплавляют криолит Na3AlF6 (температура расплава немного ниже 1000°C). Криолит можно получить, например, при переработке нефелинов Кольского полуострова. Далее в этот расплав добавляют немного Al2O3 (до 10% по массе) и некоторые другие вещества, улучающие условия проведения последующего процесса. При электролизе этого расплава происходит разложение оксида алюминия, криолит остается в расплаве, а на катоде образуется расплавленный алюминий: 2 Al2O3 = 4Al + 3О2.

Все алюминиевые сплавы, в зависимости от того, какой способ производства при их изготовлении применялся, можно разделить на два типа:

Деформируемые сплавы отличаются высокой пластичностью, а основной характеристикой литейных сплавов является их текучесть. Для того, чтобы придать алюминиевому сплаву ту или иную характеристику, в него добавляют различные легирующие вещества.

Для производства сплавов алюминия применяют специальные отражательные печи. Как правило, в промышленности процесс производится одновременно с применением двух печей — в одной из них готовится сам сплав, который поступает во вторую печь, «отвечающую» за разливку сплава, ведущуюся без перерыва. Ингредиенты сплава, загружаемые в первую печь, могут быть как в твердом, так и в жидком состоянии. Вид получаемой продукции зависит от того, о каком именно типе сплава идет речь. Если это литейный сплав, то он имеет форму чушек, а деформируемым сплавам придают вид слитков, что более удобно для их дальнейшей обработки на прокатном стане или с помощью пресса.

Производство и использование сплава меди и цинка: познаем со всех сторон

Медные сплавы – продукция металлургического производства, процесс изготовления которой человечество освоило с давних времён. Первый медный сплав – сплав меди с оловом – дал начало целой технологической эпохе истории цивилизации, получившей название «бронзовый век».

Производство латуни

Современные способы производства латуни основаны на плавлении халькопирита (медный колчедан) в электрических печах при температуре +1400 °C. Образующийся в процессе плавления силикат всплывает на поверхность и удаляется. Основной металл (штейн) сливается в конвертер и продувается кислородом. В результате окислительных реакций образуется металлическая «черновая» медь с содержанием металла около 91%. Далее происходит электролитическая очистка в подкисленном растворе медного купороса. Образующаяся на катоде электролитическая медь имеет чистоту 99.99% и используется в производстве проводов, электрического оборудования и сплавов.

В расплавленную медь порционно вводят цинк, который придает ей новые свойства — прочность, коррозионную стойкость и пластичность. В зависимости от области применения металла могут добавляться и другие добавки: никель, железо, олово, марганец, алюминий. Изготовленный таким способом сплав из меди имеет низкий коэффициент трения и применяется в изготовлении червячных пар и в качестве втулок скольжения в малых бытовых электродвигателях.

Версий о том, как называется сплав, и откуда произошло название латунь, существует множество. Во времена правления Августа ее называли орихалк, что в буквальном переводе означает златомедь. Нынешнее название пришло в русский язык от немецкого latun, которое, в свою очередь, произошло от итальянского lattone — венец, или laton (latta) — жесть. В настоящее время это наиболее распространенная версия.

Одним из видов латуни является томпак (медь — 88–97%, цинк — до 10%), который повторно был открыт лондонским часовщиком Кристофером Пинчбеккером в XVIII веке. Ранее этот сплав был известен перуанской цивилизации Моче. Название его происходит от французского tombak, что в переводе означает медь.

Широкое применение томпак получил в плакировании стали и получении биметаллического соединения сталь-латунь.

Латунь получают путем плавления меди и стали.

Плакирование (фр. plaquer — накладывать, покрывать) — это термомеханическое покрытие, используемое для придачи металлу специальных свойств с применением других материалов.

Например, внутренняя поверхность ядерного реактора плакирована высоколегированной аустенитной сталью, так как основной металл корпуса подвержен коррозии при воздействии высоких температур.

Томпак применяется для плакирования стали при изготовлении монет достоинством 10 и 50 копеек.

Цинк и его сплавы: химический состав, физические свойства, применение

Цинк — хрупкий голубовато-белый металл. В природе без примесей не встречается. В 1738 году Уильям Чемпион добыл чистые пары цинка с помощью конденсации. В периодической системе Менделеева находится под номером 30 и обозначается символом Zn.

Свойства цинка

Химические свойства цинка

Цинк — активный металл. При комнатной температуре тускнеет и покрывается слоем оксида цинка.

  • Вступает в реакцию со многими неметаллами: фосфором, серой, кислородом.
  • При повышении температуры взаимодействует с водой и сероводородом, выделяя водород.
  • При сплавлении с щелочами образует цинкаты — соли цинковой кислоты.
  • Реагирует с серной кислотой, образуя различные вещества в зависимости от концентрации кислоты.
  • При сильном нагревании вступает в реакции со многими газами: газообразным хлором, фтором, йодом.
  • Не реагирует с азотом, углеродом и водородом.

Физические свойства цинка

Цинк — твердый металл, но становится пластичным при 100–150 °C. При температуре выше 210 °С может деформироваться. Температура плавления — очень низкая для металлов. Несмотря на это, цинк имеет хорошую электропроводность.

  • Плотность — 7,133 г/см³.
  • Теплопроводность — 116 Вт/(м·К).
  • Температура плавления цинка — 419,6 °C.
  • Температура кипения — 906,2 °C.
  • Удельная теплота испарения — 114,8 кДж/моль.
  • Удельная теплота плавления — 7,28 кДж/моль.
  • Удельная магнитная восприимчивость — 0,175·10-6.
  • Предел прочности при растяжении — 200–250 Мн/м 2 .

Подробный химический состав цинка различных марок указан в таблице ниже.

Обозначение марок Цинк, не менее Примесь, не более
свинец кадмий железо медь олово мышьяк алюминий всего
ЦВ0099,9970,000010,0020,000010,000010,000010,00050,000010,003
ЦВ099,9950,0030,0020,0020,0010,0010,00050,0050,005
ЦВ99,990,005*0,0020,0030,0010,0010,00050,0050,01
Ц0А99,980,010,0030,0030,0010,0010,00050,0050,02
Ц099,9750,0130,0040,0050,0010,0010,00050,0050,025
Ц199,950,020,010,010,0020,0010,00050,0050,05
Ц298,71,00,20,050,0050,0020,010,010**1,3
Ц397,52,00,20,10,050,0050,012,5
* В цинке, применяемом для производства сплава марки ЦАМ4-1о, массовая доля свинца должна быть не более 0,004%. ** В цинке, применяемом для проката, массовая доля алюминия должна быть не более 0,005%.

Содержание примесей в цинке зависит от способа производства и качества сырья.

В России основной процент цинка получают гидрометаллургическим способом — металл восстанавливают из солей в растворах. Такой способ позволяет получить наиболее чистый металл. Но часть цинка обрабатывают при высоких температурах. Такой метод называют пирометаллургическим.

Свинец — особая примесь в цинке, так как основная его часть оседает из-за нерастворимых анодов, содержащихся в металле. Катодный цинк, помимо всех указанных примесей, состоит из хлора и фтора.

Как примеси изменяют свойства цинка

Производители ограничивают содержание кадмия, олова и свинца в литейных сплавах цинка, чтобы подавить межкристаллитную коррозию.

Олово — вредная примесь. Металл не растворяется и выделяется из расплава — способствует ломкости цинковых отливок. Кадмий напротив — растворяется в цинке и снижает его пластичность в горячем состоянии. Свинец увеличивает растворимость металла в кислотной среде.

Железо повышает твердость цинка, но снижает его прочность. Вместе с тем оно усложняет процесс заполнения форм при литье.

Медь увеличивает твердость цинка, но уменьшает его пластичность и стойкость при коррозии. Содержание меди также мешает рекристаллизации цинка.

Наиболее вредная примесь — мышьяк. Даже при небольшом ее количестве металл становится хрупким и менее пластичным.

Чтобы избежать растрескивания кромок при горячей прокатке цинка, содержание сурьмы не должна быть выше 0,01%. В горячем состоянии она увеличивает твердость цинка, лишая его хорошей пластичности.

Сплавы цинка

Сплавы на цинковой основе с добавлением меди, магния и алюминия имеют низкую температуру плавления и обладают хорошей текучестью. Они легко поддаются обработке, свариванию и паянию.

Латунь

Различают латуни двухкомпонентные и многокомпонентные.

Двухкомпонентная латунь — сплав цинка с высоким содержанием меди. Существует желтая латунь с медью в количестве 67%, золотистая медь или томпак — 75%, и зеленая — 60%. Такие сплавы могут деформироваться при температуре 300 °C.

Многокомпонентные латуни, помимо 2-х основных металлов, состоят из других добавок: никеля, железа, свинца или марганца. Каждый из элементов влияет на свойства сплава.

ЦАМ — семейство цинковых сплавов. В их состав входят магний, алюминий и медь. Такие сплавы цинка используются в литейном производстве. В них содержится алюминий в количестве 4%.

Основная область применения сплавов ЦАМ — литье цинка под давлением. Сплавы этого семейства обладают низкой температурой плавления и хорошими литейными свойствами. Их высокопрочность позволяет производить прочные и сложные детали.

Вирениум

Сплав состоит из цинка (24,5%), меди (70%), никеля (5,5%).

Производств цинка

Добыча металла

Цинк как самородный металл в природе не встречается. Добывается из полиметаллических руд, содержащих 1–4% металла в виде сульфида, а также меди, свинца, золота, серебра, висмута и кадмия. Руды обогащаются селективной флотацией и получаются цинковые концентраты (50–60% Zn).

Концентраты цинка обжигают в печах. Сульфид цинка переводится в оксид ZnO. При этом выделяется сернистый газ SO2, который используется в производстве серной кислоты.

Получение металла

Существуют два способа получения чистого цинка из оксида ZnO.

Самый древний метод — дистилляционный. Обожженный концентрированный состав подвергают термообработке, чтобы придать ему зернистость и газопроницаемость.

Затем концентрат восстанавливают коксом или углем при температуре 1200–1300 °C. В процессе образуются пары металла, которые конденсируют и разливают в изложницы. Жидкий металл отстаивают от железа и свинца при температуре 500 °C. Так достигается цинк чистотой 98,7%.

Иногда используется сложная и дорогая обработка цинка ректификацией — разделением смесей за счет обмена теплом между паром и жидкостью. Такая чистка позволяет получить металл чистотой 99,995% и извлечь кадмий.

Второй метод производства цинка — электролитический. Обожженный концентрат обрабатывается серной кислотой. Готовый сульфатный раствор очищается от примесей, после чего подвергается электролизу в свинцовых ваннах. Цинк дает осадок на алюминиевых катодах. Полученный металл удаляют с ванн и плавят в индукционных печах. После этого получается электролитный цинк чистотой 99,95%.

Литье металла

Горячий цинк — жидкий и текучий металл. Благодаря таким свойствам он легко заполняется в литейные формы.

Примеси влияют на величину натяжения поверхности цинка. Технологические свойства металла можно улучшить, добавив небольшое количество лития, магния, олова, кальция, свинца или висмута.

Чем выше температура перегрева цинка, тем лучше он заполняет формы. При литье металла в чугунные изложницы его объем уменьшается на 1,6%. Это затрудняет получение крупных и длинных цинковых отливок.

Применение цинка

Для защиты металлов от коррозии

Чистый цинк используется для защиты металлов от коррозии. Основу покрывают тонкой пленкой. Этот процесс называется металлизацией.

В автомобильной отрасли

Сплавы на цинковой основе используют для оформления декора автомобильного салона, в производстве ручек дверей, замков, зеркал и корпусов стеклоочистителей.

В автомобильные покрышки добавляют окись цинка, которая повышает качество резины.

Читать еще:  Литье алюминия в домашних условиях

В батарейках, аккумуляторах и других химических источниках тока цинк используется как материал для отрицательного электрода. В производстве электромобилей применяются цинк-воздушные аккумуляторы, которые обладают высокой удельной энергоемкостью.

В производстве ювелирных украшений

Ювелиры добавляют цинк в сплавы на основе золота. В итоге они легко поддаются ковке и становятся пластичными — прочно соединяют мелкие детали изделия между собой.

Металл также осветляет ювелирные изделия, поэтому его часто используют в изготовлении белого золота.

В медицине

Окись цинка применяется в медицине как антисептическое средство. Окись добавляют в мази и другие составы для заживления ран.

Благодаря своим свойствам, цинк широко применяется в различных областях промышленности. Металл пользуется спросом из-за относительно низкой цены и хороших физических свойств.

Технологическая характеристика производства меди и цинка.

Медь обладает высокой электро- и теплопроводностью, пластичностью, хорошей коррозионной стойкостью, способностью сплавляться со многими металлами, хорошие технологические свойства – ковкость и обрабатываемость режущими инструментами. Самый распространённый сплав с использованием меди – латунь – сплав меди и цинка. Другой распространённый сплав – бронза – сплав меди и олова (классическая бронза). К белым сплавам меди относятся мельхиор (сплав меди и никеля) и нейзельбер («новое серебро»; сплав меди, никеля и цинка).

Около 50% добываемой меди используется в электротехнике, 25% — в машиностроении и как детали для транспортных средств и около 20% — в строительстве.

В основном, медь добывают из сульфидных руд. Самая распространённая медная руда – медный колчедан (халькопирит), также используются медный блеск (халькозин), ковилин. Из сульфидных руд добывается до 90% меди. Остальная медь добывается из окисленных руд – куприта, азурита и малахита.

В халькопирите содержится 0,8-1,5% меди. Стадии переработки меди:

1. Дробление и измельчение.

2. Обогащение. Получение медного концентрата, содержание меди в котором составляет 10-30%. В процессе обогащения также получаются хвосты – пустая порода.

3. Обжиг. Удаление серы. Проводится в специальных печах, в которых сера выводится в среде диоксида серы, который можно использовать для производства серной кислоты. Продукт обжига называется огарком.

4. Плавка на штейн. Из огарка с добавлением топлива и флюсов удаляется ещё больше серы. Флюсы нужны для удаления железа в виде шлака. В результате получается штейн – сплав сульфидов меди и железа.

5. Конвертирование (продувка в конверторе). Используется воздух для удаления серы и флюсы для удаления железа. Продувка производится в течение суток. В результате получается черновая медь, содержание меди в которой около 96%.

6. Электролитическое рафинирование. Реакция проводится в электролизёрах. В результате получается чистая медь, с содержанием меди до 99,99%. Побочным продуктом является шлак, который отправляется на извлечение редких и благородных металлов.

На 1 т готовой меди нужно около 100 т руды, следовательно, это очень высокоматериалоёмкое производство. На 1 т электролитической меди нужно 2,5-5 тыс. кВатт·ч электроэнергии, что говорит об этой стадии производства меди как об очень высокоэнергоёмкой. В целом, производство меди характеризуется высокой материалоёмкостью до рафинирования и энергоёмким рафинированием. При размещении предприятий по переработке меди должна учитываться хорошая транспортная доступность топливных ресурсов.

Возможны два варианта размещения предприятий по производству меди:

· Выплавка черновой и электролитической меди ориентируется на районы сырья с учётом дешёвой электроэнергии для электролитического рафинирования.

· Разрыв технологической цепочки в пространстве перед электролитическим рафинированием. Первые стадии цепочки размещаются в районах сырья, а электролитическое рафинирование – в районах дешёвой электроэнергии или в районах потребления с дешёвой электроэнергией.

Цинк – хрупкий металл, сплавляется со многими металлами, пластичный, обладает высокой коррозионной стойкостью, ковкостью, взаимодействует с неметаллами.

45-60% цинка идёт на цинкование, до 10% используется в медицине (в качестве антисептиков), 10% идёт на производство сплавов, ещё 10% — на производство резиновых шин и 10% — на производство масляных красок.

Сырьём для производства цинка является цинковая обманка (сернистый цинк), встречающаяся, как правило, в составе полиметаллических руд. В руде содержится от 2 до 6-7% цинка.

Стадии производства цинка:

1. Флотация. Цинковая обманка отделяется от руд других цветных металлов. В результате получается цинковый концентрат.

2. Обжиг. Цинковый концентрат подвергается обжигу до полного выгорания серы и образования окиси цинка, содержащей 60% цинка.

3. Получение металлического цинка происходит двумя способами: гидрометаллургическим и пирометаллургическим.

· Гидрометаллургический способ. На цинковый концентрат действуют слабой серной кислотой, и цинк переводится в растворимое соединение. Раствор сернокислого цинка очищается и подвергается электролизу. В качестве катода применяются алюминиевые листы, анода – свинцовые. При электролизе на катоде выделяется металлический цинк. Затем он плавится в индукционных печах. Расплавленный цинк отливают в слитки, его чистота составляет 99,99%.

· Пирометаллургический способ более распространён. Цинк получается путём восстановления окиси цинка углеродом (коксом). Для этого обожжённый концентрат цинка смешивается с коксом и прокаливается в закрытых ретортах, помещённых в специальные печи, при температуре 1200-1300°. При прокаливании восстанавливается металлический цинк. Пары цинка по специальным трубам отводятся и конденсируются. Этот процесс называется дистилляцией и длится до суток. Таким образом получается черновой цинк. Он подвергается вторичной возгонке при температуре 1000° и переходит в чистый цинк.

Производство цинка – высокоматериалоёмкое производство. Гидрометаллургический способ требует большого количества электроэнергии, следовательно это высокоэлектроёмкий процесс. Пирометаллургический способ – топливоёмкий, т.к. для него нужно много каменного угля.

Первичная обработка цинковых руд осуществляется в местах их добычи. Полученные концентраты имеют хорошую транспортабельность, поэтому могут перерабатываться в зависимости от технологического процесса и в районах добычи сырья, и в районах, богатых топливом и с дешёвой электроэнергией.

Дата добавления: 2018-08-06 ; просмотров: 392 ;

Производство и применение сплава меди с цинком.

Сплав меди с цинком больше известен нам под названием латуни, уходит своими корнями в глубокую древность. Римляне выплавляли ее из меди и цинковой руды (галмея). Из этого металла они первыми начали изготавливать посуду, вазы, украшения, фигурки богов. Там же латунь была наделена магическими свойствами.

Алхимиками она обозначалась знаком солнца.

В настоящее время сплав меди и цинка широко применяется при изготовлении часов, в автомобиле и приборостроении. Из нее изготавливают трубы и отливают корпуса арматуры.

Производство латуни

Современные способы производства латуни основаны на плавлении халькопирита (медный колчедан) в электрических печах при температуре +1400 °C. Образующийся в процессе плавления силикат всплывает на поверхность и удаляется. Основной металл (штейн) сливается в конвертер и продувается кислородом. В результате окислительных реакций образуется металлическая «черновая» медь с содержанием металла около 91%. Далее происходит электролитическая очистка в подкисленном растворе медного купороса. Образующаяся на катоде электролитическая медь имеет чистоту 99.99% и используется в производстве проводов, электрического оборудования и сплавов.

В расплавленную медь порционно вводят цинк, который придает ей новые свойства — прочность, коррозионную стойкость и пластичность. В зависимости от области применения металла могут добавляться и другие добавки: никель, железо, олово, марганец, алюминий. Изготовленный таким способом сплав из меди имеет низкий коэффициент трения и применяется в изготовлении червячных пар и в качестве втулок скольжения в малых бытовых электродвигателях.

Версий о том, как называется сплав, и откуда произошло название латунь, существует множество. Во времена правления Августа ее называли орихалк, что в буквальном переводе означает златомедь. Нынешнее название пришло в русский язык от немецкого latun, которое, в свою очередь, произошло от итальянского lattone — венец, или laton (latta) — жесть. В настоящее время это наиболее распространенная версия.

Одним из видов латуни является томпак (медь – 88–97%, цинк — до 10%), который повторно был открыт лондонским часовщиком Кристофером Пинчбеккером в XVIII веке. Ранее этот сплав был известен перуанской цивилизации Моче. Название его происходит от французского tombak, что в переводе означает медь.

Широкое применение томпак получил в плакировании стали и получении биметаллического соединения сталь-латунь.

Плакирование (фр. plaquer — накладывать, покрывать) — это термомеханическое покрытие, используемое для придачи металлу специальных свойств с применением других материалов.

Например, внутренняя поверхность ядерного реактора плакирована высоколегированной аустенитной сталью, так как основной металл корпуса подвержен коррозии при воздействии высоких температур.

Томпак применяется для плакирования стали при изготовлении монет достоинством 10 и 50 копеек.

Область применения латуни

  • Сплав меди с цинком в процентном соотношении 70 к 30 является самым востребованным и называется техническим. Он достаточно прочен и пластичен. Высокие антикоррозионные свойства позволяют использовать его в деталях и приспособлениях, имеющих непосредственный контакт с водой. Это, как правило, корпуса арматуры, трубы, конденсаторные трубки и другие изделия.
  • При наличии в сплаве только цинка и меди его называют двухкомпонентным, и качество материала будет зависеть от доли цинка. При содержании в сплаве до 20% цинка он называется — красная латунь или томпак, и используется при плакировке поверхности пуль и снарядов. Из такой латуни изготавливают фурнитуру и раструбы некоторых духовых инструментов.

  • Сплав из меди и цинка отличается красивым золотистым цветом . Однако без защитной обработки быстро окисляется на воздухе, приобретая благородный тусклый с зеленцой оттенок. В большинстве случаев это не портит изделие. При желании окисную пленку можно убрать, обработав его азотной кислотой, а потом промыть в проточной воде. Изделия из латуни долговечны и будут долгие годы радовать своим видом не одно поколение.
  • Медные сплавы

    Медные сплавы – продукция металлургического производства, процесс изготовления которой человечество освоило с давних времён. Первый медный сплав – сплав меди с оловом – дал начало целой технологической эпохе истории цивилизации, получившей название «бронзовый век».

    Мягкий, пластичный металл розовато-золотистого цвета. Его красота издревле привлекала человека, поэтому первыми изделиями из меди были украшения.

    В присутствии кислорода медные слитки и изделия из меди приобретают красновато-жёлтый оттенок за счёт образования плёнки из оксидов. Во влажной среде в присутствии углекислого газа медь становится зеленоватой.

    Медь имеет высокие показатели теплопроводности и электропроводности, что обеспечивает ей использование в электротехнике. Не меняет свойств в значительном диапазоне температур от очень низких до очень высоких. Не магнитная.

    В природе залежи медной руды чаще, чем других металлов, находятся на поверхности. Это позволяет вести добычу открытым способом. Встречаются крупные медные самородки с высокой чистотой меди и медные жилы. Помимо этого медь получают из таких соединений:

    • медный колчедан,
    • халькозин,
    • борнит,
    • ковеллин,
    • куприт,
    • азурит,
    • малахит.

    Медные сплавы, их свойства, характеристики, марки

    Изготовление медных сплавов позволяет улучшить свойства меди, не теряя основных преимуществ данного металла, а также получить дополнительные полезные свойства.

    К медным сплавам относят: бронзу, латунь и медно-никелевые сплавы.

    Бронза

    Сплав меди с оловом. Однако, с развитием технологий появились также бронзы, в которых вместо олова в состав сплава вводятся алюминий, кремний, бериллий и свинец.

    Бронзы твёрже меди. У них более высокие показатели прочности. Они лучше поддаются обработке металла давлением, прежде всего, ковке.

    Маркировка бронз производится буквенно-цифровыми кодами, где первыми стоят буквы Бр, означающими собственно бронзу. Добавочные буквы означают легирующие элементы, а цифры после букв показывают процентное содержание таких элементов в сплаве.

    Буквенные обозначения легирующих элементов бронз:

    • А – алюминий,
    • Б – бериллий,
    • Ж – железо,
    • К – кремний,
    • Мц – марганец,
    • Н – никель,
    • О – олово,
    • С – свинец,
    • Ц – цинк,
    • Ф – фосфор.

    Пример маркировки оловянистой бронзы: БрО10С12Н3. Расшифровывается как «бронза оловянистая с содержанием олова до 10%, свинца – до 12%, никеля – до 3%».

    Пример расшифровки алюминиевой бронзы: БрАЖ9-4. Расшифровывается как «бронза алюминиевая с содержанием алюминия до 9% и железа до 4%».

    Латунь

    Это сплав меди с цинком. Кроме цинка содержит и иные легирующие добавки, также и олово.

    Латуни – коррозионно устойчивые сплавы. Обладают антифрикционными свойствами, позволяющими противостоять вибрациям. У них высокие показатели жидкотекучести, что даёт изделиям из них высокую степень устойчивости к тяжёлым нагрузкам. В отливках латуни практически не образуются ликвационные области, поэтому изделия обладают равномерной структурой и плотностью.

    Маркируются латуни набором буквенно-цифровых кодов, где первой всегда стоит буква Л, означающая собственно латунь. Далее следует цифровой указатель процентного содержания меди в латуни. Остальные буквы и цифры показывают содержание легирующих элементов в процентном соотношении. В латунях используются те же буквенные обозначения легирующих элементов, что и в бронзах.

    Пример маркировки латуни двойной: Л85. Расшифровывается как «латунь с содержанием меди до 85%, остальное – цинк».

    Пример маркировки латуни многокомпонентной: ЛМцА57-3-1. Расшифровывается как «латунь с содержанием меди до 57%, марганца – до 3%, алюминия – до 1%, остальное – цинк».

    Медно-никелевые сплавы

    • Мельхиор — сплав меди и никеля. В качестве добавок в сплаве могут присутствовать железо и марганец. Частные случаи технических сплавов на основе меди и никеля:
    • Нейзильбер – дополнительно содержит цинк,
    • Константан – дополнительно содержит марганец.

    У мельхиора высокая коррозионная устойчивость. Он хорошо поддаётся любым видам механической обработки. Немагнитен. Имеет приятный серебристый цвет.

    Благодаря своим свойствам мельхиор является, прежде всего, декоративно-прикладным материалом. Из него изготавливают украшения и сувениры. В декоративных целях является отличным заменителем серебра.

    Выпускается 2 марки мельхиора:

    • МНЖМц – сплав меди с никелем, железом и марганцем;
    • МН19 – сплав меди и никеля.

    Область применения сплавов меди

    Медь обладает невысоким удельным сопротивлением. Это свойство обеспечило меди широкое применение в электротехнической промышленности. Из меди изготавливаются проводники, провода, кабели. Медь используется при изготовлении печатных плат различных электронных устройств. Медные провода используются в электрических двигателях и трансформаторах.

    У меди высокая теплопроводность. Это обеспечивает ей применение при изготовлении охладительных и отопительных радиаторов, кондиционеров, кулеров.

    Прочность и коррозиоустойчивость меди послужили основанием для изготовления из неё труб, находящих значительную сферу применения: в водопроводных, газовых и отопительных системах, в охладительном оборудовании, в кондиционировании.

    В строительстве медь применяется при изготовлении крыш и фасадных деталей зданий.

    Бактерицидные особенности меди дают ей возможность использования в медицинских заведениях как дезинфицирующего материала: при изготовлении деталей интерьера, которых люди касаются больше всего – дверных ручек, перил, поручней, бортиков кроватей и т.п.

    Читать еще:  «Гравюра» из обычной фотографии своими руками? Легко! (видео)

    Медные сплавы имеют не меньшую сферу применения.

    Бронзы (по маркам) применяются при производстве деталей машин: паровой и водяной арматуры, элементов ответственного назначения, подшипников, втулок. Оловянистые деформируемые бронзы используют для производства сеток, используемых в целлюлозно-бумажной промышленности.

    Латуни (по маркам) находят применение при производстве деталей машин в области теплотехники и химической аппаратуры. Из них изготавливают различные змеевики и сильфоны. В автомобилестроении латуни используют для изготовления конденсаторных труб, патрубков, метизов. В судостроении и авиастроении латуни также используются для изготовления деталей, конденсаторных труб, метизов. Из латуней изготавливаются детали часовых механизмов, полиграфические матрицы.

    Мельхиор МНЖМц используется для производства конденсаторных трубок морских судов, работающих в наиболее тяжёлых условиях. Мельхиор МН19 используется для изготовления медицинских инструментов, монет, украшений, столовых приборов.

    Источники меди для вторсырья

    Экономия ресурсов – важная экологическая и технологическая задача. Медь – слишком ценный элемент, чтобы запросто им разбрасываться. Поэтому при утилизации бытовых устройств и приборов (телевизоров, холодильников, компьютерной техники) нужно срезать все медь содержащие элементы и сдавать их на пункты сбора вторсырья. На производствах должен быть организован централизованный сбор списанных силовых кабелей и трансформаторов, электродвигателей, прочих медь содержащих деталей и устройств. Определённое содержание меди есть в испорченных люминесцентных лампах, что тоже стоит учитывать при утилизации.

    Медь и медные сплавы, освоенные человечеством на самой заре цивилизации, остаются востребованными материалами и в технологическую эпоху, основу которой составляет железо. Современное промышленное производство невозможно себе представить без использования цветных металлов. В дальнейшем потребность в меди её сплавах будет только расти, поэтому очень важно относиться к данным материалам экономно и использовать их рационально.

    Цинк: производство и применение

    Цинк – это металл, стоящий в таблице Менделеева, под номером 30 и имеет обозначение Zn. Плавится при температуре 419 °С градусов, если же температура кипения 913 °С – начинает превращаться в пар. При температурном обычном режиме, состояние хрупкое, а при ста градусах начинает гнуться.

    Цвет цинка сине-белый. При воздействии кислорода появляется окисление, а также покрытие карбоната, предохраняющего металл от дальнейшей реакции окисления. Появление на цинке гидроокиси обозначает то, что вода на химический элемент не действует.

    Цинк — химический элемент, имеет свои отличительные свойства, преимущества и недостатки. Он широко применяется в повседневной жизни человека, в фармацевтике и металлургии.

    Особенности цинка

    Металл является необходимым и широко применяемым практически во всех отраслях повседневной жизни человека.

    Добыча в основном, производится в Иране, Казахстане, Австралии, Боливии. В России изготовителем является ОАО «ГМК Дальполиметалл».

    Это переходной металл, имеет степень окисления +2, радиоактивный изотоп, период полураспада 244 дня.

    Водный арсенат кадмия, цинка и меди

    В чистом виде элемент не добывается. Содержится в рудах и минералах: клейофане, марматите, вюртците, цинките. Обязательно присутствует в сплаве с алюминием, медью, оловом, никелем.

    Химические, физические свойства и характеристики цинка

    Цинк – металл, обладает рядом свойств и характеристик, отличающих его от иных элементов периодической таблицы.

    К физическим свойствам цинка относится его состояние. Основным фактором выступает температурный режим. Если при комнатной температуре это хрупкий материал, плотность цинка 7130 кг/м 3 (˃ плотности стали), который практически не гнётся, то при повышении он легко изгибается и прокатывается в листах на заводах. Если взять более высокий температурный режим – материал приобретает жидкое состояние, а если еще поднять температуру на 400-450 °С градусов, тогда он просто испарится. В этом уникальность – менять своё состояние. Если же подействовать кислотами и щелочами, он может рассыпаться, взорваться, расплавиться.

    Цинк в жидком состоянии

    Формула цинка Zn – zincum. Атомная масса цинка 65.382 а.е.м.

    Электронная формула: ядро атома металла содержит 30 протон, 35 нейтрон. В атоме 4 энергетических уровня – 30 электронов. (рис. строение атома цинка)1s 2 2s 2 2p 6 3s 2 3p 6 3d 10 4s 2 .

    Кристаллическая решётка цинка – шестиугольная кристаллическая система с плотно прижатыми атомами. Данные решётки: A=2.66У, С=4.94.

    Структура и состав цинка

    Добытый и не переработанный материал имеет изотопы 64, 66, 67, электроны 2-8-18-2.

    По применению среди всех элементов периодической таблицы металл стоит на 23 месте. В природе элемент выступает в виде сульфида с примесями свинца Pb, кадмия Cd, железа Fe, меди Cu, серебра Ag.

    В зависимости от того, какое количество примесей, металл имеет маркировку.

    Производство цинка

    Как было сказано выше, чистого вида данного элемента в природе нет. Он добывается из иных пород, таких как руда – кадмий, галлий, минералы – сфалерит.

    Металл получают на заводе. Каждый завод имеет свои отличительные особенности производства, поэтому оборудование для получения чистого материала различно. Оно может быть таким:

    • Роторы, расположенные вертикально, электролитные.
    • Специальные печи с достаточно высокой температурой для обжига, а также специальные электропечи.
    • Транспортёры и ванны для электролиза.

    В зависимости от принимаемого метода добычи металла, задействовано соответствующее оборудование.

    Получение чистого цинка

    Как упоминалось выше – в природе чистого вида нет. В основном добыча производится из руд, в которых он идет с различными элементами.

    Для получения чистого материала задействован специальный флотационный процесс с избирательностью (селективностью). После проведения процесса руда распадается на элементы: цинк, свинец, медь и так далее.

    Добытый таким методом чистый металл обжигается в специальной печи. Там при определенных температурах сульфидное состояние материала переходит в оксидное. При обжиге выделяется газ с содержанием серы, направляемый для получения серной кислоты.

    Есть 2 способа получения металла:

    1. Пирометаллургический – идет процесс обжигания, после — полученная масса восстанавливается с помощью чёрного угля и кокса. Конечным процессом является отстаивание.
    2. Электролитический – добытая масса обрабатывается серной кислотой. Полученный раствор подвергают электролизу, при этом металл оседает, его плавят в печах.

    Выплавка цинка в печи

    Температура плавления цинка в печи 419-480 °С градусов. Если же температурный режим превышен, тогда материал начинает испаряться. При данной температуре допускается примесь железа 0.05%.

    При процентной ставке 0.2 железа, лист невозможно будет прокатать.

    Применяются различные способы выплавки чистого металла, вплоть до получения цинковых паров, которые направляются в специальные резервуары и там вещество опадает вниз.

    Применение металла

    Свойства цинка позволяют его применение во многих сферах. В процентном соотношении:

    1. Цинкование – до 60%.
    2. Медицина – 10%.
    3. Различные сплавы, содержащие данный металл 10%.
    4. Выпуск шин 10%.
    5. Производство красок – 10%.

    А также применение цинка необходимо для восстановления таких металлов, как золото, серебро, платина.

    Цинк в металлургии

    Металлургическая промышленность задействует данный элемент периодической таблицы как основной для достижения определенных целей. Выплавка чугуна, стали является главной во всей металлургии страны. Но, данные металлы подвержены негативному влиянию окружающей среды. Без определенной обработки идет быстрое окисление металлов, что приводит к их порче. Наилучшей защитой служит оцинкование.

    Нанесение защитной плёнки на чугун и сталь является лучшим средством от коррозии. На оцинкование уходит около 40% всего производства чистого материала.

    Способы оцинкования

    Металлургические заводы отличительны не только своим оборудованием, но и применяемыми методами производства. Это зависит от ценовой политики, и месторасположения (природных ресурсов, используемых для металлургической промышленности). Есть несколько методов оцинкования, которые рассматриваются ниже.

    Горячий способ оцинкования

    Данный способ заключается в обмакивании металлической детали в жидком растворе. Происходит это так:

    1. Деталь или изделие обезжиривается, очищается, промывается и сушится.
    2. Далее, цинк расплавляется до жидкого состояния при температуре до 480 °С.
    3. В жидкий раствор опускается подготовленное изделие. При этом оно хорошо смачивается в растворе и образуется покрытие толщиной до 450 мкм. Это является 100% защитой от воздействия внешних факторов на изделие (влага, прямые солнечные лучи, вода с химическими примесями).

    Горячее цинкование металлоконструкций

    Но, данный метод имеет ряд недостатков:

    • Цинковая пленка на изделии получается неравномерного слоя.
    • Нельзя использовать данный метод для деталей, отвечающих точным стандартам по ГОСТу. Где каждый миллиметр считается браком.
    • После горячего оцинкования, не каждая деталь останется прочной и износостойкой, поскольку после прохождения высокой температуры появляется хрупкость.

    А также данный метод не подходит для изделий, покрытых лакокрасочными материалами.

    Холодное оцинкование

    Этот метод носит 2 названия: гальванический и электролитический. Методика покрытия изделия защитой от коррозии такова:

    1. Металлическая деталь, изделие подготавливается (обезжиривается, очищается).
    2. После этого проводится «метод окрашивания» — применяется специальный состав, имеющий главный компонент – цинк.
    3. Деталь покрывается данным составом методом распыления.

    Благодаря этому методу защитой покрываются детали с точным допуском, изделия, покрытые лакокрасочными материалами. Повышается стойкость к внешним факторам, приводящим к коррозии.

    Недостатки данного метода: тонкий защитный слой – до 35 мкм. Это приводит к меньшей защите и небольшим срокам защиты.

    Термодиффузионный способ

    Данный метод делает покрытие, которое является электродом с положительной полярностью, в то время как металл изделия (сталь) становится отрицательной полярности. Появляется электрохимический защитный слой.

    Метод применим только в случае, если детали произведены из углеродистой стали, чугуна, стали с примесями. Цинк используется таким образом:

    1. При температуре от 290 °С до 450 °С в порошковой среде, поверхность детали насыщается Zn. Здесь маркировка стали, а также тип изделия имеют значение – выбирается соответствующая температура.
    2. Толщина защитного слоя достигает 110 мкм.
    3. В закрытый резервуар помещается изделие из стали, чугуна.
    4. Добавляется туда специальная смесь.
    5. Последним шагом является специальная обработка изделия от появления белых высолов от солёной воды.

    В основном данным методом пользуются в случае, если требуется покрыть детали, имеющие сложную форму: резьбу, мелкие штрихи. Образование равномерного защитного слоя является важным, поскольку данные детали претерпевают множественное воздействие внешней агрессивной среды (постоянная влага).

    Данный метод дает самый большой процент защиты изделия от коррозии. Оцинкованное напыление является износостойким и практически нестираемым, что очень важно для деталей, которые время о времени крутятся и разбираются.

    Иные сферы применения цинка

    Помимо оцинкования, металл применяется и в других сферах промышленности.

    1. Цинковые листы. Для производства листа выполняется прокатка, в которой важна пластичность. Это зависит от температурного режима. Температура в 25 °С дает пластичность только в одной плоскости, что создает определенные свойства металла. Тут главное для чего изготавливается лист. Чем выше температура, тем тоньше получается металл. В зависимости от этого идет маркировка изделия Ц1, Ц2, Ц3. После этого из листов создаются различные изделия для автомобилей, профиля для строительства и ремонта, для полиграфии и так далее.
    2. Цинковые сплавы. Для улучшенных свойств металлических изделий, добавляется цинк. Данные сплавы создаются при высоких температурах в специальных печах. Чаще всего производятся сплавы из меди, алюминия. Данные сплавы применяются для производства подшипников, различных втулок, которые применимы в машиностроении, судостроении и авиации.

    В домашнем обиходе оцинкованное ведро, корыто, листы на крыше – это норма. Применяется цинк, а не хром или никель. И дело не только в том, что оцинкование дешевле, чем покрытие другими материалами. Это наиболее надёжный и продолжительный по службе эксплуатации защитный материал нежели, хром или другие применяемые материалы.

    В итоге – цинк наиболее распространенный металл, применяемый широко в металлургии. В машиностроении, строительстве, медицине – материал применим не только как защита от коррозии, но и для увеличения прочности, продолжительного срока эксплуатации. В частных домах оцинкованные листы защищают крышу от осадков, в зданиях выравниваются стены и потолки гипсокартонными листами на основе оцинкованных профилей.

    Практически у каждой хозяйки в доме есть оцинкованное ведро, корыто, которым она пользуется длительное время.

    Учебные материалы

    Медь относится к группе цветных металлов, наиболее широко применяемых в промышленности. Порядковый номер меди в периодической системе Д. И. Менделеева — 29, атомный вес А = 63,57. Медь имеет гранецентрированную кубическую решетку (ГЦК) с периодом а = 3,607 Å.

    Удельный вес меди g = 8,94 г/см 3 , температура плавления — 1083 0 С. Чистая медь обладает высокой тепло — и электропроводностью. Удельное электрическое сопротивление меди 0,0175 мкОм×м, теплопроводность l = 395 Вт/(м×град). Предел прочности sв = 200…250 МПа, твердость 85…115 НВ, относительное удлинение d = 50 %, относительное сужение y = 75 %.

    Медь — немагнитный металл. Она обладает хорошей технологичностью: обрабатывается давлением, резанием, легко полируется, хорошо паяется и сваривается, имеет высокую коррозионную стойкость. Основная область применения — электротехническая промышленность.

    Электропроводность меди существенно понижается при наличии даже очень небольшого количества примесей. Поэтому в качестве проводникового материала применяют в основном особо чистую медь М00 (99,99 %), электролитическую медь М0 (99,95 %), М1 (99,9 %). Марки технической меди М2 (99,7 %), М3 (99,5 %), М4 (99,0 %).

    В зависимости от механических свойств различают медь твердую, нагартованную (МТ) и медь мягкую, отожженную (ММ).

    Вредными примесями в меди являются висмут, свинец, сера и кислород. Действие висмута и свинца аналогично действию серы в стали; они образуют с медью легкоплавкие эвтектики, располагающиеся по границам зерен, что приводит к разрушению меди при ее обработке давлением в горячем состоянии (температура плавления эвтектики соответственно 270 0 С и 326 0 С).

    Сера и кислород снижают пластичность меди за счет образования хрупких химических соединений Сu2O и Сu2S.

    В качестве конструкционного материала технически чистую медь применяют редко, так как она имеет низкие прочностные свойства, твердость. Основными конструкционными материалами на основе меди являются сплавы латуни и бронзы. Для маркировки медных сплавов используют следующее буквенное обозначение легирующих элементов:

    • О — олово; Ц — цинк; Х — хром;
    • Ж — железо; Н — никель; С — свинец;
    • К — кремний; А — алюминий; Ф — фосфор;
    • Мц — марганец; Мг – магний; Б – бериллий.

    Латуни

    Латуни — это медные сплавы, в которых основным легирующим элементом является цинк.

    В зависимости от содержания цинка латуни промышленного применения бывают:

    1. однофазные a — латуни, содержащие до 39 % цинка (это предельная растворимость цинка в меди);
    2. двухфазные (a+b|)- латуни, содержащие до 46 % цинка;
    3. однофазные b|- латуни ,содержащие до 50 % цинка.

    Однофазные a- латуни пластичны, хорошо обрабатываются резанием, давлением при температурах ниже 300 0 С и выше 700 0 С (в интервале от 300 0 С до 700 0 С — зона хрупкости). С увеличением содержания цинка прочность латуней повышается. В латунях b|- фаза представляет собой упорядоченный твердый раствор на базе электронного соединения СuZn с решеткой ОЦК, она хрупкая и прочная. Поэтому, чем больше в латунях b|- фазы, тем они прочнее и менее пластичны. Практическое применение имеют латуни с содержанием цинка до 42…43 %.

    Читать еще:  Меры твердости МТР-МЕТ по Роквеллу (HRA, HRB, HRC)

    Латуни, обрабатываемые давлением, маркируются буквой Л (латунь), после которой ставятся буквенные обозначения легирующих элементов; цифры, следующие за буквами, указывают содержание меди и количество соответствующего легирующего элемента в процентах. Содержание цинка определяется по разности от 100 %. Например, латунь Л62 содержит 62 % Сu и 38 % Zn. Литейные латуни маркируются буквой Л, после которой ставится содержание цинка и других легирующих элементов в процентах. Количество меди определяется по разности от 100 %. Например, латунь ЛЦ36Мц20С2 содержит 36 % Zn, 20 % Mn, 2 % Pb и 42 % Сu.

    К однофазным a — латуням относятся Л96 (томпак), Л80 (полутомпак), Л68, имеющая наибольшую пластичность (d = 56 %). Двухфазные (a+b|) — латуни марок Л59 и Л60 имеют меньшую пластичность в холодном состоянии, но большую прочность и износостойкость. Однофазные имеют после отжига sв = 250…350 МПа и d = (50…56) %, двухфазные — sв = 400…450 МПа и d = (35… 40 %).

    Для повышения механических свойств и коррозионной стойкости латуни могут легироваться оловом, алюминием, марганцем, кремнием, никелем, железом и др.

    Введение легирующих элементов (кроме никеля) уменьшает растворимость цинка в меди и способствует образованию b|- фазы, поэтому такие латуни чаще двухфазные (a+b|). Никель увеличивает растворимость цинка в меди, и при достаточном его содержании латунь из двухфазной становится однофазной. Свинец облегчает обрабатываемость резанием и улучшает антифрикционные свойства. Сопротивление коррозии повышают Al, Zn, Si, Mn, Ni, Sn.

    В морском судостроении применяются оловянистые ”морские” латуни, например, ЛО70-1 (70 % Сu, 1 % Sn, 29 % Zn). Она используется для изготовления конденсаторных трубок, деталей теплотехнической аппаратуры.

    Алюминиевые латуни используют для изготовления конденсаторных трубок, цистерн, втулок, а также для изготовления коррозионно-стойких деталей, работающих в морской воде. Марки латуней: ЛА77-2, ЛАЖ60-1-1, ЛАН59-3-2 (в электрических машинах, в хим. машиностроении). Из латуни ЛАНКМц75-2-2,5-0,5-0,5 изготовляют цельнотянутые круглые трубы для производства манометрических трубок и пружин в приборах повышенного класса точности. С помощью закалки и старения sв достигает 700 МПа.

    Марганцевые латуни кроме хороших механических и технологических свойств (обрабатываются давлением в холодном и горячем состоянии) обладают высокой коррозионной стойкостью в морской воде, хлоридах и перегретом паре. Латуни ЛМц 58-2 и ЛМцА 57-3-1 применяются в основном для изготовления крепежных изделий арматуры.

    Кремнистые латуни характеризуются высокой прочностью (sв до 640 МПа), пластичностью и вязкостью до минус 183 0 С. Латунь ЛК80-3 применяют для изготовления арматуры, деталей приборов в судо- и общем машиностроении.

    Свинцовистые латуни отлично обрабатываются резанием и обладают высокими антифрикционными свойствами. Латуни ЛС60-1, ЛС59-1 применяют для изготовления крепежных деталей , зубчатых колес, втулок.

    Никелевая латунь обладает повышенными механическими (sв до 785 МПа) и коррозионными свойствами, обрабатывается давлением в холодном и горячем состоянии. Латунь ЛН65-5 применяется для изготовления манометрических и конденсаторных трубок, различного вида проката.

    Литейные латуни содержат те же элементы, что и латуни, обрабатываемые давлением; от последних литейные отличает, как правило, большее легирование цинком и другими металлами. Вследствие этого они обладают хорошими литейными характеристиками.

    Бронзы

    Бронзы — это сплавы меди с оловом, алюминием, кремнием и другими элементами.

    По технологическому признаку бронзы делятся на деформируемые и литейные. Деформируемые маркируются буквами Бр, после которых перечисляются легирующие элементы, а затем соответственно содержание этих элементов в процентах. Содержание меди определяется по разности от 100 %. Например, БрОЦС 8-4-3 содержит 8 % Sn, 4 % Zn, 3 % Pb, 85 % Сu.

    Литейные бронзы маркируются аналогично литейным латуням. Например, бронза Бр06Ц3Н6 содержит 6 % Sn, 3 % Zn, 6 % Pb, 85 % Сu.

    Бронзы по сравнению с латунью обладают лучшими механическими, антифрикционными свойствами и коррозионной стойкостью.

    Оловянные бронзы. Наибольшее практическое значение имеют сплавы, содержащие до 10…12 % Sn. Предельная растворимость олова в меди 15,8%, однако в реальных условиях кристаллизации и охлаждения предельная растворимость снижается примерно до 6 %. К однофазным сплавам относятся бронзы с содержанием олова до 5…6 % и a — фаза, представляет твердый раствор олова в меди с ГЦК — решеткой. При большем содержании олова наряду с a — раствором присутствует эвтектоид (a + Сu31Sn8). Предел прочности бронзы возрастает с увеличением олова, но при его высоких концентрациях резко снижается из-за большего количества хрупкого интерметаллида Сu31Sn8.

    Оловянные бронзы обычно легируют Zn, Pb, Ni, P. Цинк улучшает технологические свойства бронзы и удешевляет ее. Фосфор улучшает литейные свойства. Для изготовления художественного литья содержание фосфора может достигать 1 %. Свинец (до 3…5 %) вводится в бронзу для улучшения ее обрабатываемости резанием. Никель повышает механические свойства, коррозионную стойкость и плотность отливок, уменьшает ликвацию. Среди медных сплавов оловянные бронзы имеют самую низкую линейную усадку (0,8 % при литье в землю и 1,4 % — в металлическую форму).

    Для проведения пластичности проводится гомогенизация сплавов при температурах 700…750 0 С с с быстрым охлаждением. Остаточные напряжения снимаются отжигом при 550 0 С.

    Оловянные деформируемые бронзы Бр0Ф7-0.2, БрОЦС4-4-4, БрОЦ4-3 и другие имеют более высокую прочность, упругость, сопротивление усталости, чем литейные. Их используют для изготовления подшипников скольжения, шестерен, трубок контрольно — измерительных и других приборов, манометрических пружин и т.д.

    Литейные оловянные бронзы. По сравнению с деформируемыми они содержат большее количество легирующих элементов, имеют ниже жидкотекучесть, малую линейную усадку, склонны к образованию усадочной пористости. Бронзы БрОЗЦ7С5Н, БрО10Ф1, БрО6Ц6С3, БрО5С25 и другие применяются для изготовления арматуры, работающей в воде и водяном паре, подшипников, шестерен, втулок.

    Алюминиевые бронзы отличаются высокими механическими антикоррозионными свойствами, жидкотекучестью, малой склонностью к дендритной ликвации. Из-за большой усадки трудно получить сложную фасонную отливку. Они морозостойки, немагнитны, не дают искры при ударах. По коррозионной стойкости превосходят латуни и оловянистые бронзы.

    Алюминий растворяется в меди, образуя a — твердый раствор замещения с пределом растворимости 9,4 %. При большем содержании в структуре появляется эвтектоид (a + g|); g| — интерметаллид Сu32Al9.

    Однофазные бронзы БрА5, БрА7 имеют хорошую пластичность и относятся к деформируемым. Обладают наилучшим сочетанием прочности и пластичности: sв = 400…450 МПа, d = 60 %.

    Двухфазные бронзы (a + g|) имеют повышенную прочность до 600 МПа, но пластичность заметно ниже d = (35…45) %. Эти сплавы упрочняются термообработкой и дополнительно легируются Fe, Ni, Mn.

    Железо измельчает зерно и повышает механические и антифрикционные свойства алюминиевых бронз. Никель улучшает механические свойства и износостойкость, температуру рекристаллизации и коррозионную стойкость. Марганец повышает технологические и коррозионные свойства.

    Бронзы БрАЖН10-4-4, БрАЖМц10-3-1-5 и др. применяются для изготовления зубчатых колес, деталей турбин, седел клапанов и других деталей, работающих в тяжелых условиях износа при повышенных температурах до 400 0 С, корпуса насосов, клапанные коробки и др.

    Закалка проводится с температуры 950 0 С, после чего бронзы подвергают старению при 250…300 0 С в течение 2…3 ч.

    Кремнистые бронзы применяются в качестве заменителей оловянистых бронз. До 3 % кремний растворяется в меди, и образуется однофазный a-твердый раствор. При большем содержании кремния появляется твердая и хрупкая g-фаза. Никель и марганец улучшает механические и коррозионные свойства. Они не теряют пластичности при низких температурах, хорошо паяются, обрабатываются давлением, немагнитны и не дают искры при ударах. Их используют для деталей, работающих до 500 0 С, а также в агрессивных средах (пресная, морская вода).

    Бронзы БрКН1-3, БрКМц3-1 применяют для изготовления пружин, антифрикционных деталей, испарителей и др.

    Бериллиевые бронзы. Содержат 2…2,5 % Ве. Эти сплавы упрочняются термической обработкой. Предельная растворимость бериллия в меди при 866 0 С составляет 2,7 %, при 600 0 С — 1,5 %, а при 300 0 С всего 0,2 %. Закалка проводится при 760…800 0 С в воде и старение при 300 0 С в течение 3 ч. Сплав упрочняется за счет выделения дисперсных частиц g-фазы СuBe, что приводит к резкому повышению прочности до 1250 МПа при d = 3…5 %. Бронзы БрБ2, БрБНТ1,9 и БрБНТ1,7 имеют высокую прочность, упругость, коррозионную стойкость, жаропрочность, немагнитны, искробезопасны (искра не образуется при размыкании электрических контактов). Применяются для изготовления мембран, пружин, электрических контактов.

    Свинцовые бронзы. Свинец практически не растворяется в жидкой меди. Поэтому сплавы после затвердевания состоят из кристаллов меди и включений свинца. Такая структура обеспечивает высокие антифрикционные свойства. Бронза БрС30 применяется для изготовления вкладышей подшипников скольжения, работающих при повышенных давлениях и с большими скоростями. По сравнению с оловянистыми бронзами, теплопроводность ее в 4 раза больше, поэтому она хорошо отводит теплоту, возникающую при трении. Прочность этих бронз невысокая sв = 60 МПа, d = 4 %.

    Медь – свойства меди, сплавы и применение

    Знакомство человека с медью исчисляется тысячелетиями, где ее прямым конкурентом может выступать только золото, успевшее приобрести статус благородного металла.

    Свойства меди и место в жизни человека

    В чистом состоянии, элемент таблицы Менделеева, именуемый Cu, встречается крайне редко. Это – пластичный металл с легким розовым оттенком. Человеку же он знаком под другим цветом: желто-красным, чаще коричнево-красным. Это связано с высокой окислительной способностью вещества. Попадая на воздух, медь покрывается тонкой оксидной пленкой, что и делает цвет металла ближе к красному.

    медь в чистом виде

    Первобытная тяга человека к меди основывалась на свойстве пластичности, позволяющей придавать этому металлу требуемую форму путем несложной обработки. Медь легко поддается гравировке, нанесению резьбы, оставаясь при этом достаточно прочным. Современная ценность меди, как металла – высокие показатели проводимости: электрической и тепловой. Подобная информация позволяет выделить основные направления поиска этого цветного металла в виде отходов и лома.

    Удельный вес меди, составляющий округленно 8.9 г/см 3 , также полезен сборщику металлолома. Зная объем собранного лома, в частности проводов, жил, легко рассчитать его оценочный вес.

    Сплавы меди

    Помимо относительно чистой формы, характеризуемой ничтожным содержанием примесей, медь – составляющий элемент многих сплавов, среди которых наиболее известны:

    Латунь – сплав меди

    • бронза;

    • мельхиор.

    Мельхиор – больше относится к серебру, нежели к меди

    Отдельно стоит выделить медный сплав с никелем, именуемый мельхиор. Он известен широкой аудитории по разменным монетам советских времен, начиная с 10 копеек а также подарочные наборы столовых приборов, но существенно уступает первым двум в степени востребованности.

    Наиболее перспективными для нужд человека остаются: латунь и бронза. Желтая медь, так иначе называют латунь, на бытовом уровне широко востребована в сантехнике. Те, кто сталкивался с подбором крана или смесителя, хорошо знают это. По химическому составу различают:

    • двойные латуни – сплав меди с цинком;
    • многокомпонентные, в которых Zn остается основным легирующим элементом.

    Процентное содержание цинка, даже в двойной латуни, широко варьируется. Сплавы, где доля Zn составляет не более 20%, именуют томпаком.

    Пули из томпака

    Определить состав латуни можно исходя из маркировки: для двойных сплавов после буквы «Л» указывается процентное содержание меди, например Л60. Маркировка многокомпонентных сплавов строится аналогично, только за «Л» следуют легирующие примеси с их концентрациями. Таким образом, многокомпонентная латунь марки ЛМц58- 2, использования при изготовлении деталей машин, гаек, болтом, арматуры, подразумевает содержание меди – 58%, цинка – 40%, марганца – 2%.

    Бронза – в стандартном понимании, представляет медный сплав с оловом, однако на практике также обладает весьма вариативным составом. Фактически под бронзой принято понимать любой медный сплав, где никель и цинк не являются основными легирующими элементами. Стоит отметить, что найти оловянную бронзу достаточно сложно. Большее распространение получили ее безоловянные сорта.

    Медь и ее сплавы, как источник цветного вторичного металла

    Взвешивая «чистый» металл и его сплавы на весах прибыльности при сдаче металлолома, можно сказать, что стоимость первого в полтора – два раза выше. Однако весовое содержание меди в металлических конструкциях часто уступает на выходе ее сплавам.

    Так, медные сплавы можно обнаружить среди пришедших в негодность изделий сантехники: водопроводные краны, вентили, душевые шланги и трубки. Многие старые светильники, дверная фурнитура также изготовлены из медных сплавов, однако верх пьедестала, по весовому содержанию, занимают радиаторы отопления.

    Непосредственно медь стоит искать среди бытовых приборов, желательно уже выработавших свой эксплуатационный ресурс:

    • ламповый телевизор – 1,5 кг;

    Ламповый телевизор с медью

    • полупроводниковый ТВ приемник – 0,5 кг;
    • компрессионный холодильник – около килограмма в двигателе, еще столько же могут содержать трубки радиатора;
    • электродвигатели – в среднем килограмм на киловатт мощности;

    Незаслуженно обходят вниманием магнитные пускатели, хотя оборудование помимо обмотки содержит медь в шинах. Небольшое содержание металла, менее килограмма принесут автомобильные стартеры и генераторы, дроссели люминесцентных ламп, трансформаторы, реле, компрессоры холодильников.

    Первичная медь, получение и применение

    В зависимости от чистоты металла, различают следующие марки:

    Катодная медь М0

    • М1 – 99,9%;
    • М2 – 99,7%;
    • М3 – 99,5%;
    • М4 -99%.

    Одним из источников сырья для получения металла выступает медный лом, перерабатываемый согласно технологии огневого рафинирования.

    Природные ресурсы металла составляет самородная медь и сульфидные руды, в частности медные колчедан и блеск. Существует два металлургических способа получения металла из руды. На основной метод – пирометаллургический, приходится 90% первичного металла, оставшиеся 10% – результат гидрометаллургической технологии.

    Физические свойства меди не могли остаться незамеченными в промышленности. Ее высокая электропроводность позволяет использовать металл при изготовлении электродов, проводов, особенно силовых кабелей (марка М0). Относительная химическая инертность меди нашла применение металлу в узлах аппаратуры для работы с огнеопасными веществами.

    Высокая теплопроводность металла, наряду с устойчивостью к коррозии, используются при изготовлении сантехнических конструкций, узлов, а также кровельных покрытий. В настоящее время, медь вытеснили тут другие, более дешевые материалы.

    Достаточно широкий рынок применения меди – производство сплавов. Латунь и бронза, где Cu является основным компонентом, уже были рассмотренные ранее. Широко используется другой сплав дюралюминий, где содержание меди доходит до 5%.

    0 0 голоса
    Рейтинг статьи
    Ссылка на основную публикацию
    ВсеИнструменты