Rich--house.ru

Строительный журнал Rich—house.ru
32 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Таблица удельной теплоемкости некоторых металлов и сплавов

Таблица удельной теплоемкости некоторых металлов и сплавов

АльтИнфоЮг
Альтернативная энергетика и информация

  • Изобретательство, патентование
    • Патенты
      • Холодильник не потребляющий энергию
      • Переносная ёмкость
      • Многофункциональное сигнально-осветительное устройство
      • Коллекция патентов
    • Изобретательство
      • Некоторые особенности патентования
      • Как заработать на интеллектуальной собственности
      • Взаимоотношения изобретателей, спонсоров, инвесторов
      • Планы на новые патенты
      • Изобретения Леонардо да Винчи
      • Предложение о сотрудничестве
  • Полезные устройства
    • Предлагаю
      • Прибор для проверки аккумуляторов
      • Автомобильный индикатор
      • Защита электродвигателя
      • Приспособление для проверки контактов
      • Утепление стен мансарды изнутри
    • Рекомендую
      • Солнечная нагревательная установка
      • Солнечное охлаждение
      • Экономичный электрический обогрев пола
      • Расчёт тёплого пола
      • Солнечная баня
      • Водяная мельница в Осетии
  • Наука и техника
    • Наука
      • Тень силиконовой долины
      • Новое противоопухолевое средство
    • Теоретические основы энергетики
      • Магнитокалорическое охлаждение
      • Охлаждение путем расширения газов
      • Холодильный цикл
      • Использование вихревого эффекта
      • Источники холода
    • Холодильная техника
      • Характеристики бытовых холодильников
      • Абсорбционные безнасосные холодильные машины
      • Абсорбционные холодильные машины периодического действия
      • Принципиальная схема паровой компрессорной холодильной машины
      • Принцип действия абсорбционной холодильной машины
      • Пароэжекторные холодильные машины
      • Каскадные холодильные машины
      • Классификация и краткая характеристика хладагентов
      • Анализ работы абсорбционных холодильных машин
      • Термоэлектрическое охлаждение
      • Ледники и ледяные склады
    • Термодинамика
      • Основные понятия и определения
      • Внутренняя энергия
      • Первый закон термодинамики
      • Техническая работа
      • Теплоемкось и ее виды
      • Энтальпия
      • Второй закон термодинамики
      • Термодинамические процессы идеальных газов
      • Круговой процесс
      • Термический КПД цикла
      • Цикл Карно
      • Необратимые потери обратного цикла Карно
    • О технике
      • Классификация тепловых насосов
      • Оборудование использующее низкопотенциальные тепловые ресурсы
      • Газовый двигатель внутреннего сгорания
      • К вопросу о точности и производительности пазовырубных прессов
  • Справочники
    • Единицы измерения
      • Производные единицы измерения СИ
      • Старые русские единицы измерения
      • Единицы применяемые в Англии и США
      • Основные единицы измерения СИ
      • Обозначения и наименования произвольных единиц
      • Кратные и дольные единиц измерения
    • Соотношения единиц
      • Соотношения между единицами мощности
      • Соотношения между единицами силы
      • Соотношения между единицами скорости
      • Соотношения между единицами энергии
      • Соотношения между единицами давления
      • Соотношения между единицами времени
    • Электротехнические материалы
      • Электроизоляционные лаки
      • Электроизоляционные материалы
      • Характеристики металлических проводниковых материалов
      • Электроизоляционные лакоткани
      • Характеристика сплавов высокого удельного сопротивления
      • Классы по нагревостойкости электроизоляционных материалов
      • Величины токов плавления проволоки
    • Разные справки
      • Лампы накаливания
      • Свойства водного льда
    • Провода и кабели
      • Активные и реактивные сопротивления кабелей
      • Зависимость сечения жилы от тока
      • Характеристики кабеля по току КЗ
      • Классификация силовых кабелей
    • Тепловые, энергетические характеристики
      • Характеристики твёрдого топлива
      • Характеристики жидких топлив
      • Удельная теплота сгорания
      • Значения термо-э.д.с. металлов и сплавов
      • Удельная теплоёмкость
      • Удельная теплота плавления
      • Температура кипения различных веществ
  • Энергетика
    • Анализ
      • В пользу негодных технологий и концепций
      • Некоторые особенности альтернативной энергетики
      • Буферный режим заряда
      • Индукционная передача энергии
      • Высокочастотная передача энергии на расстояние
      • Использование естественного холода
      • Использование солнечной энергии
      • Предотвращение снижения плодородия почвы за счет использования возобновляемых источников энергии
      • Секреты бестопливных генераторов энергии
    • Природные ресурсы
      • Три дороги российской нефти
      • Страны с крупнейшими запасами нефти
      • Солнечная энергия
      • Гидроэнергетические ресурсы
      • Энергия ветра
      • Биогазовые установки
    • Системы альтернативного энергоснабжения
      • Экономичное альтернативное энергоснабжение
      • Нагрев воды солнцем
      • Механические накопители энергии
      • Стационарные супермаховики в энергосистемах
      • Режимы работы системы супермаховиков
      • Автономное и резервное электроснабжение
      • Альтернативная энергетика в Америке
    • Энергетическое оборудование
      • Ветродвигатели с вертикальной осью
      • Как экономить на оплате электричества
      • Выбор оборудования альтернативной энергетики
      • Кислотные аккумуляторы
      • Аналоговые зарядные устройства
      • Принцип работы импульсного преобразователя
      • Контроллер в альтернативной энергетике
      • Эксплуатация необслуживаемых аккумуляторов
      • Тепловые реле для защиты электродвигателей
      • Выбор двигателей-генераторов для супермаховиков
      • Водяной тепловой аккумулятор
      • Бензиновый электрогенератор
      • Сборка батареи из аккумуляторов
    • Энергоэффективные технологии
      • Светодиодные лампы преимущества и недостатки
      • Эффективное использование солнечной энергии
      • Особенности и виды светодиодных светильников для ЖКХ
      • Алгоритм работы современного гибридного автомобиля
      • Солнечная баня
      • Возможности комбинированных биогазовых установок
    • Реальное оборудование альтернативной энергетики
      • Мультиметр емкости аккумуляторов для сотовых телефонов
      • Приборы для измерения мощности и энергии
      • Светильники на солнечных батареях
      • Выбор панелей для солнечных батарей
      • Комплектование и испытания солнечных батарей
      • Нагрузочное сопротивление
      • Преобразователь LM2596
      • Цифровые приборы
  • Расчёты
    • Расчёт идей
      • Расчёт суперконденсаторов ё-мобиля
      • Расчёт систем — вечный двигатель
      • Получение водорода из алюминия
      • Расчёт электростанции на термоэлементах
      • Расчёт энергии молнии
    • Расчёт узлов
      • Пример расчёта кабеля и характеристик ветрогенератора
      • Расчёт крановых двигателей
      • Определение мощности счётчиком
      • Расчёт емкости аккумуляторов
      • Расчет аккумуляторов для солнечной электростанции
    • Экономические расчёты
      • Принципы расчёта эффективности альтернативной энергетики
      • Сравнительная оценка стоимости энергии
      • Стоимость нагрева воды
  • Политика и экономика
    • Политика
      • Европа заложник США на пути к мировому господству
      • О законе Димы Яковлева
    • Экономика
      • Коррупция, причины и последствия
      • Некоторые цифры и факты
      • Рыночная экономика, базарный вариант
      • Откуда дровишки в студёную пору
      • Развал строго по плану
  • Разное
    • Ещё одна версия гибели «Курска»
    • Испытание лекарственных средств в России
    • Анекдоты
    • Как разместить статью
    • Реальное и мифическое в пластиковых окнах
    • Мой видеоканал
    • Интересные сайты
  • Отзывы и комментарии
    • Отзывы на «Коррупция причины и последствия»
    • Отзывы на «Европа заложник США на пути к мировому господству»
    • Отзывы на «Развал строго по плану»
    • Отзывы на «Откуда дровишки в студеную пору»
    • Ещё отзывы на «Некоторые особенности альтернативной энергетики»
    • Отзывы на «Рыночная экономика базарный вариант»
    • Отзывы на «В пользу негодных технологий и концепций»
    • Отзывы на «Три дороги Российской нефти»
    • Отзывы на «Испытания лекарственных средств в России»
    • Отзывы на «Некоторые особенности альтернативной энергетики»
  • Впечатления от Америки

ЗДОРОВЬЕ И ДЕНЬГИ ЗДЕСЬ

Удельная теплоёмкость

Удельная теплоёмкость вещества означает количество теплоты, необходимое для нагрева единицы веществ на один градус. Чаще всего за единицу вещества берётся масса в 1 кг. Реже используются единицы объёма, например, кубометр или литр. В химии при термохимических реакциях используется молярная теплоёмкость, когда за единицу вещества принимают моль. Удельная теплоёмкость заметно меняется при изменении температуры и в большей степени при изменении агрегатного состояния вещества, например, значения теплоёмкости воды будут разными в жидком, твёрдом и газообразном состоянии. В приведённой таблице указывается также температура и агрегатное состояние вещества.

Значения удельной теплоёмкости и соотношения между единицами измерений даны по книге «Справочник по физике и технике» А.С. Енохович.

1″ :pagination=»pagination» :callback=»loadData» :options=»paginationOptions»>

Удельная теплоемкость металлов

Удельная теплоемкость металлов.

Таблица удельной теплоемкости металлов:

Теплоёмкость – это количество теплоты, поглощаемой (выделяемой) всем телом в процессе нагревания (остывания) на 1 Кельвин.

Удельная теплоёмкость – физическая величина, численно равная количеству теплоты, которое необходимо передать телу массой 1 кг для того, чтобы его температура изменилась на 1 Кельвин.

Удельная теплоемкость обозначается буквой c и измеряется в Дж/(кг·К).

где Q – количество теплоты, полученное веществом при нагреве (или выделившееся при охлаждении),

m – масса нагреваемого (охлаждающегося) вещества,

ΔT – разность конечной и начальной температур вещества.

В таблице удельная теплоемкость металлов приведена при при температуре 0 °C. Для ртути удельная теплоемкость приведена при 25 °C, для таллия – при 50 °C.

Необходимо иметь в виду, что на значение удельной теплоёмкости вещества влияет температура вещества и другие термодинамические параметры (объем, давление и пр.), а также то, каким образом происходило изменение этих термодинамических параметров (например, при постоянном давлении или при постоянном объеме).

Точное значение удельной теплоемкости металлов в зависимости от термодинамических условий (температуры, объема, давления и пр.) необходимо смотреть в справочниках.

Таблица удельной теплоемкости некоторых металлов и сплавов

Wikimedia Foundation . 2010 .

  • Андеррайтинг
  • Колхи

Смотреть что такое «Удельная теплоёмкость» в других словарях:

УДЕЛЬНАЯ ТЕПЛОЁМКОСТЬ — количество энергии, которое необходимо сообщить 1 г какого либо вещества, чтобы повысить его температуру на 1°С. По определению, для того чтобы повысить температуру 1 г воды на 1°С, требуется 4,18 Дж. Экологический энциклопедический словарь.… … Экологический словарь

Читать еще:  Как рассчитать вес листа оцинкованного

удельная теплоёмкость — — [А.С.Гольдберг. Англо русский энергетический словарь. 2006 г.] Тематики энергетика в целом EN specific heatSH … Справочник технического переводчика

УДЕЛЬНАЯ ТЕПЛОЁМКОСТЬ — физ. величина, измеряемая количеством теплоты, необходимым для нагревания 1 кг вещества на 1 К (см. ). Единица удельной темплоёмкости в СИ (см.) на килограмм кельвин (Дж кг∙К)) … Большая политехническая энциклопедия

удельная теплоёмкость — savitoji šiluminė talpa statusas T sritis fizika atitikmenys: angl. heat capacity per unit mass; massic heat capacity; specific heat capacity vok. Eigenwärme, f; spezifische Wärme, f; spezifische Wärmekapazität, f rus. массовая теплоёмкость, f;… … Fizikos terminų žodynas

Удельная теплоёмкость — см. Теплоёмкость … Большая советская энциклопедия

удельная теплоёмкость — удельная теплота … Cловарь химических синонимов I

удельная теплоёмкость газа — — [http://slovarionline.ru/anglo russkiy slovar neftegazovoy promyishlennosti/] Тематики нефтегазовая промышленность EN gas specific heat … Справочник технического переводчика

удельная теплоёмкость нефти — — [http://slovarionline.ru/anglo russkiy slovar neftegazovoy promyishlennosti/] Тематики нефтегазовая промышленность EN oil specific heat … Справочник технического переводчика

удельная теплоёмкость при постоянном давлении — — [А.С.Гольдберг. Англо русский энергетический словарь. 2006 г.] Тематики энергетика в целом EN specific heat at constant pressurecpconstant pressure specific heat … Справочник технического переводчика

удельная теплоёмкость при постоянном объёме — — [А.С.Гольдберг. Англо русский энергетический словарь. 2006 г.] Тематики энергетика в целом EN specific heat at constant volumeconstant volume specific heatCv … Справочник технического переводчика

Таблица плотности и удельной теплоемкости прецизионных сплавов

Вас интересует таблица плотности и удельной теплоемкости прецизионных сплавов? Поставщик Авглоб предлагает купить прецизионные сплавы по выгодной цене. Поставщик гарантирует своевременную доставку по любому указанному адресу,. Постоянные клиенты могут воспользоваться дисконтными скидками. Цена наилучшая в данном сегменте проката.

Физические свойства фехралей

Теплопроводность нихрома

Теплопроводность нихрома имеет величину, близкую по значению с теплопроводностью нержавеющей стали. и увеличивается при нагревании. С повышением содержания никеля в сплаве его коэффициент теплопроводности повышается. от 17 до 25 Вт/(м·град)

Сплав0°С20°С100°С200°С300°С400°С500°С600°С
Нихром (10%Cr + 90%Ni)17,117,418,920,922,824,7
Х15Н6011,813,314,616,117,5
Х20Н80-Н12,213,613,815,617,218,922,6
Nikrothal 8015151515171921

Хранение

На закрытых складах или под навесом, где обеспечена надлежащая защита от механических и другого рода повреждений.

Поставка, цена

Вас интересует таблица плотности и удельной теплоемкости прецизионных сплавов? Купить прецизионные сплавы по доступной цене у поставщика Авглоб можно сегодня. Цена прецизионных сплавов формируется на основании европейских стандартов производства. Поставщик Авглоб предлагает купить прецизионные сплавы по оптимальной цене оптом либо в розницу. Приглашаем к партнёрскому сотрудничеству.

Справочник

  • Главная
  • >Справочник
  • >Теплофизические свойства веществ
  • >Теплоемкость твердых материалов и жидкостей

Удельная теплоемкость различных твердых веществ при 20 °C (если не указано другое значение температуры)

НазваниеCpж
кДж/(кг °С)
НазваниеCpж
кДж/(кг °С)
Асбест0,80Мрамор0,80
Асбоцемент (плиты)0,96Панели легкие строительные1,47. 1,88
Асфальт0,92Парафин2,19
Базальт0,84Песчаник глиноизвестковый0,96
Бакелит1,59Песчаник керамический0,75-0,84
Бетон1,00Песчаник красный0,71
Бумага сухая1,34Пластмасса1.67. 2.09
Волокно минеральное0,84Полистирол1,38
Гипс1,09Полиуретан1,38
Глина0,88Полихлорвинил1,00
Гранит0,75Пробка1,26. 2,51
Графит0,84Пробка, крошка1,38
Грунт песчаный1.1. 3.2Резина твердая1,42
Дерево, дуб2,40Сера ромбическая0,71
Дерево, пихта2,70Слюда0,84
Древесно-волокнистая плита2,30Солидол1,47
Земля влажная2,0Соль каменистая2.1. 3.0
Земля сухая0,84Соль каменная0,92
Земля утрамбованная1,0-3,0Соль поваренная0,88
Зола0,80Стекло0,75-0,82
Известь0,84Стекловолокно0,84
Кальцит0,80Тело человека3,47
Камень0.84..1,26Торф1,67. 2,09
Каолин (белая глина)0,88Уголь бурый (О. 1ОО °С )
Картон сухой1,3420% воды2,09
Кварц0,7560% воды3,14
Кизельгур (диатомит)0,84в брикетах1,51
Кирпич0,84Уголь древесный0,75. 1,17
Кирпичная стена0,84. 1,26Уголь каменный (0. 100°С)1,17. 1,26
Кожа1,51Фарфор0,80
Кокс (0. 100°С)0,84Хлопок1,30
(0. 1000°C)1,13Целлюлоза1.55
Лед (0°С)2.11Цемент0,80
(-10°С)2,22Чугун0,55
(-20 °С)2,01Шерсть1,80
(-60 °С )1,64Шифер0,75
Лед сухой (твердая CO2)1,38Щебень0,75. 1,00

Удельная теплоемкость различных жидких веществ при 20 °С (если не указано другое значение температуры)

НазваниеCpж
кДж/(кг °С)
НазваниеCpж
кДж/(кг °С)
Ацетон2,22Масло минеральное1,67. 2,01
Бензин2,09Масло смазочное1,67
Бензол (10°С)1,42Метиленхлорид1,13
(40С)1,77Метил хлорид1,59
Вода чистая (0°С)4,218Морская вода (18°С)
(10°С)4,1920,5% соля4,10
(20°С)4,1823% соля3,93
(40°С)4,1786% соли3,78
(60°С)4,184Нефть0,88
(80°С)4,196Нитробензол1,47
(100°С)4,216Парафин жидкий2,13
Глицерин2,43Рассол (-10°С)
Гудрон2,0920% соли3,06
Деготь каменноугольный2,0930% соли2,64. 2,72
Дифенил2,13Ртуть0,138
Довтерм1,55Скипидар1,80
Керосин бытовой1,88Спирт метиловый (метанол)2,47
Керосин бытовой (100 °С)2,01Спирт нашатырный4,73
Керосин тяжелый2,09Спирт этиловый (этанол)2,39
Кислота азотная 100%-я3,10Толуол1.72
Кислота серная 100%-я1,34Трихлорэтилен0,93
Кислота соляная 17%-я1,93Хлороформ1,00
Кислота угольная (-190°С)0,88Этиленгликоль2,30
Клей столярный4,19Эфир кремниевой кислоты1,47

Примечание: источниками справочных данных являются публикации в Интернете, поэтому они не могут считаться «официальными» и «абсолютно точными». Как правило, в Интернет справочниках не приводятся ссылки на научные работы, являющиеся основой опубликованных данных. Мы стараемся брать информацию из наиболее надежных научных сайтов. Однако если кого-то интересуют ссылки на эксперименты, советуем произвести самостоятельно углубленный поиск в Интернете. Будем признательны за любые комментарии к нашим справочным таблицам, а особенно за уточнения существующей информации или дополнение справочных данных.

2 подразделения удельной теплоемкости стали с учетом марок

Удельная теплоемкость стали: физическое обоснование термина «теплоемкость» + классификация стали + удельная теплоёмкость высоколегированных сплавов с особыми свойствами + 4 таблицы со значениями популярных марок стали в производстве.

Физика не всегда сродни прямолинейной логике. Если человек поставит на печку пустую металлическую емкость, она нагреется за 1 минуту.

В предположении, при наполнении ёмкости водой, ее скорость нагрева должна быть равна скорости нагрева стенок сосуда, но это не так. Хозяйки знают, что вне зависимости от скорости нагрева кастрюли, вода в ней будет повышать свою температуру постепенно.

Подобная зависимость обусловлена удельной теплоемкостью стали и других веществ. В сегодняшней статье как раз и будет рассмотрен данный вопрос через призму физических процессов и промышленного применения.

Что такое удельная теплоемкость стали и других материалов: терминология + расчётные особенности

Простой эксперимент выше четко дает понять, что у каждого химического элемента имеется собственный физический показатель, именуемый удельной теплоемкостью. В рамках нашего сайта вопрос рассматривается для стали и ее сплавов, ибо в черной/цветной металлургии оговоренный параметр крайне важен. Давайте рассмотрим термин «удельная теплоемкость» и особенность стали поподробнее.

1) Понятие удельной теплоемкости

Термин состоит из 2 слов – удельная и теплоемкость. Для простоты усвоения полного, разберем частное. Теплоемкостью называют количество поглощаемой теплоты при нагревании на температуру в 1 кельвин.

Более точное определение дается в учебнике 8 класса – физическая величина, просчитывающаяся как отношение количества теплоты в бесконечно малой смене температуры, к показателю этого изменения.

Читать еще:  Как загнуть трубу из нержавейки: основные способы и приемы

Теперь перейдём к удельной теплоемкости. В международной системе единиц величина представляется как заглавная/прописная латинская «С» , а единица измерения величины одна из двух – Джоули на килограммы, перемноженные на кельвины (Дж/(кг•К), или калории, деленные на килограммы, умноженные на градусы Цельсия (калория/(кг•°C). Второй вариант относится к одному из многих вариантов внесистемных единиц.

Важно: удельная теплоемкость напрямую зависит от значения температуры, а потому, в науке более точным считается формула со значениями, которые формально бесконечно малы.

В промышленности удельная теплоемкость с предельно минимальными значениями почти не используется поэтому в дальнейшем будет рассмотрена исключительно классическая формулировка формулы расчёта.

2) Что такое сталь: особенности материала + классификация

Преимущества сталиНедостатки материала
Материал с высокими показателями прочности + обилие свойств, что обуславливается различными добавками и способами обработки стали.Слабая стойкость классической стали к коррозии. Частично решает проблему покрытие нержавейкой/полимером. Нержавеющая сталь в 3-10 раз дороже своего «черного» собрата.
Хорошая вязкость с упругостью, что позволяет применять материал в местах как с динамическими, так и статическими нагрузками.Из-за накопления электричества повышается электромеханическая коррозия.
Низкий показатель износостойкости, что обеспечивает материалу эксплуатационную долговечность.Конструкции из стали имеют большой вес, что может усложнить монтаж/демонтаж и даже эксплуатацию.
Экономически обоснованный вариант сырья, ибо добыча железа по себестоимости в десятки раз ниже, нежели другие типы металлов периодической системы.Мельчайшие неточности в многоэтапном процессе изготовления стали оборачиваются фатальными провалами в качестве итоговой продукции.

Благодаря простоте сгибания, нарезания и сварки, стальные конструкции, часто используемые не только в промышленных масштабах, но и в домашнем хозяйстве. В зависимости от способа производства, свойства сплава могут варьироваться очень сильно. И удельной теплоемкости это касается, в том числе.

ПараметрКомпоненты + описание
По химическому составуУглеродистые . Легирующим элементом выступает углерод. В зависимости от его доли в сплаве, идет подразделение на малоуглеродистые (менее 0.3%), среднеуглеродистые (от 0.3% до 0.8%) и высокоуглеродистые (более 0.7%).
Легированные . Здесь также 3 подгруппы в зависимости от долевого вхождения примесей – меньше 2.5%, от 2.5% до 10%, и более 10%. Низко-, средне-, и высоколегированные соответственно. Добавками могут быть как металлы, так и неметаллические вещества. Самая популярная из легированных сталей – нержавейка.
По структурному составуПерлитная . Разновидности стали с низким содержанием углерода.
Мартенситные . В сплаве большое количество примесей.
Аустенитная. Высоколегированная сталь.
По раскислителюСпокойная . В сплаве не содержится закись железа, что делает металл однородным и стабильным. Используется не часто из-за дороговизны производства.
Полуспокойная . Твердеет без кипения, но сопутствующие газы выделяются + часть из них остается в сплаве и после отвердевания. Сталь используется в конструкционных целях.
Кипящая . С содержанием газов в остывшем материале. Из-за этого слабо пригоден к сварке. По технологии изготовления – это самый дешевый вариант, потому используется для большинства простых конструкций.
По назначениюСтроительная . Обычные и низколегированные разновидности стали с хорошими показателями свариваемости. Используются в конструкциях с высокими статическими нагрузками.
Инструментальная. Относят стали с высоким содержанием углерода и сторонних примесей (более 20%). В категории имеется классификация на штампованные, измерительные и режущие.
Конструкционные . Сплавы имеют незначительное содержание марганца. Основная область применения – узловые элементы конструкций. Из-за необходимости разнообразия в свойствах, в категории популярные среднелегированные стали.
Специальные . По сути, это специфические разновидности конструкционных сталей. Специализированное назначение – устойчивость к жару, кислоте и другим агрессивным средам.
По примесямРядовые . Содержание серы и фосфора не более 7 сотых процента.
Качественные . Долевое содержание серы меньше 0.04% и фосфора меньше 0.35%. По изготовлению обходятся дороже, но в отношении механических свойств – куда лучше.
Высококачественные . Долевое содержание серы и фосфора менее 0.025%. Технология изготовления – электрические печи, где требуется низкое вкрапление неметаллических примесей.
Особовысококачественные . Элита среди стали. Процентное содержание серы менее 0.015%, а фосфора менее 0.025%.

Вдаваться в тонкости производства не будем, но вы должны понимать, что удельная теплоемкость марки стали напрямую зависит от методов ее производства. В 2020 году выделяют 4 метода изготовления стальных сплавов – мартеновский, кислотно-конвертерный, электроплавильный и прямой. По своей сути, производство стальных сплавов – это переработка чугуна с отжиганием излишних примесей и введением легирующих компонентов. И чем дороже сырье/технология, тем лучше результат.

Какова удельная теплоемкость стали различных марок?

Первая из таблиц самая объемная, но также информативная. Имеется 3 столбца – марка стали, температура в Цельсиях и теплоемкость стали в Джоулях/килограмм*градусы. При просмотре данных легко заметить закономерность пропорционального роста удельной теплоёмкости в зависимости от показателей термометра. При комнатной температуре значение удельной теплоемкости стали находится в пределах 420-560 Дж/(кг•град).

1) Удельная теплоемкость высоколегированных сталей с особыми свойствами

К основным свойствам стали Г13 относят высокое сопротивление износу при давлении и ударных нагрузках, что сделало материал одним из базовых в военной промышленности. Гусеничные траки, дробильные щеки, крестовины рельсов и даже решетки в тюрьмах – все это производится из марки стали Г13.

Марка Р18 относится к быстрорежущей инструментальной стали + используется как заменитель Р12. Наибольшее распространение сплав приобрел в разработке инструментов – сверла, фрезы, долбяки, метчики, зенкера и протяжки по обработке конструкционных сталей с прочностью до 1000 МПа.

В таблице выше предоставлен температурный интервал от 50 до 1 300 градусов Цельсия с шагом деления в 50. Максимальное допустимое колебание удельной теплоемкости на оговорённых промежутках составит не более 0.2%.

Описание понятия теплоемкости вещества доступным языком с практическими примерами:

2) Удельная теплоемкость других популярных марок стали

Теперь пробежимся по различным классификаторам марок стали, и начнем с низколегированных. Данные в таблице ниже поданы из расчета на 5 марок – 30Х, 30Н3, 30ХН3, 30Г2 и 50С2Г. Интервал скачков температуры составляет 50 градусов.

Следующим в списке расположены значения по удельной теплоемкости чугуна и среднеуглеродистых марок стали. Температурный интервал не имеет четкой градации, а рассчитывается как среднее значение в Кельвинах. По чугуну представлено 2 популярнейших промышленных марки – СЧ10 и чугун белый.

Если говорить о среднелегированных марках стали, то здесь представлено порядка 30 представителей, широко распространенных в бытовых вопросах и легкой стальной промышленности. Температура подается в кельвинах + с точными значениями для каждой марки стали.

Завершает наш перечень значений удельной теплоемкости таблица из популярных углеродистых сталей из 7 марок + чистого железа с чистотой 99.99%. Интервальные скачки по температуре стандартный – 50 градусов. Температурная единица измерения – градусы Цельсия.

Оговоренные таблицы берутся из специализированной литературы по металлургии. Хотя книги и не отличаются свежестью (большинство еще советских времен), их достоверность данных в отношении удельной теплоемкости стали крайне высока.

Таблица удельной теплоемкости некоторых металлов и сплавов

Теплоемкость тела обозначается заглавной латинской буквой С.

От чего зависит теплоемкость тела? Прежде всего, от его массы. Ясно, что для нагрева, напри­мер, 1 килограмма воды потребуется больше тепла, чем для нагрева 200 граммов.

А от рода вещества? Проделаем опыт. Возьмем два одинаковых сосуда и, налив в один из них воду массой 400 г, а в другой — растительное масло массой 400 г, начнем их нагревать с помощью одинаковых горелок. Наблюдая за показаниями термометров, мы увидим, что масло нагревается быстрее. Чтобы нагреть воду и масло до одной и той же температуры, воду следует нагревать доль­ше. Но чем дольше мы нагреваем воду, тем большее количество теплоты она получает от горелки.

Таким образом, для нагревания одной и той же массы разных веществ до одинаковой темпе­ратуры требуется разное количество теплоты. Количество теплоты, необходимое для нагревания тела и, следовательно, его теплоемкость зависят от рода вещества, из которого состоит это тело.

Так, например, чтобы увеличить на 1 °С температуру воды массой 1 кг, требуется количество теплоты, равное 4200 Дж, а для нагревания на 1 °С такой же массы подсолнечного масла необхо­димо количество теплоты, равное 1700 Дж.

Физическая величина, показывающая, какое количество теплоты требуется для нагревания 1 кг вещества на 1 °С, называется удельной теплоемкостью этого вещества.

У каждого вещества своя удельная теплоемкость, которая обозначается латинской буквой с и измеряется в джоулях на килограмм-градус (Дж/(кг·K)).

Удельная теплоемкость одного и того же вещества в разных агрегатных состояниях (твердом, жидком и газообразном) различна. Например, удельная теплоемкость воды равна 4200 Дж/(кг·K) , а удельная теплоемкость льда Дж/(кг·K) ; алюминий в твердом состоянии имеет удельную теплоемкость, равную 920 Дж/(кг·K) , а в жидком — Дж/(кг·K) .

Заметим, что вода имеет очень большую удельную теплоемкость. Поэтому вода в морях и океанах, нагреваясь летом, поглощает из воздуха большое количество тепла. Благодаря этому в тех местах, которые расположены вблизи больших водоемов, лето не бывает таким жарким, как в местах, удаленных от воды.

Удельная теплоемкость твердых веществ

В таблице приведены средние значения удельной теплоемкости веществ в интервале температур от 0 до 10°С(если не указана другая температура)

Расчёт значений средних теплоёмкостей

Рассчитать значение средней удельной теплоёмкости в некотором заданном интервале температур от t1 до t2 о С можно как по таблицам средних теплоёмкостей, так и по эмпирической формуле для истинной теплоёмкости.

Расчёт по таблицам ведётся на базе формулы определения средней теплоёмкости (9.2):

, (9)

где – средняя удельная теплоемкость в интервале температур от t1 до t2, Дж/(кг · К).

При этом значение теплоты q, которую необходимо подвести к 1 кг вещества чтобы нагреть его от t1 до t2 о С, определяется как разность двух теплот: теплоты , которая затрачивается на нагрев от 0 до t2 о С и теплоты , которая затрачивается на нагрев от 0 до t1 о С:

, Дж/кг. (10)

Для вычисления и в таблицах выбираем значение средней теплоёмкости при температуре t2 – это средняя теплоёмкость в интервале температур от 0 до t2 о С: .

Соответственно будем иметь:

. (11)

Аналогичным образом получаем:

, (12)

где – табличные данные средней теплоёмкости при температуре t1, Дж/(кг · К).

После подстановки (11) и (12) в (9) окончательно получаем формулу:

. (13)

По формуле для истинной теплоёмкости значение средней теплоёмкости в интервале температур от t1 до t2 определяется как среднеинтегральное от функции с(t) в данном интервале температур.

Пусть эмпирическая формула для истинной удельной теплоёмкости имеет вид, аналогичный (9.2):

с(Т) = a1 + a2 · t + a3 · t –2 , (14)

где t – температура, o C; a1, a2 и a3 – известные для конкретного вещества коэффициенты.

Тогда формула для вычисления средней теплоёмкости в интервале температур от t1 до t2 имеет вид:

. (15)

Теплоёмкость смеси идеальных газов

Рассмотрим идеальную газовую смесь, состоящую из n компонентов, масса которой М, кг. Для наглядности будем считать, что смесь нагревается в интервале температур равном одному градусу. Для нагрева такой смеси на один градус Цельсия (или Кельвина) необходимо температуру каждого из компонентов повысить на один градус.

Следовательно, к каждому компоненту необходимо подвести теплоту Qi, которая повысит температуру этого i-го компонента на один градус:

где mi – масса i-го компонента, кг; ci – удельная массовая теплоёмкость i-го компонента, Дж/(кг · К).

Очевидно, что количество теплоты, необходимое для нагрева всей смеси на один градус Qсм, равно сумме теплот, необходимых для нагрева каждого компонента:

, Дж. (17)

С другой стороны по определению удельной массовой теплоёмкости смеси ссм имеем:

Qсм = М · ссм · 1, Дж. (18)

Исходя из (17) и (18) можем записать:

. (19)

После деления обоих частей (19) на М получаем формулу для расчёта удельной массовой теплоёмкости смеси:

, Дж/(кг · К), (20)

где gi – массовая доля компонента, кг/кг.

Так как химический состав смеси всегда задан, то значения массовых долей компонентов gi известны и по формуле (20) всегда можно рассчитать ссм.

Повторив рассуждения для объёмных и мольных удельных теплоёмкостей, можно легко получить аналогичные формулы:

с΄см = , (21)

μссм = , (22)

где и μссм – удельные объёмная и мольная теплоёмкость смеси соответственно, Дж/(нм 3 · К), Дж/(моль · К); ri – объемная доля i-го компонента смеси; ki – мольная доля i-го компонента смеси; c’i и μci – удельные объёмная и мольная теплоемкость i-го компонента смеси, Дж/(нм 3 · К), Дж/(моль · К).

В формулах (21) и (22) следует учитывать, что объёмные доли численно равны мольным долям ri = ki (см. п. 3.2. Приложения 3).

Таким образом при заданном химическом составе смеси значения ri известны и по формулам (21) и (22) всегда можно рассчитать и μссм.

Следует отметить, что по формулам (20) – (22) могут быть рассчитаны средние и истинные теплоёмкости как при постоянном давлении, так и при постоянном объёме.

Приложение 6

Дата добавления: 2018-02-15 ; просмотров: 2804 ;

Таблица теплоемкости некоторых материалов.

Таблица теплоемкости некоторых материалов.

Таблица показывает, какое количество тепла может сохранить в себе 1 кубометр материала при его нагреве на 1 градус.

№ по СНИПМатериалПлотность кг/м 3Удельная
теплоемкость, кДж/кг* o C
Кол-во тепла
на 1 градус, кДж/м 3 * o C
144Пенополистирол401,3454
129Маты минерало-ватные прошивные1250,84105
143Пенополистирол1001,34134
145Пенопласт ПХВ-11251,26158
142Пенополистирол1501,34201
67Газо- и пенобетон газо- и пено-силикат3000,84252
66Газо- и пенобетон газо- и пено-силикат4000,84336
119Плиты древесно-волокнистые и древесно-стружечные2002,30460
65Газо- и пенобетон газо- и пено-силикат6000,84504
64Газо- и пенобетон газо- и пено-силикат8000,84672
70Газо- и пено- золобетон8000,84672
83Листы гипсовые обшивочные (сухая штукатурка)8000,84672
63Газо- и пенобетон газо- и пено-силикат10000,84840
69Газо- и пено- золобетон10000,84840
118Плиты древесно-волокнистые и древесно-стружечные4002,30920
68Газо- и пено- золобетон12000,841008
108Сосна и ель поперёк волокон5002,301150
109Сосна и ель вдоль волокон5002,301150
92Керамический пустотный14000,881232
112Фанера клееная6002,301380
117Плиты древесно-волокнистые и древесно-стружечные6002,301380
91Кирпич керамический16000,881408
47Бетон на доменных гранулированных шлаках18000,841512
84Кирпичная кладка (кирпич глиняный)18000,881584
110Дуб поперек волокон7002,301610
111Дуб вдоль волокон7002,301610
116Плиты древесно-волокнистые и древесно-стружеч-ные8002,301840
2Бетон на гравии или щебне из природного камня24000,842016
1Железо-бетон25000,842100
113Картон облицовочный10002,302300
115Плиты древесно-волокнистые и древесно-стружеч-ные10002,302300
Вода10004,184180

Пример. Сколько тепла будет накоплено в 1 кубометре воды при нагреве ее от 40 градусов до 90 градусов?

Удельная теплоемкость воды при 20 o Суд = 4,18 кДж/кг* o С
Разница температур Т = 90-40 = 50 o
Удельный вес г = 1000 кг/м 3
Объем v=1 м 3
Количество запасенной энергии Э = C*Т*v*г = 4.18*50*1*1000 = 209000 кДж (

0 0 голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты