Rich--house.ru

Строительный журнал Rich—house.ru
8 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Сварка средне- и высокоуглеродистых сталей

Сварка высокоуглеродистых сталей

Высокоуглеродистыестали с содержанием углерода 0,48–0,70 %, как правило, не применяются для сварных конструкций как непригодные. Из этих сталей изготавливают различные детали, которые подвергаются наплавке для повышения износостойкости, как новые, так и при восстановлении (ремонтные), например валки прокатных станов, подкрановые колеса мостовых кранов и т. п.

Технология электросварки высокоуглеродистых сталей обязательно предусматривает предварительный подогрев до 350–400 °C, иногда сопутствующий подогрев и последующую термообработку. Сварку выполняют узкими валиками небольшими участками. Сварка при температуре окружающей среды ниже 5 °C и на сквозняках недопустима.

Определение марки стали довольно точно можно произвести по пучку искр, образующемуся при ее обработке на наждачном круге. Форма и длина нитей искр, цвет искр, форма пучка различны для разных марок стали:

● малоуглеродистая сталь – непрерывные соломенно-желтые нити искр с небольшим количеством звездочек на концах нитей;

● углеродистая сталь (с содержанием углерода около 0,5 %) – пучок светло-желтых нитей искр со звездочками;

● инструментальная сталь У7 – У10 – расходящийся пучок светло-желтых нитей с большим количеством звездочек;

● инструментальная сталь У12, У13 – плотный и короткий пучок искр с очень большим количеством «разветвленных» звездочек;

● инструментальная сталь с содержанием хрома – плотный пучок темно-красных нитей искр с большим количеством желтых звездочек; звездочки сильно «разветвленные»;

● быстрорежущая сталь с содержанием хрома и вольфрама – пучок прерывистых темно-красных нитей искр, на концах которых более светлые звездочки каплеобразной формы;

● пружинная сталь с содержанием кремния – широкий пучок темно-желтых искр с более светлыми звездочками на концах нитей;

● быстрорежущая сталь с содержанием кобальта – широкий пучок темно-желтых нитей искр без звездочек.

Газосваркой высокоуглеродистые стали плохо свариваются из-за образования трещин в закалочных структурах основного металла. Вид пламени – нормальное или слегка науглероживающее. Его тепловую мощность выбирают исходя из расхода ацетилена 75–90 дм3/ч на 1 мм толщины металла.

Сварку выполняют левым способом без поперечных колебаний мундштука горелки с применением флюсов и проволок тех же марок, что и при сварке среднеуглеродистых сталей. Обязателен подогрев до температуры 250–350 °C. После сварки рекомендуется проковка шва с последующей нормализацией или отпуском.

Сварка легированных сталей

Легированными называются стали, которые в своем составе содержат легирующие элементы, придающие сталям специальные свойства. Приобретая новые качества от легирования, они способны воспринимать высокие нагрузки, противостоять действиям агрессивных сред и высоких температур.

Технология сварки низколегированных сталей

Низколегированные стали содержат до 0,23 % углерода, легирующие добавки (до 2 %) и иногда называются сталями повышенной прочности. Низколегированные жаропрочные стали содержат легирующие элементы – молибден, вольфрам, ванадий.

Разработка марок легирующих сталей выполняется по принципу обеспечения хорошей свариваемости. Широкое применение имеют стали 09Г2, 09Г2С, 10ХСНД, 15ХСНД и многие другие.

Особенности сварки низколегированных сталей. Эти материалы ведут себя при сварке так же, как и низкоуглеродистая сталь, но имеются отличия при действии термических циклов.

1. Больше склонность к росту зерна в околошовной зоне, особенно при перегреве.

2. Больше склонность к подкалке при повышенных скоростях остывания.

3. Стойкость металла шва против образования горячих трещин ниже из-за наличия легирующих элементов.

4. Чувствительность к концентраторам напряжений и даже к тепловым «ожогам».

При электросварке низколегированные стали имеют незначительное отличие от низкоуглеродистых. Оно заключается в правильном выборе электродов, флюсов и присадочного электродного материала с учетом прочностных характеристик стали, а также в уменьшении погонной тепловой энергии при сварке.

Величина требуемой энергии выбирается по формуле

Qпог = Qэф/vсв = (0,24 × Iсв × Uд × ηд)/vсв,

где Qпог – погонная тепловая энергия (берется из таблиц) в кал/см, в среднем Qпог = 8000 / 23 000 кал/см в зависимости от марки свариваемой стали;

vсв – скорость сварки, м/ч;

Qэф – эффективная тепловая энергия;

Iсв – величина сварочного тока;

Uд – рабочее напряжение дуги;

0,24 – коэффициент перевода из электротехнических единиц в тепловые, кал/(Вт∙с).

Из формулы видно, что чем больше скорость сварки, тем меньшей мощности требуется погонная энергия.

Низколегированныежаропрочные стали сваривают в основном электродами или сплошной (специальной) сварочной проволокой в защитных газах – чаще в смесях аргона и углекислого газа (90/10 %). Электродные стержни применяют из сварочной проволоки Св12М (и ей подобных) с содержанием молибдена до 0,7 %.

При сварке жаропрочных сталей подогрев считается обязательным при толщине более 10 мм. При сварке жестких конструкций, например труб, подогрев до 200 °C считается совершенно необходимым.

При сварке хромомолибденовых сталей технологический процесс сложнее, так как после сварки необходима термообработка в виде нормализации и высокого отпуска. После термообработки жаропрочная сталь может находиться на уровне равнопрочности. Погонная энергия ограничена. Начало и конец шва должны быть на технологических планках, а не на изделии.

Сварку хромистых безникелевых нержавеющих сталей ведут на мягких тепловых режимах, с малой скоростью охлаждения сварного соединения. Для сварки применяют электроды с фтористо-калиевыми покрытиями. Сварку ведут на постоянном токе при обратной полярности. При сварке хромистых сталей большой толщины (10–15 мм) применяют предварительный и сопутствующий подогрев до 300–350 °C, а после сварки – отпуск при температуре 700–720 °C.

Хромистые и хромоникелевые стали очень чувствительны к нагреву. В интервале температур 400–900 °C в этих сталях происходит образование карбидов хрома – химического соединения хрома с углеродом. Поэтому содержание хрома уменьшается, сталь теряет антикоррозионные свойства. Хром способен легко окисляться, образовывая тугоплавкий шлак и затрудняя сварку. Хромистые и хромоникелевые стали имеют низкую теплопроводность, и этим объясняется их большая склонность к короблению. Поэтому сварка хромоникелевых сталей ведется так, чтобы не было перегрева основного металла и большого объема сварочной ванны.

Сварочный ток по возможности пониженный. Дуга короткая, сварка без поперечных колебательных движений, многослойными швами. Необходимо жестко закреплять детали, чтобы предотвратить коробление свариваемого изделия. Оптимальная скорость охлаждения хромоникелевых и в особенности хромистых сталей для создания благоприятной структуры шва и околошовной зоны должна составлять 3,0–5,0 °C в секунду. При этом пригодны любые технологические способы, способные тормозить скорость охлаждения.

При сварке сталей марок 03Х18Н9Т и 06X15Т толщиной до 2 мм применяют флюсы таких составов:

● 80 % плавикового шпата и 20 % ферротитана;

● 80 % буры и 20 % оксида кремния.

Флюс разводят в воде и в виде пасты наносят на кромки и обратную сторону шва за 15–20 мин до сварки.

Особенно важно в процессе сварки равномерно и симметрично распределять по всему изделию малыми дозами тепловложение от сварочной дуги, тогда не будет перегревов и деформаций. Порядок, последовательность и направление небольших по протяженности швов должны быть четко указаны в технологическом процессе.

При газовой сварке низколегированные строительные стали 10ХСНД и 15ХСНД обладают хорошей свариваемостью. Вид пламени – нормальное. Его тепловую мощность выбирают исходя из следующих значений расхода ацетилена на 1 мм толщины металла:

● при левом способе сварки – 75–100 дм3/ч;

● при правом – 100–130 дм3/ч.

Сварку осуществляют как левым, так и правым способами без флюса с применением в качестве присадочного материала сварочной проволоки марок Св-08, Св-08А и Св-10Г2.

Для улучшения механических свойств металла шва его проковывают при температуре светло-красного каления (800–850 °C), а затем осуществляют нормализацию.

Низколегированные теплоустойчивые стали (молибденовые 12М, 15М, 20М и 2MJI, хромомолибденовые – 12ХМ, 15ХМ, 20ХМ и 30ХМ) способны закаливаться на воздухе. При газосварке происходит выгорание хрома и молибдена.

Вид пламени – нормальное, расход ацетилена – 100 дм3/ч на 1 мм толщины металла.

Сварку проводят как левым, так и правым способами без применения флюса с использованием в качестве присадочного материала сварочной проволоки марок Св-08ХНМ, Св-10ХНМА, Св-18ХМА, Св-08ХМ и Св-10ХМ. Рекомендуется предварительный подогрев стыка до температуры 250–300 °C.

При толщине металла до 5 мм сварку осуществляют за один проход с минимально возможным числом перерывов. При вынужденных перерывах перед возобновлением сварки необходимо подогреть весь стык до температуры 250–300 °C. По окончании сварки пламя горелки следует медленно отвести вверх от стыка, чтобы газы полностью выделились из расплавленного металла. Затем сваренные детали нагревают горелкой: соединения из молибденовой стали – до температуры 900–930 °C, а из хромомолибденовой – до 930–950 °C. После нагрева изделия охлаждают на воздухе.

Низколегированные хромокремнемарганцовистые стали (20ХГС, 25ХГС, 30ХГС, 30ХГСА и 35ХГС) имеют склонность к закалке. Выгорание хрома и кремния приводит к образованию оксидов, шлаков и непроваров.

Вид пламени – нормальное, расход ацетилена 75–100 дм3/ч на 1 мм толщины металла.

Сварку проводят преимущественно левым способом без флюса. Для неответственных конструкций используют сварочную проволоку Св-08 и Св-08А; для ответственных – Св-18ХГСА, Св-19ХГС, Св-13ХМА, Св-18ХМА.

Сварку рекомендуется выполнять без перерывов, не задерживая пламя горелки на одном месте. Для снижения уровня деформаций сварку осуществляют от середины шва к краям обратноступенчатым способом. Для устранения образования трещин в металле шва и околошовной зоне изделия после сварки медленно охлаждают.

Дата добавления: 2018-09-22 ; просмотров: 850 ;

Особенности сварки различных видов сталей

Для улучшения свойств и характеристик сталей, в их состав вводят различные добавки. Изменяя кристаллическую решетку материала, добавки влияют не только на прочность или коррозионную стойкость материала, но и на способность к свариванию. Для некоторых сплавов сварка проходит очень легко, но есть материалы, требующие особого подхода.

Углеродистые

Одной из самых распространенных добавок при производстве стали, безусловно, является углерод. Согласно ГОСТ 380-2005, в зависимости от его количества в составе сталей, последние могут быть:

  • низкоуглеродистыми, с содержанием углерода не более 0,25% от объема;
  • среднеуглеродистыми, содержащие углерод в количестве 0,25%-0,6%;
  • высокоуглеродистые, в которых содержится от 0,6% до 2,07% углерода от объема материала.

Сварка углеродистых сталей характеризуется рядом особенностей, позволяющих получить качественный однородный шов.

При соединении деталей из углеродистых сталей, их располагают так, чтобы шов оказался «на весу». Для этого детали на столе для сварки надежно фиксируют при помощи приспособлений для сборки – струбцин, скоб, тисков.

В начале и конце шва устанавливают специальные планки из того же материала, что и свариваемые детали. Начало и окончание процесса сварки происходит на этих планках. Таким образом, шов по всей длине получается однородным, обладающим стабильными свойствами и имеющим точные заданные характеристики.

Закрепив детали и разгонные планки в нужном положении, проводят прихватки металла по длине шва. Предпочтительно делать прихватки с обратной стороны шва.

Если толщина свариваемых деталей велика и планируется производить многослойную сварку в несколько проходов, прихватки допускается производить с лицевой стороны шва.

При многослойной сварке, каждый предыдущий слой осматривают на наличие трещин и непроваров. При их обнаружении металл шва срезают, разделывают кромки, и процесс повторяют.

Главное требование при сваривании заключается в том, что прочность металла шва и околошовной области не должна уступать прочности металла деталей.

Низкоуглеродистые

Малоуглеродистая сталь, имеющая в своем составе, помимо углерода еще и легирующие добавки сваривается, как правило, с применением любой из сварочных технологий.

Работа не требует высокой квалификации сварщика. Такие материалы относятся к числу хорошо свариваемых сталей. Поэтому здесь может с успехом применяться обычная дуговая сварка.

Особенностями сварки низкоуглеродистых сталей является пониженное содержание углерода в металле шва и увеличенное количество легирующих добавок, поэтому возможно некоторое упрочнение металла шва по отношению к металлу деталей.

Еще одной проблемой, которую следует учитывать, является повышенная хрупкость шва при выполнении многослойной сварки.

Для выполнения соединений низкоуглеродистых сталей применяются электроды с рутиловым и кальциево-фтористорутиловым покрытием. Профессиональные сварщики используют электроды, в обмазку которых добавляют немного порошка железа. Из электродов, выпускаемых промышленностью, для сварки подходят следующие марки: УОНИ-13/85, ЦЛ-14, ЦЛ-18-63.

Стали с малым количеством углерода легко сваривать, применяя ацетилен. При этом даже можно обойтись без использования флюса, а газ расходуется в небольшом объеме.

Для получения качественного стыка, обладающего прочностью, не меньшей, чем основной металл, применяют кремнемарганцевую сварочную проволоку. По окончании работы со швом пламя не гасят и не снимают его со стыка деталей, а плавно отклоняют, давая шву остыть.

Если убрать пламя сразу, то без флюса материал шва, будучи разогретым, окислится. Чтобы придать шву лучшие прочностные свойства, металл шва, как правило, проковывают и подвергают термической обработке.

Среднеуглеродистые

Из-за большого количества углерода соединение таких деталей осложняется. В результатах работы это выражается в том, что металл детали и сварного стыка может быть различной прочности. Помимо этого вблизи кромок шва могут образовываться трещины и очаги с ярко выраженной хрупкостью материала.

Чтобы избежать указанных недостатков, применяют электроды, в составе материала которых содержится низкое количество углерода.

При повышении тока, необходимом для разогрева соединяемых деталей, возможно проплавление основного металла. Чтобы исключить подобные случаи, производится разделка кромок соединяемых деталей.

Еще одним мероприятием по повышению качества соединения является предварительный разогрев и постоянный подогрев деталей в процессе. При сваривании сталей полуавтоматом для повышения качества шва лучше осуществлять движения электродом не поперек, а вдоль стыка деталей и использовать короткую дугу. Для работы применяют электроды марок УОНИ-13/55, УОНИ-13/65, ОЗС-2, К-5а.

При использовании ацетилена для сварки среднеуглеродистых сталей добиваются такого пламени горелки, при котором расход газа составит 75-100 дм³/ч. Для изделий, имеющих толщину 3 миллиметра и более, применяется общий подогрев до 250-300 °C или местный до 600-650 °C.

После сварки шов проковывают и подвергают термической обработке. Для сварки изделий из металла с количеством углерода, близким по содержанию к высокоуглеродистым сталям, используют специальный флюс.

Высокоуглеродистые

Стали с высоким содержанием углерода очень плохо поддаются сварке. Для соединения деталей из таких материалов применяются другие альтернативные способы.

Сварка высокоуглеродистых сталей, стойких к коррозии, осуществляется только при проведении ремонтных работ.

В этом случае применяется предварительный прогрев области шва до 250-300 °C и последующая термообработка шва. Совершенно не допускается производить сварочные работы с высокоуглеродистыми сталями при температуре воздуха ниже 5 °C или при наличии на месте сварочных работ сквозняков.

При соблюдении всех условий, сварка высокоуглеродистых сталей производится теми же приемами, что и среднеуглеродистых.

Допускается газовая сварка ацетиленом. Мощность пламени горелки должна обеспечивать расход газа в пределах 75-90 дм³/ч на 1 миллиметр толщины шва.

Читать еще:  Как правильно выбрать марку стали пищевой нержавейки

Для предотвращения окисления, используются флюсы, составы которых аналогичны флюсам, используемым при сварке среднеуглеродистых сталей. После газовой сварки осуществляется проковка шва с последующим отпуском.

Аустенитные

Аустенитными сталями называют материалы, в составе которых присутствует высокотемпературная фаза железа – аустенит. Они входят, например, в группу хромоникелевых сталей, которые могут работать в различных агрессивных средах и при очень больших значениях температур.

Главной особенностью при сварке коррозионностойкой стали, является необходимость обеспечения стойкости к межкристаллической коррозии в околошовной зоне.

Проблема заключается в том, что даже при предварительном подогреве стали, по границам нагрева из кристаллической решетки выпадают карбиды хрома. В результате уменьшения количества этого элемента в составе материала, при повторном нагреве на границах появляются коррозионные растрескивания.

На практике может понадобиться создание конструкций с использованием аустенитных сталей с хромоникелевыми легирующими добавками, которые будут работать в условиях высоких температур. Для сварки таких конструкций нужно выбирать материалы, в которых содержание углерода возможно низкое.

Если необходимо, чтобы процентное содержание углерода было выше, и при этом конструкции из стали выполняли свое назначение в условиях агрессивных сред и высоких температур, нужно выбирать легирующую добавку, близкую по свойствам к углероду.

В качестве такой добавки может использоваться титан, цирконий, тантал, ванадий, вольфрам. Эти элементы связывают углерод, который выделяется из стали в процессе последующего нагрева, и препятствуют обеднению околошовных участков в процессе сварки.

Нержавейка

Чаще всего нержавеющие стали, используемые в промышленности, получают свои антикоррозийные свойства посредством введения легирующих добавок – хрома и никеля.

При сварке хромированных деталей необходимо учитывать, что при высокой температуре (более 500 °C), возможно окисление стыка деталей.

Чтобы избежать этого применяют аргонодуговую сварку, или TIG-сварку (ТИГ). Такая технология предусматривает осуществление сварочных операций без доступа воздуха непосредственно к зоне сварки. Соответственно отсутствие кислорода, наличие которого в воздухе обязательно, устраняет предпосылки к окислению материала.

Ограничение доступа воздуха осуществляется путем введения в зону сварки аргона, инертного газа, который будучи тяжелее воздуха, вытесняет его. Иногда такой способ называют сваркой стали аргоном. На самом деле сталь либо просто сваривается между собой дугой, либо с помощью присадочного материала.

Для аргонодуговой сварки требуется специальное оборудование. Работы ведутся неплавящимися вольфрамовыми электродами, требования к которым определяются ГОСТ 10052-75.

Вторая проблема заключается в следующем. Нержавеющие стали имеют высокий коэффициент температурного расширения, и при сварке листовой стали, когда стык имеет большую длину в сравнении с линейными размерами детали, в процессе остывания возможно искривление сварочного шва.

Проблема решается путем выставления зазоров между листами и применением прихваток, фиксирующих детали в нужном положении.

Инструментальные

Инструментальная сталь относится к числу твердых, стойких к механическим воздействиям материалов. Из нее изготавливают слесарные, столярные инструменты, части оборудования для различных отраслей промышленности.

Рабочие органы инструментов – сверла, резцы, назначение которых воздействовать на материалы с целью их обработки, очевидно должны быть прочнее и тверже обрабатываемых материалов. Достигаются такие свойства путем включения в состав большого количества углерода и легирующих добавок – никеля, хрома, молибдена.

Сварка инструментальной стали применяется при ремонте оборудования, инструментов. В этом случае к сварочным швам предъявляются высокие требования: стыки должны быть однородными с остальной частью материала, а их прочность не должна отличаться во избежание возникновения концентрации напряжений при работе.

Чтобы обеспечить соблюдение таких требований необходимо применять специальные электроды. В большинстве случаев это могут быть УОНИ-13/НЖ/20Ж13.

При сварке специальных углеродистых сталей, применение которых узконаправлено, используются электроды, разработанные для определенных марок.

При правильном определении характеристик материала, типа сварки и режимов, при использовании электродов соответствующих марок, сварочные швы будут обладать высокой прочностью и коррозионной стойкостью.

Сварка средне- и высокоуглеродистых сталей

Повышение содержания углерода в сталях вызывает значительные трудности при их сварке. Это связано с необходимостью создания условий, предотвращающих образование малопластичных закалочных структур и трещин в околошовной зоне, понижение стойкости металла шва против появления кристаллизационных трещин и обеспечивающих равнопрочность металлов шва и основного.

Для этого при сварке среднеуглеродистых сталей применяют ряд особых мер. В первую очередь стремятся уменьшить количество углерода и долю основного металла в металле шва. В первом случае используют электроды с пониженным содержанием углерода, а для сокращения доли основного металла необходимо применять сварные соединения с разделкой кромок и производить сварку на режимах, дающих минимальное проплавление основного металла и максимальное значение коэффициента формы шва. Для увеличения доли электродного металла рекомендуется использовать электроды с большим коэффициентом наплавки.

Предварительный подогрев до 200—350 °С обеспечивает отсутствие закалочных структур в околошовной зоне, повышая одновременно содержание углерода в металле шва. Однако количество углерода растет незначительно и не способствует образованию трещин. Но следует помнить,.что чрезмерный подогрев способствует увеличению провара основного металла, а это ведет к повышению содержания углерода в металле шва и, следовательно, к росту образования трещин.

Для избежания создания малопластичных и хрупких закалочных структур в околошовной зоне следует замедлить остывание свариваемых изделий. Это достигается уменьшением скорости сварки и предварительным подогревом.

Однако перечисленные меры не позволяют получить сварное соединение необходимой пластичности. Улучшение пластических свойств сварных соединений достигается с помощью термообработки.

Для сварки среднеуглеродистых сталей применяют электроды с фтористо-кальциевым покрытием (например, марок УОНИ-13/45 и УОНИ-13/55), которые обеспечивают высокую стойкость металла шва против кристаллизационных трещин и достаточную прочность сварного соединения. При сварке следует избегать наложения широких валиков. Сварку необходимо вести небольшими участками, короткой дугой. Поперечные движения электрода следует заменять продольными, кратеры заваривать или выводить на технологическую пластину, так как в них могут образовываться трещины.

Из высокоуглеродистых сталей изготавливают врубовый, бурильный инструмент и другие детали машин, подвергающиеся наплавке. Сварка производится с предварительным, а иногда с сопутствующим подогревом и последующей термообработкой. При температуре ниже +5 °С и на сквозняках сварку выполнять нельзя. Остальные правила такие же, как при сварке среднеуглеродистых сталей.

Сварка средне- и высокоуглеродистых сталей

Конструкции из среднеуглеродистой стали могут быть хорошо сварены при непременном соблюдении правил сварки, а также следующих дополнительных указаний. В стыковых, угловых и тавровых соединениях следует при сборке соединяемых элементов сохранять между кромками зазоры, предусмотренные ГОСТ, чтобы сварочная поперечная усадка происходила более свободно и не вызывала кристаллизационных трещин. Кроме того, начиная с толщины стали 5 мм и более, в стыковых соединениях делают разделку кромок, и сварку ведут в несколько слоев. Сварочный ток понижают.

Сварка высокоуглеродистой стали

Сварка высокоуглеродистых сталей марок ВСт6, 45, 50 и 60 и литейных углеродистых сталей с содержанием углерода до 0,7 % еще более затруднительна. Эти стали применяют главным образом в литых деталях и при изготовлении инструмента. Сварка их возможна только с предварительным и сопутствующим подогревом до температуры 350-400 °С и последующей термообработкой в нагревательных печах. При сварке должны соблюдаться правила, предусмотренные для среднеуглеродистой стали, этот процесс мы рассмотрим ниже.

Технологии сварки высокоуглеродистых сталей

Хорошие результаты достигаются при сварке узкими валиками и небольшими участками с охлаждением каждого слоя. После окончания сварки обязательна термическая обработка.

Сварка среднеуглеродистой стали

Сварка среднеуглеродистой стали марок ВСт5, 30, 35 и 40, содержащей углерода 0,28-0,37 % и 0,27- 0,45%, более затруднена, так как с увеличением содержания углерода ухудшается свариваемость стали.

Применяемую для арматуры железобетона среднеуглеродистую сталь марок ВСт5пс и ВСт5сп сваривают ванным способом и обычными протяженными швами при соединении с накладками (рис. 16.1). Для сварки концы соединяемых стержней должны быть подготовлены: для ванной сварки в нижнем положении- обрезаны резаком или пилой, а при вертикальной сварке — разделаны. Кроме того, они должны быть зачищены в местах соединения на длину, превышающую на 10-15 мм сварной шов или стык. Сварка производится электродами Э42А, Э46А и Э50А для протяженных валиковых швов. При температуре воздуха до минус 30 °С необходимо увеличивать силу

Рис. 16.1. Сварка стыков арматуры железобетона: а — ванная; 1 — горизонтальных; 2 — вертикальных; б — шовная

сварочного тока на 1 % при понижении температуры от 0°С на каждые 3°С. Кроме того, следует применять предварительный подогрев соединяемых стержней до 200-250 °С на длину 90-150 мм от стыка и снижать скорость охлаждения после сварки, обматывая стыки асбестом, а в случае ванной сварки не снимать формующих элементов до охлаждения стыка до 100 °С и ниже.

При более низкой температуре окружающего воздуха (от -30 до — 50 °С) следует руководствоваться специально разработанной технологией сварки, предусматривающей предварительный и сопутствующий подогрев и последующую термическую обработку стыков арматуры либо сварку в специальных тепляках.

Сварку других конструкций из среднеуглеродистой стали марок ВСт5, 30, 35 и 40 следует вести с соблюдением тех же дополнительных указаний. Стыки рельсовых путей обычно сваривают ванной сваркой с предварительным подогревом и последующим медленным охлаждением аналогично стыкам арматуры. При сварке других конструкций из этих сталей следует применять предварительный и сопутствующий подогрев, а также последующую термическую обработку.

Электроды

Сварку ведут электродами диаметром не более 4-5 мм постоянным током обратной полярности, что обеспечивает меньшее расплавление кромок основного металла и, следовательно, меньшую его долю и меньшее содержание С в металле шва. Для сварки применяют электроды Э42А, Э46А или Э50А. В стальных стержнях электродов содержится немного углерода, поэтому при их расплавлении и перемешивании с небольшим количеством среднеуглеродистого основного металла в шве углерода будет не более 0,1-0,15 %.

При этом металл шва легируется Мn и Si за счет расплавляемого покрытия и таким образом оказывается равнопрочным основному металлу. Сварку металла толщиной более 15 мм ведут «горкой», «каскадом» или «блоками» для более медленного охлаждения. Применяют предварительный и сопутствующий подогрев (периодический подогрев перед сваркой очередного «каскада» или «блока» до температуры 120-250°С). Конструкции, изготовленные из стали марок ВСт4пс, ВСт4сп и из стали 25 толщиной не более 15 мм и не имеющие жестких узлов, обычно сваривают без подогрева. В других случаях требуются предварительный и сопутствующий подогрев и даже последующая термическая обработка. Дугу зажигают только в месте будущего шва. Не должно быть незаваренных кратеров и резких переходов от основного к наплавленному металлу, подрезов и пересечений швов. Выводить кратеры на основной металл запрещается. На последний слой многослойного шва накладывают отжигающий валик.

Технические и технологические особенности сварки углеродистых сталей: основные способы сварки и оборудование для каждого способа

Сталью называют сплав железа с углеродом, когда концентрация последнего составляет от 0,02% до 2,14%.

С повышением содержания углерода растут показатели прочности и твердости материала, однако, снижаются его пластичность и вязкость. Поэтому процентное соотношение C к Fe является основным критерием классификации стали, разделившим ее на три группы:

  1. Низкоуглеродистая (0,02-0,3%) – мягкие, ковкие сплавы общего применения, которые часто используются в быту (например, в виде прокатного профиля), а также в ненагруженных узлах строительных конструкций, промышленных деталей и механизмов.
  2. Среднеуглеродистые (0,3-0,6%) – сбалансированные сплавы, зачастую обладающие хорошими показателями упругости, стойкости к деформациям и усталостным нагрузкам. Применяются в машиностроении и электротехнике, в том числе для изготовления пружин, рессор, контактных пластин. Ограниченно применяются для изготовления приборов и инструментов.
  3. Высокоуглеродистые (0,6-2,14%) – прочные, но относительно хрупкие сплавы, применяющиеся для изготовления ответственных изделий, в том числе инструментов и их режущих кромок, подшипников, дроби для абразивной обработки, стальных канатов и тросов, измерительных приборов.

Кроме того, в углеродистых сталях содержатся примеси других элементов в количестве, недостаточном для того, чтобы материал считался легированным. Допустимо наличие в структуре сплава:

Фосфор, сера и газы являются нежелательными примесями, долю которых в углеродистой стали стараются свести к минимуму. В качестве микролегирования могут использоваться такие присадки, как титан, цирконий, бор, лантаноиды и некоторые другие элементы.

Значительное влияние на качество стали и ее эксплуатационные характеристики оказывает технология производства, режимы последующей термообработки и другие металлургические параметры. В общем виде классификацию сталей по методу их изготовления, назначению, содержанию тех или иных веществ можно представить в виде таблицы.

Углеродистая сталь
КонструкционнаяИнструментальная
Обычного качестваКачественнаяКачественная

В качестве вида стали может указываться способ ее производства. Углеродистые стали могут изготавливаться как в мартеновских и кислородно-конвертерных печах, так и электросталеплавильным методом. Последний обеспечивает большую стабильность свойств и характеристик готового продукта.

Выбор оборудования

Тип и эксплуатационные особенности сварочного оборудования для работы с углеродистыми сталями варьируются в достаточно широких пределах и зависят от таких факторов, как:

  • выбранный метод сварки;
  • характеристики заготовок;
  • требуемое качество шва;
  • расчетный режим сварки;
  • особенности внешней среды;
  • требуемая производительность;
  • финансово-экономические критерии.

Чаще всего углеродистые стали соединяют одним из методов электродуговой сварки. Если предполагается ручная сварка и объем работ относительно мал, можно воспользоваться обычным сварочным инвертором, главные достоинства которого – компактность и дешевизна. Хорошим выбором станут модели Fubag IR 200, Wester MMA-VRD 200, Elitech АИС 200, Ресанта САИ-220 и другие. Примерная стоимость аппаратов Ресанта САИ-220 на Яндекс.маркет

В противном случае, лучше отдать предпочтение промышленным трансформаторам с большей производительностью, например, Кавик ТДМ-252У2 (250 А, 12 кВт) или Brima ТДМ1-315-1 (315 А, 24 кВт). В зонах, где подключение к электрической сети невозможно или затруднено, используются сварочные генераторы, оснащенные двигателями внутреннего сгорания.

Для полуавтоматической сварки в среде защитных газов или под слоем флюса применяются специализированные сварочные аппараты комбинированной конструкции, которые обеспечивают генерирование сварочного тока, а также подачу в зону сварки защитного газа и плавящегося электрода (кроме того, может подаваться присадочная проволока). В нише бюджетных моделей лидирует Aurora Overman 180, в топовом сегменте – Blueweld Starmig 210 Dual Synergic. Примерная стоимость аппаратов Aurora overman на Яндекс.маркет

Для газовой сварки потребуется наличие кислородного и ацетиленового баллонов с манометрами, гибких шлангов и горелки, позволяющей регулировать пропорциональное соотношение газов. Оборудование альтернативных видов сварки специфично, оно относится к промышленным аппаратам и крайне редко используется в быту.

Способы сварки низкоуглеродистых сталей

Низкоуглеродистые стали относятся к хорошо свариваемым материалам и практически не требуют предварительной подготовки заготовок. Если их толщина не превышает 4 мм, кромкование не проводится, а все предварительные операции ограничиваются очисткой и обезжириванием стыка. В ряде случаев, например, при сварке крупногабаритных изделий, проводится предварительный прогрев в печи до 150-200℃. Другие особенности диктуются конкретным видом сварки.

Ручная дуговая сварка

Ручная дуговая сварка проводится покрытым плавящимся электродом с углом наклона в 40-50° в направлении движения инструмента.

Для предотвращения образования закалочных структур рекомендуется выполнять швы каскадом или горкой, что способствует равномерному теплообмену с окружающим металлом и медленному остыванию стыка. Если заготовки уже подвергались закалке, шов наносят послойно, после каждого подхода ожидая полного его остывания.

Особые рекомендации даются в случае устранения трещин, сколов и других дефектов в деталях из низкоуглеродистой стали. В таком случае выбранный тип шва должен обеспечить достаточное заглубление сварочной ванны, что достигается повышением тока или сокращением длины дуги до 1-1,5 мм. Вне зависимости от размера дефекта, длина шва не должна быть меньше 100 мм. При работе с ответственными деталями зону стыка обрабатывают растворами, предотвращающими коррозию.

Дуговая сварка в защитных газах

Роль защитной среды при электродуговой сварке чаще всего играет углекислый газ (MAG-технология). Более эффективную защиту обеспечивает смесь активных газов (не более 30% кислорода) или сочетание углекислого газа с аргоном. Для ответственных соединений зачастую выбирается MIG-сварка, которая предполагает подачу к стыку аргона или гелия.

Самым распространенным присадочным материалом при дуговой сварке низкоуглеродистой стали в защитной среде является проволока Св-08Г2С. Ее подают одновременно с началом сварки, то есть через 5-15 секунд после поступления газа к стыку. Для верхнего положения используется проволока диаметром до 1,2 мм, для нижнего – до 3 мм. Угол ведения материала составляет 30-40°, электрод ведется строго перпендикулярно поверхности.

Сварка под флюсом

Автоматическая и полуавтоматическая сварка низкоуглеродистых сталей проводится под слоем флюса плавящимся прутком СВ-08 (-А, -ГА) диаметром от 1,2 до 3 мм. Роль защитных составов обычно играет смесь АН-348-А или ОСЦ-45.

Обратите внимание, что при сварке без разделывания кромок в зоне шва может повыситься содержание углерода, что повысит прочность соединения, но снизит его пластичные свойства.

Полуавтоматическая сварка малопригодна для создания угловых и сложносоставных соединений низкоуглеродистой стали, так как способствует образованию закалочных структур в околошовной зоне. Частично решить эту проблему позволяет предварительный прогрев заготовок.

Способы сварки среднеуглеродистых сталей

При сварке среднеуглеродистых сталей велик риск образования кристаллизационных трещин и закалочных структур в околошовной зоне, что, в свою очередь, снижает долговечность соединения и негативно влияет на его показатели упругости. Поэтому главными требованиями к сварке такого материала становятся особые щадящие режимы проведения работ, защита шва от образования пор и пузырьков воздуха, снижение содержания углерода в зоне стыка.

Сварка в защитной среде

При соединении заготовок из среднеуглеродистых сталей используется MIG-технология, схожая с технологией сварки низкоуглеродистых сталей. Обязательным условием является предварительный прогрев заготовок до температуры около 200℃. Применяются электроды с низким содержанием карбона и наличием дополнительных микролегирующих элементов: фтора, кальция, марганца и кремния. К ним относятся изделия марок УОНИ-13/45 (-55, -65), УП-1/45, УП-2/45, ОЗС-2, К-5А и другие. Примерная стоимость электродов УОНИ 13/55 на Яндекс.маркет

Диаметр электрода обычно лежит в пределах 2-6 мм и определяется толщиной свариваемых заготовок. От него, в свою очередь, зависит режим сварки. Так, сила тока при сварке 3-миллиметровыми электродами в нижнем положении составляет 80-100 А, диаметру в 4 мм соответствуют значения 130-200 А, 5-миллиметровыми изделиями работают при токе 170-280 А, а 6-миллиметровыми – 210-380 А. Температура прокаливания электродов варьируется в пределах 250-400℃.

Сварка полуавтоматом

Полуавтоматическая сварка среднеуглеродистых сталей требует раздельной структуры шва, то есть его наложения в несколько ванн. При этом рекомендуется работать короткой дугой и полностью исключить любые движения электродом, кроме продольных. Как и в случае с MIG-сваркой, заготовки прогревают до температуры не более 200℃.

Особое внимание уделяется разделыванию кромок на толстых заготовках. Скосы выполняют под углом 35-45°, тщательно зачищают и обезжиривают. Важно обеспечить высокие показатели коррозионной стойкости шва. Для сохранения его упругости принимают меры для медленного и равномерного остывания стыка.

Газовая сварка

Надежным способом соединения среднеуглеродистых сталей является газовая сварка, которая может проводиться даже при низких температурах. Используется «левая» технология со стандартным или слабо науглероживающим пламенем интенсивностью 75-100 куб. м в час. При чрезмерной мощности сваривания велик риск прожогов или нежелательной закалки стыка.

После выполнения газовой сварки заготовок из среднеуглеродистой стали рекомендуется выполнить их отпуск или отжиг. При этом локальный нагрев шва не должен превышать 650℃, а общий нагрев заготовок – 350℃. Альтернативным способом является проковка стыка.

Сварка высокоуглеродистых сталей

Высокоуглеродистые стали относятся к сложно свариваемым и ограниченно свариваемым материалам ввиду их особой склонности к закалке, образованию трещин и других термических дефектов. Ввиду высокой сложности выполнения работ ручные методы электродуговой сварки практически не используются.

Газовая сварка

Основным методом соединения заготовок из высокоуглеродистой стали является газовая сварка с предварительным прогревом до 200-300℃. В ряде случаев используется и сопутствующий подогрев. Работы проводятся восстановительным пламенем или пламенем с небольшим избытком ацетилена, интенсивность – не более 90 куб. дм в час. Используется «левый» способ, позволяющий снизить время термического воздействия на металл.

В качестве присадки используется проволока Св-15 или Св-15Г, иногда – проволоки, легированные хромом, никелем, марганцем. В отличие от среднеуглеродистых сталей высокоуглеродистые не рекомендуется обрабатывать ковкой. В случае необходимости выполняется их отпуск или отжиг с полным прогревом заготовок до 350-400℃.

Другие способы сварки

Альтернативным способом соединения высокоуглеродистых сталей является лучевая сварка, которая подразделяется на электролучевую (направленный поток заряженных частиц) и лазерную (направленный поток фотонов). К недостаткам этих технологий можно отнести высокую сложность и дороговизну оборудования, к преимуществам – высокую скорость и точность проведения работ, короткое время и малую площадь температурного воздействия на стык.

Ограниченно применяются технологии контактной, плазменной, электрошлаковой сварки, которые требуют значительных ресурсозатрат, однако, не решают всех проблем, связанных с сообщением необходимых механических свойств шву. Одним из перспективных направлений является соединение заготовок высокоуглеродистых сталей между собой и с другими материалами сваркой трением.

Сварка углеродистых и легированных сталей

В зависимости от химического состава сталь бывает углеродистая и легированная.

Углеродистая сталь делится на:

  • низкоуглеродистую (содержание углерода до 0,25%)
  • среднеуглеродистую (содержание углерода от 0,25 до 0,6%)
  • высокоуглеродистую (содержание углерода от 0,6 до 2,0%).

Сталь, в составе которой кроме углерода имеются легирующие компоненты (хром, никель, вольфрам, ванадий и т. д.), называется легированной. Легированные стали бывают:

  • низколегированные (суммарное содержание легирующих компонентов, кроме углерода, менее 2,5%)
  • среднелегированные (суммарное содержание легирующих компонентов, кроме углерода, от 2,5 до 10%)
  • высоколегированные (суммарное содержание легирующих компонентов, кроме углерода, более 10%).

Технология сварки легированных сталей

Сварка низколегированных и среднелегированных конструкционных сталей

Свариваемость таких сталей зависит от содержания углерода и легирующих компонентов и ухудшается с ростом содержания углерда и легирующих компонентов. Стали кремнемарганцевой группы 15ГС, 18Г2С и 25Г2С сваривают электродами типа Э60А марки УОНИ-13/65. Перед сваркой кромки тщательно зачищают от грязи, ржавчины и окалины.

Сварку выполняют предельно короткой дугой. Изделие перед сваркой подогревают до температуры 200 С, электроды перед сваркой прокаливают при 400°С в течение одного часа.

Кремнемарганцемедистые стали 10Г2СД, 10ХГСНД, 15ХСНД и 12ХГ сваривают электродами типа Э50А марки УОНИ-13/55. Изделие перед сваркой не подогревают.
Сварка низколегированных и среднелегированных конструкционных сталей

Особенности сварки высоколегированных сталей

К высоколегированным относят стали, суммарный состав легирующих элементов в которых составляет не менее 10%, при содержании одного из них не менее 8%. При этом содержание железа должно составлять не менее 45%. В основном это стали, обладающие повышенной коррозионной стойкостью или жаростойкостью. Легирование сталей выполняют углеродом, марганцем, кремнием, молибденом, алюминием, ванадием, вольфрамом, титаном и ниобием, бором, медью, серой и фосфором. Введение легирующих элементов меняет физические и химические особенности стали.

Так, углерод способствует повышению прочности стали и снижению ее пластичности. Окисление углерода в процессе сварки способствует появлению пор. Кремний является раскислителем и содержание его в стали более 1% приводит к снижению свариваемости. Хром также снижает свариваемость, способствуя созданию тугоплавких окислов. Никель повышает прочность и пластичность сварочного шва, не снижая свариваемость стали. Молибден увеличивает прочность и ударную вязкость стали, ухудшая свариваемость. Ванадий в процессе сварочных работ сильно окисляется, поэтому его содержание в стали предусматривает введение раскислителей. Вольфрам тоже сильно окисляется при повышенных температурах, ухудшает свариваемость стали.

Титан и ниобий предотвращают межкристаллитную коррозию. Бор повышает прочность, но затрудняет свариваемость. Медь повышает прочность, ударную вязкость и коррозийную стойкость стали, но снижает ее свариваемость. Повышенное содержание в стали серы приводит к образованию горячих трещин, а фосфор способствует образованию холодных трещин.

Содержание тех или иных легирующих элементов определяют по маркировке стали. Первые две цифры в маркировке означают содержание углерода в сотых долях процента; легирующие элементы обозначают буквенными символами, а стоящие за ними цифры указывают на примерное содержание этих элементов, при этом единицу и меньше не ставят. Символ «А», установленный в конце маркировки, указывает, что сталь высококачественная, с пониженным содержанием серы и фосфора. Наиболее широкое применение получили коррозионно-стойкие хромоникелевые стали (12Х18Н10Т, 10Х23Н18 и некоторые другие).

Из вышесказанного видно, что, как правило, легирование стали приводит к снижению ее свариваемости, а первостепенную роль при этом играет углерод. Поэтому доля влияния каждого легирующего элемента может быть отнесена к доле влияния углерода. Повышенное содержание углерода и легирующих элементов способствует увеличению склонности стали к резкой закалке в пределах термического цикла, происходящего во время сварки. В результате этого околошовная зона оказывается резко закаленной и теряет свою пластичность.

Поэтому при сварочных процессах высоколегированных сталей, происходящих в зоне плавления металла и околошовной области, возникают горячие трещины и межкристаллитная коррозия, проявляющаяся в процессе эксплуатации. Основной причиной появления трещин является образование крупнозернистой структуры в процессе кристаллизации и значительные остаточные напряжения, полученные при затвердевании металла. Легирование влияет на вязкость металла и коэффициент поверхностного натяжения, поэтому у большинства высоколегированных сталей сварочный шов формируется хуже, чем у низколегированных и даже углеродистых сталей.

Межкристаллитная коррозия характерна для всех видов высоколегированных сталей, имеющих высокое содержание хрома. Под действием нагрева образовавшиеся карбиды хрома выпадают по границам зерен, снижая их антикоррозийные свойства.

Препятствует образованию карбидов хрома легирование стали титаном, ниобием, танталом, цирконием и ванадием. Положительное влияние на качество сварочного шва оказывает дополнительное легирование сварочной проволоки хромом, кремнием, алюминием, ванадием, молибденом и бором.

Для сварки высоколегированных сталей используют как ручную дуговую , так механизированную сварку под флюсом и в среде защитных газов . Сварка выполняется при минимальном тепловложении с использованием термообработки и применением дополнительного охлаждения. Введение легирующих элементов меняет и технологические особенности стали. Так, система легирования снижает теплопроводность стали и повышает ее электрическое сопротивление. Это оказывает влияние на скорость и глубину плавления металла, что требует меньшего вложения энергии, и увеличения скорости подачи сварочной проволоки.

Ручную дуговую сварку высоколегированных сталей выполняют при пониженных тока обратной полярности. Сварку ведут короткой дугой ниточными валиками без поперечных колебаний.

Проволока, применяемая для изготовления электродов, должна соответствовать марке стали с учетом ее свариваемости. Защитное покрытие электродов должно иметь состав, снижающий отрицательное действие повышенной температуры. К примеру, для сварки кислотостойкой стали 12X18HI0T электроды типа Э-04Х20Н9 (марки ЦЛ-11) препятствуют образования горячих трещин и межкристаллитной коррозии. Предварительный и сопутствующий подогрев снижает опасность возникновения трещин. Для защиты сварочной ванны используют инертный газ или аргон и его смеси с гелием, кислородом и углекислым газом.

Сварку в среде углекислого газа можно выполнять только в случаях, когда отсутствует опасность возникновения межкристаллитной коррозии. Сварка плавящимся электродом выполняется при значениях тока, обеспечивающих струйный перенос электродного металла.

При сварке возникает опасность коробления и остаточных сварочных напряжений. Поэтому после сварки часто возникает необходимость в термообработке.

Глава 6 ТЕХНОЛОГИЯ СВАРКИ СРЕДНЕУГЛЕРОДИСТЫХ И ВЫСОКОУГЛЕРОДИСТЫХ СТАЛЕЙ

Среднеуглеродистые стали используются для изготовления сварных конс-трукций значительно реже, чем низкоуглеродистые. Основная область их приме-нения — детали машин и механизмов в машиностроении, судостроении и других областях, например гидроцилиндры,зубчатые колеса и др. Необходимость их сварки воз­никает при изготовлении и ремонте. Наиболее распространены следу-ющие марки: стали обычного качества — Ст4, Ст5; качественные — сталь 30; сталь 35; сталь 45. Содержание углерода колеблетсяв пределах 0,26-0,45 %, временное сопротивление на разрыв σв= 420-600 МПа. Химический состав некоторых сталей приведен в табл.6.12.

Таблица 6. 12. Химический состав срсднсуглеродистых сталей

Марка сталиСт4СПСт5СПСталь 30Сталь 35Сталь 40
Содержа-ние эле-мента, %углерод0,18-0,270,28-0,370,27-0,350,32-0,400,37-0,45
марганец0,4-0,70,5-0,80,5-0,80,5-0,80,5-0,8
кремний0,12-0,30,15-0,350,17-0,370,17-0,370,17-0,37

Высокоуглеродистые стали для изготовления сварных конструкций не при-меняются. Необходимость их сварки возникает обычно при ремонте.Повышенное содержание углерода значительно затрудняет сварку этой группы сталей из-за низкой стойкости шва к образованию кристаллизационных трещин, образования при сварке малопластичных закалочных структур, сложности обеспечения равно-прочностиметалла шва с основным металлом и др. На рис. 6.3 показано соотношение структурных составляющих шва для стали 35 в зависимости от скорости его охлаждения.

Рис. 6.3. Диаграмма соотношения структурных составляющих сварного шва стали 35 в зависимости от скорости охлаждения

Из диаграммы видно, что область пластичной ферритной структуры по сравнению с низкоуглеродистыми сталями резко уменьшена. Основу металла шва составляют перлитная, бейнитная и мартенситная составляющие. Причем двадцатипроцентное содержание мартенсита, считающееся достаточным для образования трещин, достигается при скоростях охлаждения ωохл

7-10°/ с, что в 10-15 раз ниже, чем для низкоуглеродистых сталей. В связи с этим при сварке среднеуглеродистых сталей получить качественное соедине­ние без применения специальных технологических приемов очень сложно.

Основными технологическими мероприятиями, применяющи­мися при сварке среднеуглеродистых сталей, являются следующие.

1. Предварительный подогрев свариваемых кромок. Подогрев кромок, выполненный до сварки, позволяет уменьшить отвод тепла в изделие после сварки и таким образом снизить скорость охлаж­дения шва. Температура предва­рительного подогрева выбирает­ся в зависимости от содержания в стали углерода. График, показы­вающий соотношение между тем­пературой предварительного по­догрева и содержанием углерода, приведен на рис. 6.4.

Рис. 6.4. Соотношение между темпе­ратурой предварительного подогрева и содержанием углерода, при кото­ром возможно образование трещин в шве

Предварительный подогрев является достаточно эффективным спосо-бом регулирования термического цикла сварки и как правило, позволяет избежать трещин. Однако он не удобен в исполнении, увеличивает трудоемкость и энергоемкость работ, ухудшает условия работы сварщика, поэтому при наличии возмож­ности избежать образования трещин другими способами его стараютсяне применять.

2. Уменьшение содержания углерода в сварном шве. Обычно это дос-тигается соответствующей подготовкой кромок перед свар­кой. При сварке шов формируется за счет сварочной проволоки и основного металла. Из рис. 6.5 следует, что при разделке кромок для наплавленного металла γн в металле шва возрастает.

Рис. 6.5. Схема формирования шва без разделки и с разделкой кромок

Известно, что проволока илистержень электрода содержит углерода около С=0,08 %(Св08А; СвО8Г2С и т.д.). Сталь же содержит углерода С= 0,26-0,45 %. В связи с этим при увеличении γн содержание углеродав шве уменьшается, поэто-му при сварке среднеуглеродистых сталей рекомендуется делать разделку кро-мок в любом случае, дажепри небольшой толщине свариваемого металла.

3.Рациональный выбор сварочных материалов. Сварочные материалыдолжны обеспечивать максимальную пластичность металла шва.Это достигается применением электродов с основным покрытием. Обычно для сварки среднеуглеродистых сталей рекомендуются электроды УОНИ13/45, УОНИ13/55. Тип электрода или марка проволоки должны содержать в обозначении букву А, что свидетельствует о пониженном содержании серы и фосфора, на­пример тип электрода Э46А; проволока СвО8А, СвО8ГА. По этой причине способы сварки покрытыми электродами и под флюсом болеепредпочтительны, чем сварка в СО2, так как обеспечивают большую пластичность шва.

4.Рациональный выбор режимов сварки. Сварку среднеуглеродистыхсталей рекомендуется выполнять электродами или проволокой меньшего ди-аметра и при меньшей силе тока по сравнению со сваркой низкоуглеродистых сталей. Во-первых, это уменьшает глубину проплавления и снижает пе-ремешивание основного и наплав­ленного металла, что в свою очередь уменьшает вероятность попа­дания углерода из основного металла в металл шва. Во-вторых, при малых токах идет более интенсивное восстановление марганца и кремния из окислов, что обеспечивает их более высокое содержа­ние в шве. Это позволяет в большей степени компенсировать сниже­ние прочности шва, вызванное уменьшением углерода, и достичь равнопрочности сварного соединения с основным металлом.

5. Выбор рациональной формы шва. Форма сварного шва также влияет на стойкость металла против образования кристаллизацион­ных трещин, что связано со спецификой роста кристаллов в швах различной формы (рис. 6.6).

Рис. 6.6. Особенности кристаллизации шва при различнойего форме

Кристаллы растут, как правило, в на­правлении, противоположном тепло-отводу, который в свою оче­редь идет перпендикулярно линии сплавления. В центре узких и глубоких швов образуется ослабленная зона, характеризую-щаяся повышенным содержанием серы и фосфора. Эти элементы имеют низ-кую температуру плавления и затвердевают позже стали, поэто­му, находясь длительное время в жидком виде, они сдвигаются рас­тущими дендритами в центр шва, где под действием растягивающих напряжений весьма вероятно образование трещин. В швах, име-ющих более высокий коэффициент формы (y = ) растущие дендриты способствуют выходу легкоплавких эвтектик на поверхность, что увеличивает стойкость против образования трещин. Очень ши­рокие швы имеют слоистое строение. Границы отдельных дендритов пер-пендикулярны силе, действующей на шов при кристаллиза­ции, что уменьшает их сопротивление растяжению. Поэтому стой­кость против образования трещин у швов, имеющих большое значе­ние y, снова снижается. График, показываю-щий зависимость стойкости швов по отно­шению к трещинам от коэффициента формы и содержания в шве уг­лерода, приведен на рис. 6.7.

Рис.6.7. Зависимость стойкости металла против образования кристаллизаци­онных трещин от формы шва

В общем случае при сварке среднеуглеродистых сталей реко­мендуются швы сболее высоким коэффициентом формы, чем для низкоуглеродистых сталей.

6. Термообработка сварного шва. Для ответственных сварных конструк-ций, к которым предъявляются высокие требования по пластичности сварного соединения, целесообразно проведение сразу после сварки термообработки. Обычно проводят высокотемпературный отпуск, который позволяет снять внут-ренние напряжения в сварномшве и околошовной зоне.

Как уже отмечалось, высокоуглеродистые стали относятся к плохосвари-ваемым. Равнопрочность основного металла и металла шва получить не удает-ся. Склонность к образованию трещин очень высокая.Сварка используется только для ремонта. Все мероприятия, применяемые для среднеуглеродистых сталей, подходят и для высокоуглеродистых. После сварки рекомендуется вы-полнять отпуск . Затем для восстановления эксплуатационных свойств может проводиться местная термообработка в виде закалки и последую­щегоотпуска.

Технология сварки среднелегированных (теплоустойчивых) и высоколегированных (нержавеющих) сталей

Температура плавления стали типа 18-8 составляет 1475°С

Марка стали

Свариваемость

Технологические особенности сварки

12X5; Х5; Х5М;Х5ВФ

Защитный газ: СО2, Ar
Электродная проволока: Св-08ХГ2СМ; Св-04Х19Н9; Св-06Х19Н9Т

Зачистка кромок до металлического блеска

20ХГС
25ХГС
30ХГС
30ХГСА

Защитный газ: СО2; СО22; Ar+СО2 Электродная проволока: Св-10ГСМ; Св-10ГСМТ; Св-10ХГ2С; Св-15ХМА; Св-18ХГСА

При толщине до 10 мм — без подогрева
Более 10 мм — предварительный подогрев до 250-300°С

Защитный газ: СО2; Ar; Ar+СО2 Электродная проволока: Св-08ХГСМА; Св-08ХГ2СМА Предварительный подогрев до 250-300°С с последующим высоким отпуском

Защитный газ: Ar; СО2; Ar+СО2 Электродная проволока Св-10Х13; Cв-06X14; Св-08Х14ГТ с последующим отпуском до 700°С

Защитный газ: Ar; СО2
Электродная проволока: Св-10Х13; Св-06X14; Св-08Х18Н2ГТ Отпуск до 700°С

Электродная проволока: Св-06Х19Н9Т; Св-08Х20Н9Г7Т

Защитный газ СО2Электродная проволока: Св-08Х20Н9С2БТЮ; Св-07Х18Н9ТЮ

Трудности при сварке

  • Закаливаемость сталей 0Х13 и, как следствие, образование в околошовной зоне твердых и хрупких участков основного металла
  • Склонность металла и околошовной зоны к образованию горячих трещин
  • Повышенная чувствительность к термическому циклу сварки, снижающая эксплуатационные свойства сварного соединения
  • Трудность достижения коррозионной стойкости шва.

Следует тщательно выбирать оптимальный режим сварки, с учетом минимальною нагрева зоны термического влияния и минимального объема сварочной ванны. При многослойной сварке каждый последующий шов нужно выполнять после остывания предыдущего. Охлаждение можно ускорить обдувом воздухом. Необходимо тщательно осушать защитный газ и очищать свариваемые кромки и проволоку от загрязнений.

В качестве защитного газа предпочтителен аргон

Один из недостатков сварки коррозионностойких сталей в углекислом газе и его смесях — образование на поверхности трудноудаляемой оксидной пленки. Необходимо выбирать режимы, при которых обеспечивается не только минимальный нагрев основного металла, но и наименьшее разбрызгивание электродного металла.

Подготовка к сварке

Кромки стыкуемых деталей из высоколегированных сталей лучше готовить механическим способом. Однако допускается плазменная, электродуговая, газофлюсовая или воздушно-дуговая резка. После огневых способов обязательно обрабатывают кромки механическим инструментом на глубину 3-5 мм.

Снимать фаску для получения скоса кромки необходимо только механическим способом. Снаружи и внутри кромки зачищают от окалины и загрязнений на ширину 20 мм и обезжиривают.

Затем осушают защитный газ, очищают электродную проволоку от смазки и грязи травлением или механически с последующим прокаливанием.

Стыки собирают в приспособлениях либо с помощью прихваток. Их нужно располагать равномерно по всей длине стыков на расстоянии 75-125 мм одна от другой. Размеры прихваток выбирают в зависимости от толщины металла и геометрии стыка. Прихватки перед сваркой зачищают до металлического блеска и проверяют, нет ли в них трещин и других дефектов. Прихватки с недопустимыми дефектами удаляют механическим способом.

В местах пересечения швов прихватки устанавливать нельзя.

Выбор параметров режима

Сварку ведут постоянным током обратной полярности, желательно в среде инертных газов. Целесообразно выбирать сварочные проволоки сходные по химическому составу с основным металлом.

Режим сварки нужно соблюдать таким, чтобы шов остывал как можно быстрее.

Сварка высоколегированных коррозионностойких сталей возможна в СО2, газовых смесях: Ar+СО2; Ar+О2. Для получения качественных швов применяют проволоки с повышенным содержанием титана и алюминия, например: Св-07Х18Н9ТЮ, Св-08Х20Н9С2БТЮ

Технология сварки углеродистых сталей

Углеродистая сталь представляет собой сплав железа с углеродом и другими примесями, количество которых зависит от способа производства. Благодаря доступной стоимости и высоким эксплуатационным характеристикам углеродистая сталь считается одним из наиболее распространенных конструкционных материалов, который используют для изготовления различных изделий.

Технология сварки углеродистых сталей не отличается особой сложностью. Способ соединения и тип расходных материалов необходимо подбирать исходя из химического состава сплава. В противном случае велика вероятность образования дефектов. Рассмотрим особенности сварки углеродистой стали.

Классификация углеродистых сталей

Диаграмма — Классификация сталей

Содержание углерода в стали определяет эксплуатационные свойства и характеристики сплава. С увеличением количества углерода повышается прочность и твердость сплава за счет снижения вязкости и пластичности. По данному признаку углеродистые стали делят на три группы:

  • Низкоуглеродистые стали – содержание углерода в сплаве не превышает 0,25 %, что обеспечивает пластичность и простоту обработки материала.
  • Среднеуглеродистые стали – содержание углерода не превышает 0,6 %. Подобные сплавы характеризуются высокой прочностью и достаточно хорошими показателями пластичности и текучести.
  • Высокоуглеродистые стали – содержание углерода не превышает 2,14 %, что обеспечивает высокую прочность сплава. Степень свариваемости углеродистых сталей зависит от количества углерода в сплаве. С ростом количества углерода повышается склонность к образованию закалочных структур и появлению трещин в зоне термического воздействия.

Подготовительные процедуры

Способ подготовке к сварочным работам зависит от типа углеродистой стали. Марки с низким содержанием углерода не требуют предварительного прогрева поверхности. Единственное исключение составляет сварка угловых швов толстолистового металла, а также выполнение многопроходных стыковых соединений при проведении работ в условиях низких температур. Для подготовки кромок можно использовать газовую или плазменную резку с последующей абразивной обработкой поверхностей для удаления следов термической обработки.

Сварку средне- и высокоуглеродистых сталей рекомендуется проводить с предварительным подогревом поверхности. Степень термического воздействия подбирается исходя из требований нормативных документов. При необходимости рабочую температуру можно вычислить самостоятельно, основываясь на углеродном эквиваленте стали и толщине свариваемых заготовок. В отдельных случаях может потребоваться сопутствующий нагрев для замедления скорости остывания сварочного соединения.

Способы сварки углеродистых сталей

Ввиду широкого распространения углеродистой стали специалистами было разработано множество способ сварки данного сплава. Для получения неразъемного сварного соединения можно использовать следующие технологии:

  1. Ручную дуговую сварку углеродистых сталей штучными электродами. Наиболее часто используемая технология. При работе с низкоуглеродистыми сортами, благодаря высокой практичности, допускается вести работу на максимально допустимых режимах. Марку электрода и тип покрытия подбирают исходя из химического состава материала и условий эксплуатации свариваемых изделий. При сварке сталей с повышенным содержанием углерода необходимо ограничивать количество основного материала в металле шва путем снижения сварочного тока. В качестве присадочного материала используют электроды с легирующими добавками и пониженным содержанием углерода, отличающиеся высоким коэффициентом наплавки.
  2. Газовую сварку углеродистой стали. При работе с низкоуглеродистыми сортами стали используют нормальное пламя. Потребность в подготовке кромок определяется толщиной заготовки. При сварке тонколистовых конструкций использование флюсов не требуется. Для работы со среднеуглеродистыми сортами стали используют присадочные материалы с пониженным содержанием углерода. Применение пламени с избытком ацетилена поможет снизить окислительные процессы в сварочной ванне. Во избежание образования хрупких структур в зоне термического воздействия производят замедление охлаждения или последующий отпуск.
  3. Автоматическую сварку под флюсом – применяют преимущественно при работе с низкоуглеродистыми материалами. Использование плавленых оксидных флюсов, а также марганцовой или малоуглеродистой электродной проволоки обеспечивает хорошее раскисление металла зоны расплава, что позволяет получать надежные сварные соединения. Сварку сталей с высоким содержанием углерода не получила широкого распространения ввиду низкой производительности работ.
  4. Полуавтоматическую сварку углеродистых сталей в среде защитного газа – проводят с предварительной подготовкой и зачисткой кромок. Работы выполняют на постоянном токе обратной полярности. Для защиты зоны расплава от негативного воздействия окружающей среды обычно используют углекислый газ. При сварке тонколистовых конструкций необходимо использовать медные или керамические подкладки – они позволяют получить качественный обратный валик без дополнительной абразивной обработки поверхности.
  5. Аргонодуговую сварку углеродистой стали неплавящимся электродам. Данную технологию широко применяют для сварных соединений, к качеству которых предъявляют строгие требования. Соединение заготовок осуществляется с использованием присадочных прутков с повышенным содержанием кремния, который снижает коэффициент поверхностного натяжения сварочной ванны, снижая вероятность образования пор. Кроме того, при комбинированном многопроходном соединении толстостенных конструкций аргонодуговую сварку используют для получения корневого слоя.

Материалы для сварки углеродистых сталей

Выбор присадочного материала, независимо от режима сварки, напрямую влияет на качество будущего соединения. Для достижения хороших результатов рекомендуется использовать материалы с низким содержанием углерода – это позволит снизить вероятность образования дефектов сварочного соединения. Рассмотрим особенности наиболее популярных электродов, прутков и сварочных проволок, используемых для сварки углеродистых сталей:

  • OK 46.00 – уникальные электроды с рутилово-целлюлозным покрытием, которые можно использовать при работе во всех пространственных положениях. Они демонстрируют отличные технологические характеристики как на постоянном, так и на переменном токе. Электроды не требовательны к качеству подготовки поверхности, что делает их идеальным присадочным материалом для сварки металлоконструкций промышленных предприятий.
  • МР-3 – универсальные электроды с рутиловым покрытием, которые можно использовать при сварке на постоянном и переменном токе. В отличие от других электродов с рутиловым покрытием, МР-3 подходит для сварки на форсированных режимах, что увеличивает производительность работ.
  • АНО-21 – электроды с рутилово-целлюлозным покрытием, которые характеризуются легким розжигом дуги и хорошей отделимостью шлаковой корки. Работы осуществляются на постоянном токе любой полярности.
  • АНО-4 – универсальные рутиловые электроды, предназначенные для сварки конструкций из низкоуглеродистой стали в любом пространственном положении. Флюсовое покрытие обеспечивает хорошее формирование сварочного шва, а также предотвращают образование пор и горячих трещин.
  • УОНИ 13/55 – электроды с основным покрытием, предназначенные для сварки ответственных конструкций из углеродистой стали. Сварочное соединение характеризуется хорошими показателями пластичности и ударной вязкости даже при эксплуатации в условиях низких температур.
  • Св-08Г2С – омедненная проволока, предназначенная для сварки углеродистых сталей в режиме MIG/MAG. Наплавленный материал характеризуется высокой устойчивостью к образованию пор и подходит для выполнения многопроходных сварочных соединений.
  • OK Tigrod 12.60 – прутки с омедненным покрытием, предназначенные для аргонодуговой сварки углеродистых сталей. В качестве легирующих материалов используют марганец и кремний, которые обеспечивают высокую устойчивость сварочного соединения к образованию пор, трещин и других дефектов.

Где заказать оборудование для сварки углеродистой стали

Если вам необходимо приобрести оборудование для сварки углеродистой стали или других материалов, обращайтесь в компанию ООО «Сварка ЭС». Партнерские отношения с ведущими производителями сварочного оборудования и расходных материалов позволяют предлагать продукцию на самых выгодных условиях. При необходимости технические специалисты помогут с подбором товара, исходя из запросов клиента и особенностей планируемых работ. Чтобы получить бесплатную консультацию, позвоните на номер 8-800-777-00-45 или заполните форму обратной связи.

Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector
×
×