Rich--house.ru

Строительный журнал Rich—house.ru
63 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Шихтовые материалы для получения стали в дуговых печах

Шихтовые материалы для электроплавки стали. Шлакообразующие материалы применяемые в дуговой сталеплавильной печи

При выплавке стали в основных дуговых печах для образования основного шлака используют:

  • известь,
  • известняк,
  • плавиковый шпат,
  • шамотный бой
  • песок.

Наиболее важной составляющей шлаковых смесей является известь, которую получают обжигом известняка в шахтных печах при 1100—1300 °С. Химический состав обожженной извести: СаО – 88%, SiO2 – 2%, MgO – не более 1.5%, Fe2O3 + Al2O3 – не более 1.5%, S – не более 0.15%.

Для выплавки высококачественной стали используют только свежеобожженную известь. При хранении известь интенсивно поглощает влагу из воздуха с образованием гидрооксида кальция Са(ОН)2, который рассыпается в порошок. Влага, внесенная известью в печь, вызывает обогащение стали водородом, поэтому применение пылеватой извести (так называемой «пушонки») в электропечах недопустимо.

Вместо извести в окислительный период можно использовать необожженный известняк. Применяют известняк, содержащий > 97% СаСО3 (> 54% СаО). Известняк не гигроскопичен, его можно хранить длительное время. Разложение СаСО3 в электропечи вызывает выделение пузырей СО2, которые обеспечивают перемешивание металла и шлака и способствуют дегазации металла. Недостатком применения известняка вместо извести является дополнительная затрата электроэнергии на разложение СаСО2.

Для уменьшения вязкости высокоосновных шлаков применяют плавиковый шпат (СаF2), песок и шамотный бой. Особенно сильно понижает вязкость СаF2.

Использование СаF2 позволяет разжижать высокоосновные шлаки без уменьшения их основности, что особенно важно для эффективного удаления серы. Широко применяемый для наводки шлака плавиковый шпат обычно содержит 90—95% СаF2, 95%) содержание SiO2. При выплавке нержавеющих сталей и для разжижения густых магнезиальных шлаков иногда используют бой шамотных огнеупоров, содержащих 60% SiO2 и 35% Al2O3.

Выплавка стали в электродуговой печи

Устройство дуговой сталеплавильной печи

Дуговая сталеплавильная печь благодаря своим преимуществам предназначена, в основном, для производства легированных высококачественных сталей — коррозионностойких, инструментальных, конструкционных, электротехнических, жаропрочных и др., а также различных сплавов.

Дуговая сталеплавильная печь состоит из металлического корпуса в виде кожуха, как правило, цилиндрической формы со сферическим днищем (рис. 7).

1 — под; 2 — реечный механизм для поворота печи; 3 — твёрдая шихта; 4 — кусок кокса; 5 — электроды; 6 — электродержатели с механизмом для подъёма и опускания: 7 — свод; 8 — загрузочное окно; 9 — расплавленный шлак; 10 — расплавленный металл
Рис. 7 — Трёхфазная электродуговая печь

Изнутри кожух футерован высокоогнеупорными материалами. Плавильное пространство печи сверху перекрывается съемным сводом, огнеупорная кладка которого выполнена в специальном сводовом кольце. В стенах печи имеются одно или два рабочих окна и одно выпускное отверстие с желобом для слива металла и шлака в ковш. Рабочие окна служат для загрузки шлакообразующих, руды, ферросплавов и для ряда технологических операций — спуска шлака, взятия проб металла и шлака.

Дуговая печь опирается на два опорных сегмента — люльки, с помощью которых печь может наклоняться в сторону рабочего окна или выпускного отверстия. Наклон печи осуществляется при помощи механизма наклона с электрическим или гидравлическим приводом. Для загрузки шихты в печь свод обычно поднимают к полупорталу и вместе с электродами отворачивают в сторону сливного желоба. Шихта в плавильное пространство опускается с помощью специальной корзины с открывающимся дном. В эти корзины (бадьи) вся шихта укладывается в определенном порядке на шихтовом участке цеха. К моменту завалки загруженная корзина подается к печи с помощью мостового крана, и после отвода от печи свода корзина опускается в плавильное пространство. Замок, закрывающий днище корзины, выдергивается, и корзина с помощью крана выводится из печи. При этом, благодаря раскрытию дна корзины, вся содержащаяся в ней шихта остается на подине печи.

Электрический ток в плавильное пространство подводится при помощи трех симметрично расположенных электродов, которые опускаются через свод. Для этого в своде имеются отверстия, снабженные водоохлаждаемыми металлическими коробками — экономайзерами. Каждый электрод зажимается электрододержателем, скрепленным при помощи рукава, выполненного в виде толстостенной трубы или сварной балки, с подвижной стойкой. Для подвода тока к электродам используются охлаждаемые гибкие кабели и водоохлаждаемые медные трубы.

Дуговые печи строят различной емкости (до 250 т) и с трансформаторами мощностью до 125000 кВА.

Источником тепла в дуговой печи является электрическая дуга, возникающая между электродами и жидким металлом или шихтой при приложении к электродам электрического тока необходимой силы. Дуга представляет собой поток электронов, ионизированных газов и паров металла и шлака. Температура электрической дуги превышает 3000 °С. Дуговые печи работают на переменном токе.

Применяют графитированные электроды, изготавливаемые из малозольных углеродных материалов, нефтяного пекового и сланцевого кокса и связующих — каменноугольного пека и смолы. Электроды прессуют и затем обжигают в газовых (1300 °С), а затем в электрических печах при более высоких температурах (2500-3000°С). После этого их механически обрабатывают для придания формы цилиндра. Работающий на печи электрод получают соединением нескольких стандартных секций с помощью ниппеля. По мере износа нижней части электрода проводится «перепуск» его в объем печи с одновременным наращиванием следующей секции, если это необходимо. Наращивание осуществляется на специальном стенде или на печи, вручную. В последнее время, с целью уменьшения расхода электродов верхняя несущая часть изготавливается из меди или нержавеющей стали и охлаждается водой (водоохлаждаемые электроды). Это позволяет снизить расход электродов в 2-3 раза.

Технология плавки в основной дуговой электропечи

Шихта при плавке с полным окислением состоит, главным образом, из стального лома и чугуна, а также шлакообразующих (известь, известняк, плавиковый шпат, шамотный бой).

Плавка включает следующие основные периоды — заправка печи, загрузка шихты, плавление, окислительный период, восстановительный период, выпуск.

Заправка печи выполняется для поддержания футеровки плавильного пространства в рабочем состоянии. Для этого после выпуска очередной плавки на поврежденные места подины и откосов — места перехода подины печи в стены — с помощью заправочной машины забрасывают сухой магнезитовый порошок, а в случае больших повреждений — порошок с добавками пека или смолы.

Завалка шихты начинается сразу после окончания заправки. Завалку шихты осуществляют сверху с помощью загрузочной корзины (бадьи).

Плавление. После окончания завалки свод с электродами устанавливают на печь, электроды опускают и включают ток. Под действием высокой температуры электрической дуги шихта плавится сначала под электродами, жидкий металл стекает вниз и накапливается в центральной части подины. Постепенно происходит полное расплавление шихты. Для ускорения плавления куски переплавившейся шихты с откосов печи сталкивают в зону электрических дуг. Характерной особенностью первого периода плавления является проплавление «колодцев» в шихте, в которые опускают электроды (или одного «колодца» в сверхмощных печах). В период плавления происходит образование шлака как за счет присадок извести, так и за счет окисления элементов, входящих в состав шихты. За время плавления полностью окисляется кремний, 50-60 % марганца, частично окисляются углерод и железо, окисляется фосфор.

Окислительный период плавки предназначен для уменьшения содержания в металле фосфора до 0,01- 0,015 %, уменьшения содержания в металле водорода и азота, нагрева металла до требуемой температуры (на 120-130°С выше температуры плавления). Для окисления примесей используют твердые окислители (железная руда, агломерат), а также газообразный кислород. Присадки руды или продувка кислородом вызывают интенсивное окисление углерода, и выделяющиеся при этом пузырьки СО создают активное кипение ванны. Это способствует быстрому нагреву металла, удалению газов — водорода и азота, а также неметаллических включений. Окислительный период заканчивается, когда содержание углерода становится несколько ниже заданного предела, содержание фосфора ниже 0,01 %. В конце окислительного периода полностью удаляют из печи шлак.

Восстановительный период плавки имеет целью раскисление металла, удаление серы, доведение химического состава стали до заданного, регулирование температуры. Все эти задачи решаются параллельно в течение всего восстановительного периода. После полного удаления окислительного шлака в печь присаживают шлакообразующие смеси вместе с раскислителями, т. е. наводится новый шлак (карбидный или белый). В качестве раскислителей обычно используют ферромарганец, ферросилиций, алюминий. В печь присаживают также легирующие добавки для введения в металл необходимых легирующих элементов.

После этого металл выпускают из печи в установленный под желобом сталеразливочный ковш, для чего печь наклоняют в сторону сталевыпускного отверстия. При необходимости в ковше можно проводить дополнительное раскисление и легирование стали. Так осуществляется двушлаковый процесс выплавки.

Плавка на шихте из легированных отходов основана на переплаве без окисления. Прежде всего в таком процессе нет необходимости окислять углерод и фосфор, и железную руду в ванну не вводят. В связи с этим в шихте содержание фосфора не должно быть выше допустимого предела по этому элементу в готовой стали. Учитывая, что в процессе переплава в металле растворяется часть углерода электродов, начальное содержание углерода в ванне должно быть ниже, чем в готовой стали примерно на 0,1 %. Для дегазирующего барботирования ванны в качестве шлакообразующего компонента используют не известь, а известняк, разложение которого сопровождается выделением пузырей диоксида углерода. Шихта составляется только из отходов легированных сталей. При составлении шихты стремятся использовать максимальное количество отходов данной марки стали или близких к ней других марок. Такое рациональное использование отходов дает большую экономию легирующих элементов, электроэнергии и повышает производительность электропечей. На плавках методом переплава отсутствует окислительный период. При правильном расчете шихты после расплавления сразу начинается восстановительный период, металл раскисляют, добавляют некоторые легирующие и выпускают. Плавка методом переплава легированных отходов значительно короче по сравнению с обычной плавкой.

Технология плавки в кислой дуговой электропечи

Электродуговые печи с кислой футеровкой обычно используются при выплавке стали для фасонного литья. Емкость их составляет от 0,5 до 6,0-10 т. Кислая футеровка более термостойкая и позволяет эксплуатировать печь с учетом условий прерывной работы многих литейных цехов машиностроительных заводов. Основным недостатком печей с кислой футеровкой является то, что во время плавки из металла не удаляются сера и фосфор. Отсюда, очень высокие требования к качеству применяемой шихты по содержанию этих примесей.

Процесс плавления шихты проводят так же как в основных печах. Для снижения угара легирующих элементов, а также железа, в ванну вводят шлак от предыдущей плавки, а также кварцевый песок и известь. К концу периода плавления в кислом железистом шлаке содержится 40 % FеО, >45 % SiO2.

В окислительном периоде при кислом процессе, в отличие от основного, отсутствует окисление фосфора. При высокой степени окисленности шлака удаление кислорода из ванны и ее кипение могут проходить без присадок железной руды. Однако для ускорения процесса обезуглероживания используют также введение твердых окислителей или продувку ванны кислородом. К концу окислительного периода содержание диоксида кремния в шлаке повышается до 60 %, значительная часть его поступает из футеровки подины. В условиях насыщения шлака диоксидом кремния возможно восстановление кремния углеродом, марганцем и железом еще до наступления восстановительного периода. Восстановительный период в печи с кислой футеровкой часто сводится к процессу раскисления металла, так как удаление серы из металла в присутствии кислого шлака невозможно. Раскисление углеродистой стали проводят введением в ванну ферросилиция, а при выпуске металла в ковш проводят дополнительное раскисление ферромарганцем или алюминием.

Шихтовые материалы

Металлы, сплавы, специальные лигатуры, шлакообразующие присадки и другие материалы, которые используют для приготовления различных сплавов, в литейном производстве называют шихтовыми материалами или шихтой. В состав шихты входят: свежие материалы (доменные чугуны различных марок, медь, алюминий, цинк, никель и др.), которые поступают в литейные цехи с металлургических заводов; лом черных сплавов и лом цветных сплавов, представляющие собой переработанные промышленные отходы; специальные ферросплавы и лигатуры (промежуточные сплавы более тугоплавких элементов с легкоплавкими), поступающие с металлургических заводов; отходы литейного производства и механических цехов (литники, прибыли, бракованные детали и брикетированная стружка). Количественное соотношение различных материалов в шихте зависит от качества исходных материалов и от требований, которые предъявляют к изготовляемым сплавам.

Основные типы плавильных печей

В литейном производстве используются плавильные печи, работающие на твердом, жидком или газообразном топливе (коксе, нефти, мазуте, газе), и печи электрические. К первому типу печей относят вагранки и тигельные печи, ко второму типу — дуговые электрические печи и электрические индукционные печи. Наибольшее распространение для плавки чугуна получили печи шахтного типа—вагранки. Серый чугун, получаемый в этих печах, используют для отливок различных по сложности деталей. В электрических печах плавится сталь, легированный чугун, а также белый чугун, перерабатываемый затем в ковкий чугун. Схема вагранки приведена на рис. 35. Вагранка представляет собой шахтную печь, основой которой является сварной металлический кожух 1, футерованный изнутри огнеупорным кирпичом 2. Щель между кожухом и футеровкой засыпается сухим кварцевым песком 3. В верхней части вагранки находится загрузочное окно 4. Часть шахты вагранки, расположенная ниже загрузочного окна, футеруется чугунными пустотелыми кирпичами 5, которые предохраняют ее от разрушения при загрузке шихты 7.

Загружают вагранку с помощью скипового подъемника или консольного крана. Верхняя часть вагранки заканчивается искрогасителем 6.

Для поддержания горения в вагранке через специальные отверстия 8, называемые фурмам и, подается воздух (дутье), нагнетаемый вентилятором. Расплавленный чугун по поду 9, расположенному в нижней части шахты, стекает через специальное отверстие и желоб в копильник 10. В начале работы в вагранку загружают слой кокса высотой 500—1500 мм и поджигают его. Этот слой кокса называется холостой колошей. Затем на холостую колошу загружают рабочую коксовую колошу, флюс и первую порцию металлической шихты. После загрузки материалов через фурмы подают воздух, необходимый для горения топлива. В плавильном поясе чугун и шлаки расплавляются и стекают в горн вагранки. Образующиеся газы, поднимаясь вверх, нагревают металлическую шихту и топливо, а затем уходят в трубу.

По мере сгорания кокса и плавления чугуна загружаемая в вагранку шихта опускается вниз, а на ее место загружают новые порции шихтовых материалов. В процессе плавки жидкий чугун скапливается в горне вагранки. Шлак всплывает на поверхность чугуна и периодически выпускается через шлаковую летку. Накопившийся чугун сливается через летку по желобу в специальный копильник, а затем в ковш. Производительность вагранок 0,5—30 т чугуна в час.

В целях пожарной безопасности и предохранения от загрязнения окружающей местности вагранки снабжают искрогасителями, которые одновременно являются и пылеуловителями.

Для плавки стали в литейных цехах используют мартеновские и электродуговые печи с основной и кислой футеровкой, а также индукционные тигельные печи.

На рис. 36 показана схема дуговой электропечи. Источником тепла в этой печи является электрическая дуга, возникающая между расплавом 3, находящимся в ванне печи 4, и тремя графитовыми электродами 1 (проходящими через свод печи 6), по которым подается электрический ток. Вместимость таких печей составляет 1,5—10 т. Длительность плавки 1,5—4 ч. Приготовленный металл выливается при наклоне печи, осуществляемом специальным механизмом, через желоб 5. Загрузка шихты в печь производится через окно 2 или через свод печи, поднимаемый и поворачиваемый специальным механизмом.

Читать еще:  Выбор и монтаж металлической гофрированной трубы для отопления

Плавка стали в дуговой электрической печи состоит из следующих операций: заправки электропечи, завалки шихты, расплавления шихты и разливки готовой стали.

Индукционная печь (рис. 37) состоит из каркаса 6, сделанного из немагнитного материала, внутри которого находится индуктор (катушка), выполненный из витков 7 медной трубки, по которым протекает охлаждающая вода. Витки отделены друг от друга изоляцией ‘8. Плавильный тигель 5 в этой печи выполнен из набивной футеровки. Верхние части футеровки 1 и 3 и ее нижняя часть 4 делают из фасонных огнеупорных кирпичей, слой 2 выполняется огнеупорной обмазкой. Источником тепла в этих печах является индукционный ток, возбуждаемый в загруженной в тигель шихте при пропускании по индуктору переменного тока повышенной частоты.

Рис. 38. Дуговая однофазная электропечь для плавки медных сплавов

Плавка цветных сплавов производится в тигельных печах с мазутным или газовым отоплением, в электрических печах сопротивления, а также в дуговых или индукционных электрических печах.

Медные сплавы плавят в тигельных, пламенных и электрических печах. Наиболее широко применяют дуговые однофазные электрические печи типа ДМК (рис. 38). Печь представляет собой металлический барабан 1, футерованный огнеупорным кирпичом 2. Тепло, необходимое для расплавления меди, создается электрической дугой, возникающей между двумя горизонтально расположенными электродами 3. Установленный на роликах 4 барабан 1 может поворачиваться на определенный угол двигателем и зубчатой передачей.

Шихтовые материалы загружают через рабочее окно, снабженное желобом, по которому выпускают готовый расплав. Для выплавки медных сплавов шихтовыми материалами служат чушки, машинный лом, отходы собственного производства и т. д. В процессе плавки меди, цинка и свинца выделяются вредные газы и пары, поэтому плавильные печи снабжают мощной вытяжной вентиляцией.

Алюминиевые сплавы плавят в тигельных и пламенных печах, электрических печах сопротивления и индукционных печах. На рис. 39 показана тигельная печь с газовым обогревом для
плавки алюминиевых сплавов. Печь имеет огнеупорную футеровку 1, внутрь которой вставлен чугунный тигель 2. Газ подводится в горелку 4 и сгорает в пространстве между футеровкой и тиглем. Отверстие 3 предусмотрено для выпуска металла при прогорании тигля. Продукты горения и газы из сплава отводятся вытяжным колпаком 5. Печь подвешена цапфами на боковых опорах и может наклоняться с помощью штурвала и червячной передачи.

Производство стали в электродуговых печах.

Производство стали в электродуговых печах.

Плавильные электропечи имеют преимущества по сравнению с другими плавильными агрегатами, так как в них можно получать высокую температуру металла, создавать окислительную, восстановительную, нейтральную атмосферу и вакуум, что позволяет выплавлять сталь любого состава, раскислять металл с образованием минимального количества неметаллических включений — продуктов раскисления. Поэтому электропечи используют для выплавки конструкционных, высоколегированных, инструментальных, специальных сталей и сплавов. Плавильные электропечи бывают дуговыми и индукционными.

Производство стали в электродуговых печах.

Дуговая плавильная электропечь (рис. 1.) питается трехфазным переменным током и имеет три цилиндрических электрода 9 из графитизированной массы. Электрический ток от трансформатора кабелями 7 подводится к электрододержателям, а через них — к электродам 9 и ванне металла. Между электродами и металлической шихтой 3 возникает электрическая дуга, электроэнергия превращается в теплоту, которая передается металлу и шлаку излучением. Рабочее напряжение 160…600 В, сила тока 1…10 кА. Во время работы печи длина дуги регулируется автоматически путем перемещения электродов. Стальной кожух 4 печи футерован огнеупорным кирпичом 7, основным (магнезитовый, магнезитохромитовый) или кислым (динасовый). Подину 12 печи набивают огнеупорной массой. Плавильное пространство ограничено стенками 5, подиной 12 и сводом 6 из огнеупорного кирпича. Для управления ходом плавки имеются рабочее окно 10 и летка для выпуска готовой стали по желобу 2 в ковш. Печь загружают при снятом своде. Механизмом 11 печь может наклоняться в сторону загрузочного окна и летки. Вместимость этих печей 0,5…400 т. В металлургических цехах используют электропечи с основной футеровкой, а в литейных — с кислой футеровкой. В основной дуговой печи можно осуществить плавку двух видов: на шихте из легированных отходов (методом переплава) и на углеродистой шихте (с окислением примесей).

Рис.1. Схема дуговой плавильной электропечи

Плавку на шихте из легированных отходов ведут без окисления примесей. Шихта для такой плавки должна иметь меньше, чем в выплавляемой стали, марганца и кремния и низкое содержание фосфора. По сути, это переплав. Однако в процессе плавки примеси (алюминий, титан, кремний, марганец, хром) окисляются. Кроме этого, шихта может содержать оксиды. После расплавления шихты из металла удаляют серу, наводя основной шлак, при необходимости науглероживают и доводят металл до заданного химического состава. Затем проводят диффузионное раскисление, подавая на шлак мелко раздробленный ферросилиций, алюминий, молотый кокс. Так выплавляют легированные стали из отходов машиностроительных заводов.

Плавку на углеродистой шихте применяют для производства конструкционных сталей. В печь загружают шихту стальной лом (90 %), чушковый передельный чугун (до 10 %), электродный бой или кокс для науглероживания металла и известь 2-3 %.

Затем электроды опускают и включают ток; шихта под действием электродов плавится, металл накапливается на подине печи. Во время плавления шихты кислородом воздуха, оксидами шихты и окалины окисляются железо, кремний, фосфор, марганец и частично углерод. Оксид кальция из извести и оксиды железа образуют основной железистый шлак, способствующий удалению фосфора из металла.

После нагрева металла и шлака до температуры 1500…1540 0 С в печь загружают руду и известь и проводят период ”кипени” металла; происходит дальнейшее окисление углерода. Когда содержание углерода будет меньше заданного на 0,1 %, кипение прекращают и удаляют из печи шлак. Затем приступают к удалению серы и раскислению металла, доведению химического состава до заданного. Раскисление производят осаждением и диффузионным методом. После удаления железистого шлака в печь подают силикомарганец и силикокальций — раскислители для осаждающего раскисления. Затем в печь загружают известь, плавиковый шпат и шамотный бой. После расплавления флюсов и образования высокоосновного шлака на его поверхность вводят раскислительную смесь для диффузионного раскисления (известь, плавиковый шпат, молотый кокс и ферросилиций), углерод кокса и кремний ферросилиция восстанавливают оксид железа в шлаке, содержание его в шлаке снижается, и кислород из металла по закону распределения переходит в шлак. По мере раскисления и понижения содержания FеО шлак становится почти белым. Раскисление под белым шлаком длится 30…60 мин.

В этот период создаются условия для удаления из металла серы, что объясняется высоким (до 55…60 %) содержанием СаО в шлаке, низким (менее 0,5 %) содержанием FеО и высокой температурой металла. Для определения химического состава металла берут пробы и при необходимости в печь вводят ферросплавы для получения заданного химического состава металла, после чего выполняют конечное раскисление стали алюминием и силикокальцием и выпускают металл из печи в ковш. При выплавке легированных сталей в дуговых печах в сталь вводят легирующие элементы в виде ферросплавов. Порядок ввода определяется сродством легирующих элементов к кислороду. В дуговых печах выплавляют высококачественные углеродистые стали — конструкционные, инструментальные, жаропрочные и жаростойкие.

Преимущества дуговых электропечей.

1. Возможность получения самых высококачественных сталей и тугоплавких сплавов с минимальным количеством газов, вредных примесей неметаллических включений.

2. Гибкость работы при всех режимах и характерах производства, с использованием твёрдой и жидкой завалки с любым количеством дешевого стального лома.

3. Самый маленький угар металла и особенно легирующих примесей по сравнению со всеми плавильными агрегатами.

4. Простота устройства, компактность, лёгкость обслуживания и относительная дешевизна печей.

Основным недостатком дуговых печей является науглероживание стали углеродом электродов, поэтому выплавлять стали с очень низким содержанием углерода нельзя.

Расчет шихты для выплавки стали в дуговой печи по классической технологии

Ознакомление с химическим составом шихтовых материалов и готовой стали. Определение веса углеродистого лома в завалке и состава шлака окислительного периода. Характеристика химического состава шлака окислительного периода, а также готового металла.

РубрикаПроизводство и технологии
Видметодичка
Языкрусский
Дата добавления01.03.2015
Размер файла232,6 K
  • посмотреть текст работы
  • скачать работу можно здесь
  • полная информация о работе
  • весь список подобных работ

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Размещено на http://www.allbest.ru/

Размещено на http://www.allbest.ru/

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ

Государственное образовательное учреждение высшего профессионального образования

«НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ

ТОМСКИЙ ПОЛИТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

ЮРГИНСКИЙ ТЕХНОЛОГИЧЕСКИЙ ИНСТИТУТ

Методические указания к выполнению курсовой работы по дисциплине «Электрометаллургия стали и ферросплавов»

для студентов специальности 150101 «Металлургия черных металлов» очной и заочной форм обучения

РАСЧЕТ ШИХТЫ ДЛЯ ВЫПЛАВКИ СТАЛИ В ДУГОВОЙ ПЕЧИ ПО КЛАССИЧЕСКОЙ ТЕХНОЛОГИИ

Издательство Юргинского технологического института (филиала)

Томского политехнического университета 2010

Расчет шихты для выплавки стали в дуговой печи по классической технологии: методические указания к выполнению курсовой работы по дисциплине «Электрометаллургия стали и ферросплавов» для студентов специальности 150101 «Металлургия черных металлов»/ Сост. И.С. Сулимова — Юрга: Издательство Юргинского технологического института (филиала) Томского политехнического университета, 2010. — 35 с.

Рецензент, Кандидат технич. наук, доцент Р.А. Гизатулин

Методические указания рассмотрены и рекомендованы к изданию методическим семинаром кафедры МЧМ ЮТИ ТПУ ?12? ноября2009 г.

Зав. кафедрой МЧМ канд. техн. Наук А.А. Сапрыкин

Содержание

1. Порядок выполнения курсовой работы

2. Состав и содержание курсовой работы

3. Оформление расчетно-пояснительной записки

4. Пример расчета шихты для выплавки стали марки 40ХН2МА

4.1 Исходные данные

4.2 Расчет составляющих завалки

4.3 Период расплавления и окислительный период

4.4 Определение состава шлака окислительного периода

4.5 Определение расхода извести, кварцита и железной руды

4.6 Восстановительный период плавки

4.7 Определение количества раскислителей и легирующих

4.8 Определение состава готового металла

4.9 Определение расхода шихтовых материалов на выплавку 1 т стали

Введение

При выполнении курсовой работы, студенты расширяют и углубляют теоретические знания по дисциплине «Электрометаллургия стали и ферросплавов», приобретают и развивают навыки в изучении и критическом анализе литературы по специальным вопросам, выполнении металлургических расчетов. Курсовая работа является завершающим этапом в изучении курса «Электрометаллургия стали и ферросплавов».

1. Порядок выполнения курсовой работы

При выполнении курсовой работы студентам рекомендуется придерживаться следующей схемы.

– Ознакомление с содержанием методических указаний.

– Подбор литературы, необходимой для выполнения работы. -Выбор и переработка материла по литературе, относящейся к отдельным разделам курсовой работы.

– Проведение расчетов по схеме, изложенной в методических указаниях. — Регулярный отчет (не реже 1 раза в неделю) о проделанной работе перед руководителем.

Задание на курсовую работу составляется руководителем, утверждается заведующим кафедрой и выдается в начале семестра. Сроки сдачи курсовой работы определяются руководителем.

2. Состав и содержание курсовой работы

Курсовая работа состоит из расчетно-пояснительной записки, содержащей следующие разделы:

Введение. Во введение оценивается значение электрометаллургии стали и ферросплавов для развития автопромышленности, судостроительства, направление и перспективы развития электрометаллургии стали и ферросплавов.

Аналитический обзор. В аналитическом обзоре описываются свойства, область применения и дефекты заданной марки стали, рассматриваются возможные технологические схемы ее выплавки и разливки. Указываются требования к шихтовым материалам.

Разработка технологии. При разработке технологии студенты, опираясь на материалы аналитического обзора, обосновывают выбор технологической схемы производства и описывают основные этапы технологии производства — заправку печи, загрузку шихты, период плавления, окислительный период, восстановительный период, выпуск стали, разливку.

Расчетная часть. При выполнении расчета шихты следует пользоваться предлагаемыми методическими указаниями. Все величины, принимаемые в расчетах, должны быть строго обоснованы (основность, состав шлака, коэффициенты усвоения элементов, коэффициенты распределения серы и др.), необходимо указать литературные источники, из которых взяты данные величины. Расчет шихты включает в себя:

1) расчет составляющих завалки;

2) расчет количества шлакообразуюших и определение состава шлака окислительного периода;

3) расчет количества окислителей и определение состава металла конца окислительного периода;

4) расчет количества и состава шлака восстановительного периода;

5) расчет количества требуемых раскислителей и легирующих;

6) определение состава готового металла;

7) расчет удельного расхода шихтовых материалов. Необходимые справочные данные приведены в приложении.

3. Оформление расчетно-пояснительной записки

Содержание расчетно-пояснительной записки должно полностью отражать вопросы, рассмотренные в предыдущем разделе. Текст задания на курсовую работу прилагается к расчетно-пояснительной записке.

Рекомендуется следующее размещение материла:

1) титульный лист;

2) задание на курсовую работу,

5) аналитический обзор;

6) разработка технологии;

7) расчетная часть;

8) список использованных источников.

Оформление курсовой работы должно соответствовать методическим указаниям по соблюдению стандартов при выполнении курсовых и дипломных проектов (работ) [1].

Законченную работу студент сдает руководителю, который после ознакомления с ней назначает дату защиты. Студент защищает курсовую работу в комиссии, в которую кроме руководителя входят 1-2 преподавателя кафедры. Защита открытая, с участием студентов, как своей группы, так и студентов других курсов. шихтовый металл сталь шлак

Качество выполнения курсовой работы и его защита оцениваются по пятибалльной системе.

4. Пример расчета шихты для выплавки стали марки 12Х2Н4А

4.1 Исходные данные

Расчет материального баланса производится на 100 кг шихты (углеродистый лом + кокс + никель ). Никель, молибден обладают меньшим сродством к кислороду, чем железо, поэтому их обычно задают в печь в составе металлической завалки.

Химический состав углеродистого лома, кокса, никеля, ферромолибдена и готовой стали приведен в таблице 1.

Таблица 1 Химический состав шихтовых материалов и готовой стали

Составление и примерный расчет шихты и добавок

Перечень подлежащих завалке в печь шихтовых материалов с указанием их количества, определяемых в зависимости от марки выплавляемой стали, называется шихтовкой плавки. Шихтовку составляют заранее, расчетным путем, сообразуясь с требованиями технологической инструкции и наличием тех или иных материалов на шихтовом дворе цеха.

Для составления шихтовки необходимо знать точный химический состав всех компонентов шихты, а также плановые нормы расхода материалов — легированных отходов, стального лома, ферросплавов, мягкого железа, чугуна и т. д. Помимо химического состава при составлении шихтовки, учитывают габаритность и качество материалов, используемых для электроплавки. Если в шихту попадает большое количество ржавого скрапа, то учесть заранее угар металла трудно. Это осложняет попадание в анализ, приводит к значительным колебаниям в массе плавки, к снижению выхода годного металла вследствие образования недоливков.

Приступая к расчету шихтовки, необходимо располагать следующими сведениями: 1) о массе металлической садки; 2) о химическом составе стали заданной марки; 3) о концентрациях элементов, на которые следует ориентироваться при расчете; 4) о химическом составе шихтовых материалов и легирующих. Сделаем примерный расчет шихтовки для выплавки конструкционной стали марки 20XН3A п основной дуговой печи емкостью 25 г с полным окислением. В готовом металле этой марки должно содержаться: 0,17—0,25% С; 0,30—0,60% Mn; 0,17—0,37% Si; 0,60-0,90% Cr; 2,75-3,25% Ni; 0,035% Р; 0,030% S.

Читать еще:  Защита от ржавчины на металле в домашних условиях

В соответствии с требованиями технологической инструкции содержание углерода в ванне по расплавлении металла должно быть в данном случае не ниже 0,65%. Содержание хрома в этот момент не должно превышать 0,50%, так как при более высокой его концентрации ванна кипит вяло, пока не окислится избыточный хром. Перед началом окислительного периода содержание марганца в ванне может достигать 0,5—0,8%, поскольку по ходу кипения его концентрацию в металле обычно не снижают при выплавке низкоуглеродистых конструкционных сталей ниже 0,2%. Содержание никеля в шихте не должно быть выше нижнего предела заданного содержания этого элемента в готовой стали. Так как плавка ведется с полным окислением, можно использовать достаточно дешевые рядовые шихтовые материалы с относительно высоким содержанием фосфора. Желательно, однако, чтобы концентрация фосфора в металле по расплавлении не превышала 0,05%. Чтобы не затягивать восстановительный период плавки, содержание серы в расплавленной ванне также обычно ограничивают 0,05%. Итак, по расплавлении шихты металлическая ванна должна иметь следующий состав; 0,65—0,75% С; 0,5—0,8% Mn; <0,5% Cr; <2,7% Ni; <0,05% S; <0,05% Р.

Шихта составляется из собственных никельсодержащих отходов, стального железнодорожного лома (рельсов), углеродистой мелочи и передельного чугуна. Состав этих материалов приведен в табл. 21.

Доля хромоникелевых отходов не превышает 50%; доля чугуна, вводимого в шихту для получения необходимого содержания углерода в металле по расплавлении, ограничивается 10%. В остальном шихта состоит из железнодорожного лома и углеродистой мелочи.

Определив таким образом состав шихты в соответствии с экономически и технически обоснованными нормами расхода ее отдельных составляющих, можно подсчитать количество чугуна, которое необходимо добавить в завалку. При этом угар углерода в процессе плавления шихты обычно не учитывается, так как он компенсируется, во-первых, науглероживанием металла электродами и, во-вторых, уменьшением массы металлической части шихты вследствие окисления и испарения железа и легирующих элементов во время плавления.

Различные составляющие шихты внесут углерода:

а) хромоникелевые отходы (50% от массы завалки, т. е. 12,5 т)

Недостающее количество углерода, которое приходится вводить чугуном, составляет 175—85 = 90 кг. При содержании углерода в чугуне 3,6% потребуется чугуна 90*100/3,6 = 2500 кг.

Полученная в результате сделанных выше расчетов шихтовка выглядит так, т:

Далее необходимо провести расчет полученной шихтовки по остальным составляющим.

Различные составляющие шихты внесут марганца:

а) хромоникелевые отходы: 12500*0,5/100 = 62,5 кг;

б) железнодорожный лом: 5000*0,6/100 = 30 кг;

в) углеродистая мелочь: 5000*0,2/100 = 10 кг;

г) чугун: 2500*2,0/100 = 50 кг.

Суммарное содержание марганца в шихте составит: 62,5+30+10+50 = 152,5 кг.

Угар марганца за период плавления можно принять равным 20%. При этом к началу окислительного периода в ванне останется

и концентрация марганца в жидком металле составит 120*100/25000 =0,48%.

Чтобы концентрация марганца перед началом окислительного периода равнялась 0,6%, в шихту добавляют взамен чугуна углеродистый ферромарганец, содержащий около 6% С и 80% Mn. Если степень усвоения марганца из ферромарганца также равна 80%, то недостающее количество ферромарганца (0,60 — 0,48 = 0,12%) составит

Различные составляющие шихты внесут никеля:

а) хромоникелевые отходы: 12500*3/100 = 375 кг;

о) железнодорожным лом: 5000*0,05/100 = 2,5 кг

в) углеродистая мелочь: 5000*0,15/100 = 7,5 кг.

Суммарное содержание никеля в шихте составит 375+7,5+2,5 = 385 кг.

В процессе плавления металлической шихты около 3% Ni испаряется в зоне горения электрических дуг, так что к началу окислительного периода в ванне останется

Что касается хрома, фосфора и серы, то, судя по составу металлических компонентов шихты, содержание этих элементов в металле по расплавлении не превысит оговоренных в начале концентраций.

Практически окончательную шихтовку для плавки стали 20ХНЗА с полным окислением в печи емкостью 25 т задают в следующем виде, кг:

Процесс дуговой плавки металла: производство стали в электрических печах

Дуговая плавка металла в электрических печах является самым совершенным способом ее производства. Угар металла и, особенно, легирующих элементов при выплавке стали в электрических печах значительно меньше, чем при других способах ее производства. В электрических печах можно выплавлять стали высочайшего качества, поэтому в наше время в них выплавляют большинство марок легированных сталей.

Исходные материалы для плавки стали в электрических печах такие:

  • стальной лом,
  • чугун,
  • железная руда,
  • флюсы,
  • раскислители,
  • ферросплавы.

Основной вид сырья — это лом углеродистых и легированных сталей. Чугун составляет 5-10% всей шихты. Железную руду используют ограничено — для окисления примесей в металле. Как флюс в основных печах применяется свежее выпаленная известь, а в кислых — кварцевый песок. Раскислители и ферросплавы применяют такие же, как и при производстве стали в мартеновских печах.

  1. Строение электрических печей для плавки металла
  2. Технология плавки стали в основной дуговой электропечи
  3. Вакуумно-дуговая, плазмо-дуговая и электронно-лучевая переплавка

Строение электрических печей для плавки металла

Электродуговая плавка металла производится в электропечи вместимостью от 0,5 до 200 т. Разрабатываются печи на 300 и 400 т. Принципиальная схема устройства дуговой электрической печи показана на рис. 1.

Корпус печи имеет форму цилиндра со сферическим или плоским днищем. Внешне он имеет защитный кожух из стального листа толщиной 10…40 мм, внутренняя поверхность футерована основными или кислыми огнеупорами. Угольные или графитовые электроды пропускаются через отверстия в своде печи. В стенке корпуса имеется рабочее окно, через которое сливают шлак, загружают ферросплавы, отбирают пробы металла.

Применяют два типа сталеплавильных электропечей: дуговые, и индукционные высокой частоты. Дуговые печи, в которых шихтовые материалы расплавляются теплом электрической дуги, наиболее распространенные благодаря высокому коэффициенту полезного действия, возможности выплавлять в них стали различных марок, простоте строения и удобства обслуживания.

Футеруют печи основными или кислыми огнеупорными материалами. Более распространены печи с основной футеровкой, так как в них можно удалять из жидких сталей серу и фосфор. Современные электродуговые печи оборудованы специальными устройствами, чтобы подводить кислород, используемый для окисления примесей во время плавления стали.

Технология плавки стали в основной дуговой электропечи

В зависимости от состава шихты в электрических печах с основной футеровкой можно плавить сталь тремя методами:

  • с полным окислением примесей,
  • с частичным их окислением,
  • без окисления.

Первые два метода плавления применяют для плавления высококачественной стали, если нет сырьевых материалов с нужным содержанием углерода и вредных примесей. За первым методом плавления удаляют вредные примеси и газы и уменьшают содержание углерода вследствие интенсивного кипения металла. По второму методу интенсивного кипения не допускают, а снижают содержание углерода и фосфора присадкой железной руды. Плавка без окисления, или метод переплавки, широко применяют, переделывая собственные отходы металлургического производства и особенно отходы легированных сталей, состав которых соответствует составу выплавляемой стали. Чтобы снизить содержание углерода в металл вводят отходы низкоуглеродистой стали.

Особенности процесса плавления первыми двумя методами заключаются в следующем. При повышении температуры начинается выгорание углерода, то есть период кипения металла, скорость которого регулируют периодическим добавлением железной руды. После достижения нужного содержания углерода и фосфора, кипение прекращают, скачивают окислительный шлак и приступают к раскислению металла, которое ведут диффузионным методом, то есть через шлак. Реакции раскисления происходят в шлаке и на поверхности, которая разделяет шлак и металл, через что продукты процесса почти не проникают в металл. В этом отличие и преимущество раскисления стали в электропечах над процессом производства стали в конвертерах, где раскислители погружают непосредственно в металл и продукты раскисления в значительном количестве остаются в нем в виде неметаллических включений.

Иногда раскисления металла ведут под слоем карбидного шлака, для чего в печь загружают смесь, состоящую из извести, плавикового шпата и молотого кокса. В зоне горения электродуги в смеси образуется 2-5% карбида кальция СаС2. Этот шлак имеет сильную восстановительную способность, чем белый.

Если в электропечи является восстановительная атмосфера и белый или карбидный шлак, то при высокой температуре происходит интенсивное удаление серы при невозвратной реакции FеS + СаО + С = Fе + СаЅ + СО-Q.

Завершают раскисления стали за 2-3 мин до выпуска, вводя 0,4—1 кг/т алюминия. При плавке легированных сталей для доведения до заданного химического состава в раскисленный металл вводят легирующие ферросплавы.

Дуговая плавка металла в кислых дуговых электропечах по сравнению с плавлением ее в основных печах имеет следующие преимущества:

  • более высокую производительность;
  • в 2,5-3,0 раза большую устойчивость и в столько же раз меньшую стоимость футеровки;
  • на 30 — 40% меньшие затраты энергии и электродов;
  • меньшие потери легирующих элементов;
  • ниже стоимость переработки.

Недостатком является большой расход электроэнергии.

Однако кислый процесс не приобрел большого распространение для плавки высококачественных сталей и конечно применяется в производстве фасонного стального литья.

Объясняется это тем, что при плавлении высококачественной стали предъявляются высокие требования к содержанию фосфора и серы в шихтовых материалах. В кислых электропечах примеси окисляются окалиной и ржавчиной на кусках шихты, а во время плавления окислением — железной рудой, которую вводят. Раскисляют сталь так, как в кислой мартеновской печи, или диффузионным способом. Диффузионное раскисление ведут при плавлении стали повышенного качества, применяя предварительное скачивание окислительного шлака и наведение нового — из ферромарганца, песка, шамотного боя и молотого ферросилиция, кокса или древесного угля.

Вакуумно-дуговая, плазмо-дуговая и электронно-лучевая переплавка

Вакуумно-дуговую переплавку (ВДП) проводят в вакуумных дуговых печах с электродом 6, что переплавляется (рис. 4, б), при этом слиток 3 образуется, как и в охлаждаемом водой кристаллизаторе 2. В корпусе 7 печи поддерживается вакуум около 1,5 Па, что способствует качественному очищению металла от газов, а направлена кристаллизация обеспечивает удаление неметаллических примесей, образование плотной структуры и исключает образование усадочной раковины. Вместимость печей для ВДП достигает 60 т.

  • а — электрошлаковая;
  • б — вакуумно-дуговая;
  • в – плазмо-дуговая;
  • г — электронно-лучевая;
  1. — охлаждаемый водой поддон;
  2. — кристаллизатор;
  3. — слиток;
  4. — металлическая ванна;
  5. — расплавленный шлак;
  6. — заготовка (электрод);
  7. — вакуумная камера;
  8. — плазмотрон;
  9. — электронная пушка;
  10. — устройство для извлечения слитка.

Плазмо-дуговую переплавку (ПДП) применяют для производства сталей и сплавов особо высокой чистоты. Источником нагрева является плазменная дуга с температурой 10 000-15 000 °С (рис. 4, в).

Переплавка производится в вакуумных установках, подобных тем, что используются для ПДП при остаточном давлении 0,001 Па (рис. 4, г).

Что такое шихта? Виды шихты, состав и назначение

Определение, что такое шихта из чего она состоит заключается в следующей формулировке. Шихта – это комплекс минералов, загружаемых внутрь доменной печи или другого высокотемпературного оборудования, для получения конечных продуктов заданного химического состава и свойств.

Можно также сказать, что шихта – это подготовленный к переплавке лом (если речь идет о металлургии). А вот понятие состав шихты носит обобщенный характер и зависит от специфики продукта, выплавляемого из прекурсора. В частности, состав шихты в металлургии это:

  • обогащенная руда;
  • концентрат;
  • флюс;
  • оборотные материалы – шлаки, съемы, а также пыль.

Дополнительно, шихта, используемая в черной металлургии, содержит в своем составе топливо: кокс или уголь. Производство цветных металлов, наоборот, обходится без топливных компонентов.

На фото угольная шихта – специальная смесь определенных марок угля, подготовленная для производства кокса

Металлизированная и металлическая шихта

Использование прекурсора конкретного состава сказывается на свойствах конечного продукта, как было указано ранее. Например, в сталеплавильном производстве, нередко используют метализированную шихту. Сталь, полученная на ее основе, превосходит метал из скрапа стабильностью состава и существенно пониженным содержанием примесей. В частности, удается снизить вдвое концентрацию таких вредных для стали элементов, как сера и фосфор, увеличивающих хрупкость металла. Получают металлизированную шихту восстановлением железной руды углеродом или газом при температуре меньшей точки плавления железа.

Альтернативно, в мартеновскую печь загружают металлическую шихту. Ее основу составляют:

  • чугун – твердый или жидкий;
  • стальной лом.

Важно чтобы марка металлолома соответствовала выплавляемому продукту. Если в производстве стали задействовано большое количество жидкого чугуна, в состав шихты требуется ввести окислители. Это может быть специальный мартеновский агломерат, например. Также в роли оксилителя выступают: железная руда или окатыши.

Сталеплавильное производство

Рассмотренная ранее металлическая шихта – один из четверки компонентов прекурсора для производства стали. Также туда входят:

  • флюс – шлакообразующие вещества;
  • окислители;
  • дополнительные составляющие – раскислители, науглероживатели и легирующие добавки.

Подобный состав шихты литья 40гмфр – высокопрочной конструкционной стали и других марок этого металла. Дополнительно, в состав входят флюсы или плавни. Это шлакообразующие вещества, под которые, выполняя расчет шихты для стали необходимо учитывать тип футеровки печи:

  1. Кислая. Под такую мартеновскую печь шлакообразующими веществами могут быть кварцевый песок, а также битый кирпич – шамотный или динасовый – см. лом огнеупоров.
  2. Основная. Тут в качестве флюса выступает, боксит, известняк или плавиковый шпат.

Так выглядит флюсовый известняк

Под окислители используют кислородсодержащие материалы: железная руда, специальные агломераты, а также окалина. Их задача катализировать окислительные процессы. Альтернативно, интенсифицировать окисление позволяет продувка металла кислородом в газообразном состоянии.

Соответственно, класс науглероживателей образуют углеродсодержащие материалы. Они могут использоваться как на стадии приготовления шихты, так и вводиться непосредственно в жидкий металл. Этот, преимущественно кокс, а также лом электродов. Важное качество науглероживателя – чистота по вредным примесям. Особенно это относится к содержанию серы и золы.

Раскислителями в подготовке шихты выступают ферросплавы, а также металлический хром, алюминий, марганец и прочие элементы.

На видео – Участок подготовки шихты

Шихта в производстве цветных металлов

Переработка алюминиевого лома в шихту

Материалы под плавку алюминиевых сплавов, например, отбираются соответственно стандартам: ГОСТ 11069-74 и ГОСТ 1583-93. Согласно документам, состав шихты ал5 ак5м марок металла включает:

  • первичный алюминий и его литейные сплавы в чушках;
  • возврат, лом;
  • лигатуры.

Содержание Al в первичном алюминии составляет 99.x%, где x – цифра в марке. Так для сорта А0 концентрация 99.0%, А7 – 99.7%. Основными компонентами, наряду с алюминием в чушках отлива для шихты выступают кремний, магний, марганец и медь.

Шихта для коксования

Это фактически смесь измельченного угля различных марок. Их соотношение определяется конечным продуктом, а именно коксом заданного качества. Оптимальный состав шихты для коксования подбирается по техническому анализу сырья и ряду его характеристик:

  • спекаемость;
  • коксуемость;
  • конечная усадка;
  • давление распирания и прочие.

Оптимальная шихта редко остается строго фиксированной по составу. Это видно на примере получения металлургического кокса. Тут, под уголь кс в шихте для коксования отводится 10 – 15%. Еще 2 – 4% приходится на спекающуюся добавку. Остальной состав включает такие сорта угля:

  • газовый – 45 – 55%;
  • жирный – 17 – 25%;
  • отощенно-спекающийся – остальное.
Читать еще:  Как закалить лезвие ножа в домашних условиях

На сегодня, подобный состав характеризуется недостаточной коксуемостью. Оптимизировать спекаемость позволяет ввод органических добавок – каменноугольного пека, например.

Стекольная шихта

Данный прекурсор представляет смесь, включающую одновременно сыпучие и жидкие компоненты, а также микродобавки. Отличается шихта для стекла исключительными требованиями к дозировке составляющих, а также однородности химического и гранулометрического состава. Среди элементов, входящих в состав шихты могут присутствовать:

  • измельченный бой стекла;
  • песок;
  • сода;
  • мел;
  • селитра;
  • полевой шпат;
  • глинозем;
  • доломит.

Это только сыпучие компоненты. Жидкими составляющими стекольной шихты выступают вода или мазут. В качестве микродобавок применяют оксид кобальта, селен. Их вводят, как заранее подготовленную смесь с наполнителем.

Стекольная шихта для производства хрусталя

Отдельно стоит рассмотреть оборудование для загрузки стекольной шихты. Оно представляет целую станцию, состоящую из ряда узлов:

  • конусная приемная воронка с уплотнителем;
  • комплекс для разрезания мешка – удерживающая решетка и нож;
  • вибратор, обеспечивающий дебалансировку;
  • подъемно-транспротный конвейер;
  • завалочная машина.

Когда загрузчик полностью заполнен, шихта переводится в карманный отдел плавильной печи.

Посмотрите интересное видео о том, как производят стекло:

Шихта для производства хрома

Прекурсор используется в производстве металлического Cr. Составными материалами выступают:

  • концентрат и окись хрома;
  • натриевая селитра;
  • порошок из первичного Al.

Аналогично этому составляется шихта для плавки ферросплавов фнх или азотированного феррохрома. Дополнительным ее компонентом выступает хромистый шлак. Материал измельчают до фракции 0.3 – 0.8 мм и применяют как балласт при выплавке.

Флюс под такую шихту выбирается на основе трех условий:

  • повышение активности окиси хрома, способствующее его извлечению;
  • снижение вязкости глинозема;
  • улучшение кинетики процесса.

Этим требованиям соответствует известь, с содержанием СаО более 90%. Ее предварительно измельчают до фракции 3 мм.

Чем опасна для организма шихта

Основным источником негативного воздействия на здоровье человека выступает SiO2. Двуокись кремния – это кварцевый песок, выступающий базовым компонентом стекольной шихты. Наибольшую опасность в производстве стекла представляют операции с высокой запыленностью: сушка, дробление и просев. Уровень пыли в них достигает 50, а при ручном просеве 100 мг/м 3 . Сама пыль не так страшна, как опасна свободная двуокись кремния. Она составляет 75% пылевой завесы и способна вызывать силикоз у рабочих.

Также работа с шихтой связана с риском – нужно строго соблюдать технологию подготовки шихты, а также требуется надзор техники безопасности. Что бывает, когда такой контроль ослабевает смотрите на видео.

Видео – взрыв печки при неправильной загрузке шихты:

Шихтовые материалы для получения стали в дуговых печах

Шихтовые материалы

Для получения стали в электропечах необходимы следующие шихтовые материалы: металлическая часть, шлакообразующие, окис­лители, добавочные материалы (раскислители и легирующие) и науглероживатели.

Металлическая часть

Основу шихты для электро­печей составляет металлический лом: на одну тонну выплавляемой в электропечах стали в среднем расходуется около 950 кг лома. Примерно треть этого количества составляют брак, литейные от­ходы, обрезь слитков, отходы при прокатке и ковке, а также стружка от обдирки слитков, т. е. собственные отходы металлургических за­водов. Остальная часть складывается из отходов, возвращаемых заводами-потребителями, направляемого в переплав изношенного и устаревшего оборудования и инструмента и лома, собранного отделениями Вторчермета. Кроме того, в ограниченных количествах используется специально выплавляемая шихтовая заготовка — мяг­кое железо, а также передельный чугун и металлизованные ока­тыши.

Металлический лом делится на две категории: группа нелегиро­ванных (А) и легированных (Б) отходов.

Нелегированный (углеродистый) лом не должен быть загрязнен цветными металлами (свинцом, цинком, оловом и др.), особенно ни­келем, медью и мышьяком, которые практически полностью пере­ходят из шихты в металл и могут оказать существенное влияние на его свойства. Нежелательно также, чтобы в углеродистых отходах содержалось фосфора более 0,05%, так как удаление таких коли­честв фосфора потребует продолжительного окислительного периода.

Поэтому металлический лом должен быть освобожден от лома цвет­ных металлов и рассортирован по происхождению. Знание проис­хождения лома позволяет примерно оценить его состав и более пра­вильно использовать его.

На заводах качественных сталей в электросталеплавильных цехах выплавляют сотни различных марок легированной стали. Часть из них содержит элементы, не поддающиеся окислению и трудно уда­ляемые при пользовании обычными процессами. Отходы, содержащие такие элементы, могут быть использованы при выплавке стали опре­деленного сортамента. Отходы легированных сталей должны быть рассортированы в группы, близкие по составу марок, и храниться отдельно от других отходов. Отходы некоторых наиболее сложно ле­гированных марок следует хранить помарочно.

Металлический лом должен иметь определенные габариты. Мел­кий лом, как правило, более окислен, замусорен и загрязнен маслом. Значительная окисленность лома не позволяет точно оценить долю угара металла, что чревато непопаданием в заданный химический состав готовой плавки. Разложение в зоне дуг ржавчины (гидрата окиси железа) и масла приводит к появлению в атмосфере печи ато­марного водорода, интенсивно поглощаемого металлом.

Малая насыпная масса мелкого лома не позволяет завалить в печь всю шихту в один прием, вследствие чего, после расплавления первой порции шихты, приходится осуществлять подвалку. Это снижает производительность печи и увеличивает потери тепла.

Особые заботы доставляет переплав стружки. Длинная витая стружка затрудняет загрузку; как правило, она сильно загрязнена маслом и уже на месте получения смешивается с отходами стали дру­гих марок, а часто и со стружкой цветных металлов. По этим при­чинам стружку следует переплавлять на заводах Вторчермета и элек­тросталеплавильным цехам поставлять изготовленные из нее пас­портные болванки с известным химическим составом. Стружка, по­ставляемая непосредственно в электросталеплавильные цеха, должна быть спрессована и обожжена. Дополнительные затраты на под­готовку стружки вполне окупаются экономией, получаемой при ис­пользовании доброкачественной шихты.

Нежелательно, чтобы в шихте были чрезмерно крупные куски — бракованные слитки, недоливки и т. п. В дуговой печи можно рас­плавлять крупногабаритный лом, но продолжительность плавления при этом увеличивается, длительное время приходится работать на высокой мощности, что отрицательно сказывается на стойкости фу­теровки. По этой причине максимальная масса отдельных кусков не должна превышать одной пятидесятой массы всей садки.

Для производства стали некоторых марок в состав шихты вводят специально выплавленную предварительно заготовку. Чаще всего она по своему составу представляет собой низкоуглеродистую сталь с ограниченным содержанием углерода, фосфора и серы, т. е. мягкое железо, полученное методом плавки на свежей шихте.

Мягкое железо должно быть в менее крупных кусках, чем леги­рованные отходы, так как в связи с низким содержанием углерода оно плавится при более высокой температуре. Поэтому слитки мяг­кого железа прокатывают на заготовку, которую затем рубят на куски определенного размера.

Мягкое железо намного дороже углеродистого лома и его исполь­зование отрицательно сказывается на себестоимости стали. Исполь­зование в шихте мягкого железа может быть оправдано только серьез­ными технологическими затруднениями выплавки стали нужной марки.

Следует отметить, что для электропечной плавки характерен постоянно наблюдаемый недостаток качественного лома. В связи с этим в течение длительного времени изыскивают материалы, ко­торые могли бы заменить лом. В частности, неоднократно предпри­нимались попытки заменить часть лома передельным чугуном. Однако все эти попытки заканчивались, как правило, неудачно.

Передел чугуна в сталь заключается в окислении находящихся в нем в избыточных количествах углерода, кремния, фосфора. Элек­тропечи, плохо приспособлены для про­ведения окислительных процессов, поэтому использование их для передела значительного количества чугуна нецелесообразно.

Обнадеживающие результаты получены при использовании в шихте электропечей полупродукта — предварительно продутого в реакторе чугуна. Однако появление и совершенствование кисло­родно-конвертерного процесса сделали более целесообразным пере­работку чугуна в сталь монопроцессом в конвертере. В последние годы проводятся интенсивные всесторонние исследо­вания плавки стали в электропечах с использованием высокометаллизированных окатышей (90—95% общ, 85—90% мет). По­строены промышленные комплексы для работы с непрерывной за­грузкой окатышей в дуговую печь и с непрерывной разливкой ме­талла. Использование чистых по сере, фосфору и сопутствующим примесям металлизованных окатышей позволяет при обычном качестве шихты выплавлять, применяя этот процесс, качественные стали.

Плавка металлизированных окатышей в электропечах (бездоменный процесс) при успешном решении проблемы эффективного вос­становления окатышей может оказаться более эффективной по всем показателям, чем выплавка стали из чугуна в конвертерах.

Шлакообразующие

При выплавке стали в основных дуговых печах для образования основного шлака используют из­весть, известняк, плавиковый шпат, шамотный бой и песок. В кислых печах шлак наводят из песка, шамотного боя и извести.

Наиболее важной составляющей шлаковых смесей является из­весть, которую получают обжигом известняка в шахтных печах при температуре 1100— 1300°С. При обжиге углекислый кальций из­ вестняка разлагается на окись кальция и углекислый газ СаС03 → CaO + СО2.

Химический состав обожженной извести приведен в таблице 1.

Содержание серы в известняке в большинстве случаев низкое, однако оно возрастает после обжига за счет серы топлива. Повышенное со­держание серы в шлаке затрудняет процесс десульфурации металла.

Содержание других окислов в извести ограничивают по следующим соображениям: кремнезема, чтобы при заданной основности шлака количество его было меньше; окиси магния, чтобы шлак был более жидкотекучим и активным; окислов железа, чтобы не затруднять процесс десульфурации.

Для выплавки высококачественной стали используют только свежеобожженную известь. При хранении известь интенсивно погло­щает влагу из воздуха с образованием гидроокиси кальция [СаО + Н2О → Са (ОН)2], которая рассыпается в порошок. Влага, вне­сенная известью, в печи разлагается на кислород и водород, вызывая обогащение стали водородом. Поэтому применение пылеватой из­вести, так называемой «пушонки», в электропечах совершенно не­ допустимо.

Вместо извести в окислительный период можно пользоваться не­ обожженным известняком. Применяют известняк, содержащий не менее 97% СаСО3 (не менее 54% СаО). Известняк не гигроскопичен, его можно длительное время хранить. Разложение углекислого кальция в электропечи вызывает выделение пузырьков СО2, которые обеспечивают перемешивание металла и шлака и способствуют дега­зации металла. Окислительный углекислый газ окисляет примеси в металле, в частности углерод.

Отрицательной стороной применения известняка вместо извести является дополнительная затрата электроэнергии на разложение карбоната кальция.

Для разжижения высокоосновных шлаков применяют плавико­вый шпат, песок и шамотный бой. Особенно сильно понижает его вязкость CaF2. К тому же использование CaF2 позволяет разжижать высокоосновные шлаки без уменьшения их основ­ности, что чрезвычайно важно для эффективного удаления серы.

Поэтому широкое применение для наводки шлака получил плавико­вый шпат, который в случае его использования при электроплавке должен содержать 90—95% CaF2, не более 3,0% SiO2 и не более 0,2 % S.

Песок также понижает температуру плавления основных шлаков, но при этом понижается и основность шлака. Поэтому в основных печах песок находит ограниченное применение, в то время как в кис­лых печах он является главным шлакообразующим материалом.

Основное требование, предъявляемое к песку, — высокое (минимум 95%) содержание SiO2.

При выплавке нержавеющих сталей и для разжижения густых магнезиальных шлаков иногда используют бой шамотных огнеупоров, содержащих примерно 60% SiO2 и 35% Аl2O3.

Окислители

Для интенсификации окислительных про­цессов в металл необходимо вводить кислород. Источниками кисло­рода служат железная руда, окалина и агломерат. Широкое распро­странение получила продувка металла газообразным кислородом.

Железную руду применяют при выплавке стали методом полного окисления. Присадка руды небольшими порциями обеспечивает дли­тельное равномерное кипение металла без повышения его темпера­туры, так как присаживаемая руда постоянно охлаждает металл. Это имеет особое значение для эффективного удаления фосфора.

Руду используют в завалку и в окислительный период. Руда, присаживаемая в окислительный период через шлак, должна быть в кусках определенного размера, желательно 50— 100 мм в диаметре.

Мелкая руда растворяется в шлаке, а крупные куски вызывают бурное вспенивание металла и шлака. Кроме соответствия требованиям, касающимся определенного раз­мера кусков, руда должна удовлетворять и требованиям по хими­ческому составу: в ней должно содержаться много окислов железа и мало кремнезема, серы и фосфора (таблица 1). Наиболее богатой яв­ляется криворожская руда, но в ней содержится довольно много фосфора и серы. Чистая по сере и фосфору бакальская руда харак­теризуется повышенным содержанием пустой породы, что вызывает понижение основности шлака, увеличение его количества и требует дополнительных затрат электроэнергии.

Иногда вместо руды используют заменители — агломерат и ока­лину от проката. Окалина от проката углеродистых сталей является наиболее чистым окислителем, но вследствие малого удельного веса она задерживается в шлаке. Необходимо учитывать также, что про­катная и кузнечная окалина может содержать легирующие элементы, которые целесообразно использовать.

Для интенсификации окисления углерода во время окислитель­ного периода плавки на свежей шихте, а также для быстрого повыше­ния температуры металла, окисления избыточного углерода и со­путствующих примесей при переплаве легированных отходов широко применяют продувку металла кислородом. Газообразный кислород чистотой около 99,5% подают в ванну под давлением 1—2 МПа (10— 12 ат).

Основное требование, предъявляемое к газообразному кислороду, низкое содержание влаги (не более 1 г/м 3 ). Поэтому перед продув­кой кислород должен быть осушен в специальных поглотителях влаги.

Раскислители и легирующие

Для раскисления стали и ее легирования раскислители и легирующие элементы при­меняют в чистом виде или в виде сплавов с железом или друг с дру­гом.

Наибольшее распространение для раскисления и легирования стали получили металлические алюминий, никель, хром, марганец, молибден, кобальт и титан, ферросплавы — ферросилиций, ферромарганец, феррохром, ферровольфрам, феррованадий, ферромолиб­ден, ферротитан, феррониобий, ферробор и другие, а также комплекс­ные сплавы— силикомарганец, силикокальций, силикоцирконий, силикоалюминий, сплавы алюминия, марганца и кремния, кремния, кальция и алюминия и другие.

Сплавы, применяемые в качестве раскислителей и легирующих, должны удовлетворять ряду требований:

  1. Содержание основного легирующего элемента в сплаве должно быть максимальным. При низком содержании легирующих элементов увеличивается масса присадки, что удлиняет время ее проплавления и ведет к увеличению расхода электроэнергии и снижению произво­дительности печи. Исключение составляют ферросплавы тугоплав­ких металлов — ферровольфрама и ферромолибдена, для более быстрого растворения которых желательно иметь более низкое их содержание в сплаве.
  2. Сплавы должны быть чистыми от вредных для стали примесей, шлаковых включений и газов. Это особенно важно, потому что значительную часть их присаживают в печь лишь к концу плавки, когда рафинирование ванны уже закончено.
  3. Куски сплавов должны быть определенного габарита. Наличие крупных кусков удлиняет время их растворения, затрудняет точ­ность взвешивания и может быть причиной повышенного расхода сплава.

Науглероживатели

К числу науглероживателей при­надлежат материалы, содержащие углерод и используемые для уве­личения содержания углерода в металле. Они входят либо в состав шихты, либо их вводят в жидкий металл. Для науглероживания в электросталеплавильных цехах используют главным образом кокс и электродный бой, в редких случаях (вследствие дефицита) — дре­весный уголь и сажу.

Основное требование, предъявляемое к науглероживателям, за­ключается в том, что они должны быть чистыми по вредным приме­сям (главным образом иметь низкое содержание серы) и вносить мало золы.

Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector