Rich--house.ru

Строительный журнал Rich—house.ru
7 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Удельное сопротивлене меди и ее влияние на свойства металла

Все об удельном сопротивлении

Время на чтение:

Направленное движение частиц в любом веществе создает электрический ток за счет образования разности потенциалов. Индивидуальные физические характеристики каждого вещества определяют влияние на прохождение тока и оцениваются как электрическое сопротивление.

Суть явления

Это величина, характерная для проводника, имеющего длину 1 метр и площадь поперечного сечения 1 квадратный метр/миллиметр. Ее обозначают греческой буквой ρ. Разным материалам свойственны разные удельные сопротивления. Вместе с тем сопротивление проводника будет меняться в прямой пропорциональности к длине и в обратной к площади поперечного сечения. То есть чем больше длина проводника, тем оно выше, но чем больше толщина, тем оно ниже.

Длина

Единицы измерения

Практическое значение в технике имеет единица, равная миллионной доле ома, помноженного на метр (Ом-м), так как даже встретить провод с сечением, равным одному квадратному метру и более, довольно проблематично. Поэтому в измерениях обычно применяют микроом-метр (мкОм-м):

1 мкОм-м = 1×10^-6 Ом-м = 1 Ом-мм 2 /м

Формула расчета удельного сопротивления

Расчет производят так:

, где R — сопротивление проводника (Ом); L — длина проводника (м); S — сечение проводника (мм 2 ).

Штангенциркуль

Таким образом ρ однокомпонентного отрезка провода, длина которого равняется 1 метру, а площадь поперечного сечения — 1 квадратному миллиметру, при R, равном 1 ому, составит 1 Ом-мм 2 /м.

Таблица удельного электрического сопротивления некоторых металлов

Вид проводаρ при 20℃, Ом-м
Серебряный1,59×10⁻⁸
Медный1,67×10⁻⁸
Золотой2,35×10⁻⁸
Алюминиевый2,65×10⁻⁸
Вольфрамовый5,65×10⁻⁸
Никелевый6,84×10⁻⁸
Железный9,7×10⁻⁸
Платиновый1,06×10⁻⁷
Стальной1,6×10⁻⁷
Свинцовый2,06×10⁻⁷
Дюралюминиевый4,0×10⁻⁷
Нихромовый1,05×10⁻⁶

Удельное сопротивление абсолютно независимо от формы и размеров проводника, однако варьируется в широком диапазоне при отклонении температуры от принятого за стандартное значения, равного 20 градусам Цельсия. Практическим электротехническим путем доказано, что увеличение температуры повышает сопротивляемость металлов течению тока, с обратной стороны — вместе со снижением температуры она снижается. Примерно подсчитать, насколько существенным будет изменение, можно с учетом того, что всем металлам присущ почти одинаковый уровень прироста убыли данной величины, в среднем составляющий 0,4% на 1°С.

Если же данный показатель нужно определить точно, то можно воспользоваться этой формулой:

ρ = ρ0 x (1 + α x (t — t ))

, где ρ и ρ0 — соответственно удельные сопротивления при температурах t и t (20°С, табличное значение), α — температурный коэффициент сопротивления.

Вид проводаα
Никелевый0,005866
Железный0,005671
Молибденовый0,004579
Вольфрамовый0,004403
Алюминиевый0,004308
Медный0,004041
Серебряный0,003819
Платиновый0,003729
Золотой0,003715
Цинковый0,003847
Стальной0,003
Нихромовый0,00017

Так, к примеру, найдя в таблицах удельное сопротивление меди при 20 градусах Цельсия и ее температурный коэффициент, можно вычислить, что при нагреве до 100℃ ее сопротивление вырастет на 32%. Практически то же самое будет происходить с удельным сопротивлением алюминиевого кабеля с тем же коэффициентом (0,004). А вот удельное сопротивление стали повысится менее значительно — на 24%.

Нагрев

С увеличением температуры проводник насыщается тепловой энергией, передающейся всем атомам вещества. Этим обуславливается повышение интенсивности их теплового движения. Последний фактор и приводит к повышению сопротивляемости движению свободных электронов в определенном направлении, поскольку возрастает вероятность встречи свободных электронов с атомами. Когда температура снижается, меньшее количество атомов может препятствовать направленному движению электронов, следовательно, происходит обратное. В результате колоссального спада температуры возникает интереснейшее явление, называемое «сверхпроводимостью металлов»: сопротивляемость уменьшается до нуля в условиях, близких к абсолютному нулю (-273,15℃). В таких кондициях атомы металла замирают на своих позициях, и электроны движутся без каких-либо препятствий.

Сверхпроводимость

Удельное сопротивление меди различных марок

Круглая медная проволока для проводов, кабелей и так далее бывает мягкой (марка ММ), твердой (марка МТ) и марки МС. Ее выпускают в диапазоне диаметров 0,02-9,42 мм. Удельное электрическое сопротивление проволоки постоянному току при 20℃ соответствует значениям, приведенным в таблице:

Диаметр проволоки, ммρ при 20℃, мкОм-м
МММТ, МС
Меньше 1,000,018
1,0-2,440,017240,0178
2,50 и больше0,0177

Преимущества меди в плане проводимости дают повод обширно применять ее на производстве проводников. Вместе с тем медь — относительно дорогой и дефицитный материал, поэтому ее все чаще заменяют другими металлами, включая алюминий.

Сплавы меди с оловом, хромом, кадмием и другие называют бронзами. Бронза при правильном подоборе состава очень выгодно отличается от чистой меди по части механических свойств.

Удельное сопротивление железа, алюминия, меди и других металлов

Каждое вещество способно проводить ток в разной степени, на эту величину влияет сопротивление материала. Обозначается удельное сопротивление меди, алюминия, стали и любого другого элемента буквой греческого алфавита ρ. Эта величина не зависит от таких характеристик проводника, как размеры, форма и физическое состояние, обычное же электросопротивление учитывает эти параметры. Измеряется удельное сопротивление в Омах, умноженных на мм² и разделенных на метр.

  • Категории и их описание
  • Характеристики металлов
    • Достоинства меди
    • Преимущества алюминия
    • Показатели стали и железа
    • Свойства натрия
  • Правила и особенности вычисления
  • Влияние температуры на измерение

Категории и их описание

Любой материал способен проявлять два типа сопротивления в зависимости от подаваемого на него электричества. Ток бывает переменным или постоянным, что значительно влияет на технические показатели вещества. Так, существуют такие сопротивления:

  1. Омическое. Проявляется под воздействием постоянного тока. Характеризует трение, которое создается движением электрически заряженных частиц в проводнике.
  2. Активное. Определяется по такому же принципу, но создается уже под действием переменного тока.

В связи с этим определений удельной величины тоже два. Для постоянного тока она равна сопротивлению, которое оказывает единица длины проводящего материала единичной фиксированной площади сечения. Потенциальное электрополе воздействует на все проводники, а также полупроводники и растворы, способные проводить ионы. Эта величина определяет проводящие свойства самого материала. Форма проводника и его размеры не учитываются, поэтому ее можно назвать базовой в электротехнике и материаловедении.

При условии прохождения переменного тока удельная величина рассчитывается с учетом толщины проводящего материала. Здесь уже происходит воздействие не только потенциального, но и вихревого тока, кроме того, принимается во внимание частота электрических полей. Удельное сопротивление этого типа больше, чем при постоянном токе, поскольку здесь идет учет положительной величины сопротивления вихревому полю. Также эта величина зависит от формы и размеров самого проводника. Именно эти параметры и определяют характер вихревого движения заряженных частиц.

Переменный ток вызывает в проводниках определенные электромагнитные явления. Они очень важны для электротехнических характеристик проводящего материала:

  1. Скин-эффект характеризуется ослаблением электромагнитного поля тем больше, чем дальше оно проникает в среду проводника. Это явление также носит название поверхностного эффекта.
  2. Эффект близости снижает плотность тока благодаря близости соседних проводов и их влиянию.

Эти эффекты являются очень важными при расчете оптимальной толщины проводника, так как при использовании провода, у которого радиус больше глубины проникновения тока в материал, остальная его масса останется незадействованной, а следовательно, такой подход будет неэффективным. В соответствии с проведенными расчетами эффективный диаметр проводящего материала в некоторых ситуациях будет следующим:

  • для тока в 50 Гц — 2,8 мм;
  • 400 Гц — 1 мм;
  • 40 кГц — 0,1 мм.

Ввиду этого для высокочастотных токов активно применяется использование плоских многожильных кабелей, состоящих из множества тонких проводов.

Характеристики металлов

Удельные показатели металлических проводников содержатся в специальных таблицах. По этим данным можно производить необходимые дальнейшие расчеты. Пример такой таблицы удельных сопротивлений можно увидеть на изображении.

На таблице видно, что наибольшей проводимостью обладает серебро — это идеальный проводник среди всех существующих металлов и сплавов. Если рассчитать, сколько потребуется провода из этого материала для получения сопротивления в 1 Ом, то выйдет 62,5 м. Проволоки из железа для такой же величины понадобится целых 7,7 м.

Достоинства меди

Какими бы замечательными свойствами ни обладало серебро, оно является слишком дорогим материалом для массового использования в электросетях, поэтому широкое применение в быту и промышленности нашла медь. По величине удельного показателя она стоит на втором месте после серебра, а по распространенности и простоте добычи намного лучше его. Медь обладает и другими преимуществами, позволившими ей стать самым распространенным проводником. К ним относятся:

  • высокая стойкость к коррозии;
  • механическая прочность;
  • устойчивость к деформациям;
  • легкость фиксирования путем пайки и сварки;
  • высокая обрабатываемость (благодаря мягкости медь раскатывают в листы любой толщины, а вытягиваемая из нее проволока может быть настолько тонкой, что ее сечение будет иметь значение тысячных миллиметра).

Для применения в электротехнике используют рафинированную медь, которая после плавки из сульфидной руды проходит процессы обжигания и дутья, а далее обязательно подвергается электролитической очистке. После такой обработки можно получить материал очень высокого качества (марки М1 и М0), который будет содержать от 0,1 до 0,05% примесей. Важным нюансом является присутствие кислорода в крайне малых количествах, так как он негативно влияет на механические характеристики меди.

Часто этот металл заменяют более дешевыми материалами — алюминием и железом, а также различными бронзами (сплавами с кремнием, бериллием, магнием, оловом, кадмием, хромом и фосфором). Такие составы обладают более высокой прочностью по сравнению с чистой медью, хотя и меньшей проводимостью.

Преимущества алюминия

Хоть алюминий обладает большим сопротивлением и более хрупок, его широкое использование объясняется тем, что он не настолько дефицитен, как медь, а следовательно, стоит дешевле. Удельное сопротивление алюминия составляет 0,028, а его низкая плотность обеспечивает ему вес в 3,5 раза меньше, чем медь.

Для электрических работ применяют очищенный алюминий марки А1, содержащий не более 0,5% примесей. Более высокую марку АВ00 используют для изготовления электролитических конденсаторов, электродов и алюминиевой фольги. Содержание примесей в этом алюминии составляет не более 0,03%. Существует и чистый металл АВ0000, включающий не более 0,004% добавок. Имеют значение и сами примеси: никель, кремний и цинк незначительно влияют на проводимость алюминия, а содержание в этом металле меди, серебра и магния дает ощутимый эффект. Наиболее сильно уменьшают проводимость таллий и марганец.

Алюминий отличается хорошими антикоррозийными свойствами. При контакте с воздухом он покрывается тонкой пленкой окиси, которая и защищает его от дальнейшего разрушения. Для улучшения механических характеристик металл сплавляют с другими элементами.

Показатели стали и железа

Удельное сопротивление железа по сравнению с медью и алюминием имеет очень высокие показатели, однако благодаря доступности, прочности и устойчивости к деформациям материал широко используют в электротехническом производстве.

Хоть железо и сталь, удельное сопротивление которой еще выше, имеют существенные недостатки, изготовители проводникового материала нашли методы их компенсирования. В частности, низкую стойкость к коррозии преодолевают путем покрытия стальной проволоки цинком или медью.

Свойства натрия

Металлический натрий также очень перспективен в проводниковом производстве. По показателям сопротивления он значительно превышает медь, однако имеет плотность в 9 раз меньше, чем у неё. Это позволяет использовать материал в изготовлении сверхлёгких проводов.

Металлический натрий очень мягкий и совершенно неустойчив к любого рода деформационным воздействиям, что делает его использование проблемным — провод из этого металла должен быть покрыт очень прочной оболочкой с крайне малой гибкостью. Оболочка должна быть герметичной, так как натрий проявляет сильную химическую активность в самых нейтральных условиях. Он моментально окисляется на воздухе и демонстрирует бурную реакцию с водой, в том числе и с содержащейся в воздухе.

Еще одним плюсом использования натрия является его доступность. Его можно получить в процессе электролиза расплавленного хлористого натрия, которого в мире существует неограниченное количество. Другие металлы в этом плане явно проигрывают.

Чтобы рассчитать показатели конкретного проводника, необходимо произведение удельного числа и длины проволоки разделить на площадь ее сечения. В результате получится значение сопротивления в Омах. Например, чтобы определить, чему равно сопротивление 200 м проволоки из железа с номинальным сечением 5 мм², нужно 0,13 умножить на 200 и разделить полученный результат на 5. Ответ — 5,2 Ом.

Читать еще:  способ электроэрозионного легирования поверхностей стальных деталей

Правила и особенности вычисления

Для измерения сопротивления металлических сред пользуются микроомметрами. Сегодня их выпускают в цифровом варианте, поэтому проведенные с их помощью измерения отличаются точностью. Объяснить ее можно тем, что металлы обладают высоким уровнем проводимости и имеют крайне маленькое сопротивление. Для примера, нижний порог измерительных приборов имеет значение 10 -7 Ом.

С помощью микроомметров можно быстро определить, насколько качественен контакт и какое сопротивление проявляют обмотки генераторов, электродвигателей и трансформаторов, а также электрические шины. Можно вычислить присутствие включений другого металла в слитке. Например, вольфрамовый кусок, покрытый позолотой, показывает вдвое меньшую проводимость, чем полностью золотой. Тем же способом можно определить внутренние дефекты и полости в проводнике.

Чтобы рассчитать параметры провода — его длину, диаметр и сопротивление — потребуется всего лишь знать величину его удельного значения ρ.

Формула удельного сопротивления выглядит следующим образом: ρ = Ом · мм 2 /м. Словами ее можно описать как сопротивление 1 метра проводника, имеющего площадь сечения 1 мм². Температура подразумевается стандартная — 20 °C.

Влияние температуры на измерение

Нагревание или охлаждение некоторых проводников оказывает значительное влияние на показатели измерительных приборов. В качестве примера можно привести следующий опыт: необходимо подключить к аккумулятору спирально намотанную проволоку и подключить в цепь амперметр.

Чем сильнее нагревается проводник, тем меньше становятся показания прибора. Сила тока имеет обратно пропорциональную зависимость от сопротивления. Следовательно, можно сделать вывод, что в результате нагрева проводимость металла уменьшается. В большей или меньшей степени так ведут себя все металлы, однако изменения проводимости у некоторых сплавов практически не наблюдается.

Примечательно, что жидкие проводники и некоторые твердые неметаллы имеют тенденцию уменьшать свое сопротивление с повышением температуры. Но и эту способность металлов ученые обратили себе на пользу. Зная температурный коэффициент сопротивления (α) при нагреве некоторых материалов, можно определять внешнюю температуру. Например, проволоку из платины, размещенную на каркасе из слюды, помещают в печь, после чего проводят измерение сопротивления. В зависимости от того, насколько оно изменилось, делают вывод о температуре в печи. Такая конструкция называется термометром сопротивления.

Если при температуре t0 сопротивление проводника равно r0, а при температуре t равно rt, то температурный коэффициент сопротивления равен

Расчет по этой формуле можно производить лишь в определенном интервале температур (примерно до 200 °C).

Удельное сопротивление проводников: меди, алюминия, стали

Как нам известно из закона Ома, ток на участке цепи находится в следующей зависимости: I=U/R. Закон был выведен в результате серии экспериментов немецким физиком Георгом Омом в XIX веке. Он заметил закономерность: сила тока на каком-либо участке цепи прямо зависит от напряжения, которое к этому участку приложено, и обратно — от его сопротивления.

  • Проводимость и сопротивление
    • Проводники и диэлектрики
    • Зависимость от факторов внешней среды
  • Удельное сопротивление различных проводников

Позже было установлено, что сопротивление участка зависит от его геометрических характеристик следующим образом: R=ρl/S,

где l- длина проводника, S — площадь его поперечного сечения, а ρ — некий коэффициент пропорциональности.

Таким образом, сопротивление определяется геометрией проводника, а также таким параметром, как удельное сопротивление (далее — у. с.) — так назвали этот коэффициент. Если взять два проводника с одинаковым сечением и длиной и поставить их в цепь по очереди, то, измеряя силу тока и сопротивление, можно увидеть, что в двух случаях эти показатели будут разными. Таким образом, удельное электрическое сопротивление — это характеристика материала, из которого сделан проводник, а если быть еще более точным, то вещества.

Проводимость и сопротивление

У.с. показывает способность вещества препятствовать прохождению тока. Но в физике есть и обратная величина — проводимость. Она показывает способность проводить электрический ток. Выглядит она так:

σ=1/ρ, где ρ — это и есть удельное сопротивление вещества.

Если говорить о проводимости, то она определяется характеристиками носителей зарядов в этом веществе. Так, в металлах есть свободные электроны. На внешней оболочке их не больше трех, и атому выгоднее их «отдать», что и происходит при химических реакциях с веществами из правой части таблицы Менделеева. В ситуации же, когда мы располагаем чистым металлом, он имеет кристаллическую структуру, в которой эти наружные электроны общие. Они-то и переносят заряд, если приложить к металлу электрическое поле.

В растворах носителями заряда являются ионы.

Если говорить о таких веществах, как кремний, то по своим свойствам он является полупроводником и работает несколько по иному принципу, но об этом позже. А пока разберемся, чем же отличаются такие классы веществ, как:

  1. Проводники;
  2. Полупроводники;
  3. Диэлектрики.

Проводники и диэлектрики

Есть вещества, которые ток почти не проводят. Они называются диэлектриками. Такие вещества способны поляризоваться в электрическом поле, то есть их молекулы могут поворачиваться в этом поле в зависимости от того, как распределены в них электроны. Но поскольку электроны эти не являются свободными, а служат для связи между атомами, ток они не проводят.

Проводимость диэлектриков почти нулевая, хотя идеальных среди них нет (это такая же абстракция, как абсолютно черное тело или идеальный газ).

Условной границей понятия «проводник» является ρ

Удельное сопротивление металлов. Таблица

Удельное сопротивление металлов является мерой их свойства противодействовать прохождению электрического тока. Эта величина выражается в Ом-метр (Ом⋅м). Символ, обозначающий удельное сопротивление, является греческая буква ρ (ро). Высокое удельное сопротивление означает, что материал плохо проводит электрический заряд.

Удельное сопротивление

Удельное электрическое сопротивление определяется как отношение между напряженностью электрического поля внутри металла к плотности тока в нем:

где:
ρ — удельное сопротивление металла (Ом⋅м),
Е — напряженность электрического поля (В/м),
J — величина плотности электрического тока в металле (А/м2)

Если напряженность электрического поля (Е) в металле очень большая, а плотность тока (J) очень маленькая, это означает, что металл имеет высокое удельное сопротивление.

Обратной величиной удельного сопротивления является удельная электропроводность, указывающая, насколько хорошо материал проводит электрический ток:

σ — проводимость материала, выраженная в сименс на метр (См/м).

Электрическое сопротивление

Электрическое сопротивление, одно из составляющих закона Ома, выражается в омах (Ом). Следует заметить, что электрическое сопротивление и удельное сопротивление — это не одно и то же. Удельное сопротивление является свойством материала, в то время как электрическое сопротивление — это свойство объекта.

Электрическое сопротивление резистора определяется сочетанием формы и удельным сопротивлением материала, из которого он сделан.

Например, проволочный резистор, изготовленный из длинной и тонкой проволоки имеет большее сопротивление, нежели резистор, сделанный из короткой и толстой проволоки того же металла.

В тоже время проволочный резистор, изготовленный из материала с высоким удельным сопротивлением, обладает большим электрическим сопротивлением, чем резистор, сделанный из материала с низким удельным сопротивлением. И все это не смотря на то, что оба резистора сделаны из проволоки одинаковой длины и диаметра.

В качестве наглядности можно провести аналогию с гидравлической системой, где вода прокачивается через трубы.

  • Чем длиннее и тоньше труба, тем больше будет оказано сопротивление воде.
  • Труба, заполненная песком, будет больше оказывать сопротивление воде, нежели труба без песка

Сопротивление провода

Величина сопротивления провода зависит от трех параметров: удельного сопротивления металла, длины и диаметра самого провода. Формула для расчета сопротивления провода:


где:
R — сопротивление провода (Ом)
ρ — удельное сопротивление металла (Ом.m)
L — длина провода (м)
А — площадь поперечного сечения провода (м2)

В качестве примера рассмотрим проволочный резистор из нихрома с удельным сопротивлением 1.10×10-6 Ом.м. Проволока имеет длину 1500 мм и диаметр 0,5 мм. На основе этих трех параметров рассчитаем сопротивление провода из нихрома:

R=1,1*10 -6 *(1,5/0,000000196) = 8,4 Ом

Нихром и константан часто используют в качестве материала для сопротивлений. Ниже в таблице вы можете посмотреть удельное сопротивление некоторых наиболее часто используемых металлов.

Поверхностное сопротивление

Величина поверхностного сопротивления рассчитывается таким же образом, как и сопротивление провода. В данном случае площадь сечения можно представить в виде произведения w и t:


Для некоторых материалов, таких как тонкие пленки, соотношение между удельным сопротивлением и толщиной пленки называется поверхностное сопротивление слоя RS:

где RS измеряется в омах. При данном расчете толщина пленки должна быть постоянной.

Часто производители резисторов для увеличения сопротивления вырезают в пленке дорожки, чтобы увеличить путь для электрического тока.

Свойства резистивных материалов

Удельное сопротивление металла зависит от температуры. Их значения приводится, как правило, для комнатной температуры (20°С). Изменение удельного сопротивления в результате изменения температуры характеризуется температурным коэффициентом.

Например, в термисторах (терморезисторах) это свойство используется для измерения температуры. С другой стороны, в точной электронике, это довольно нежелательный эффект.
Металлопленочные резисторы имеют отличные свойства температурной стабильности. Это достигается не только за счет низкого удельного сопротивления материала, но и за счет механической конструкции самого резистора.

Много различных материалов и сплавов используются в производстве резисторов. Нихром (сплав никеля и хрома), из-за его высокого удельного сопротивления и устойчивости к окислению при высоких температурах, часто используют в качестве материала для изготовления проволочных резисторов. Недостатком его является то, что его невозможно паять. Константан, еще один популярный материал, легко паяется и имеет более низкий температурный коэффициент.

Удельное сопротивление проводников — меди, алюминия, стали

Одной из физических величин, используемых в электротехнике, является удельное электрическое сопротивление. Рассматривая удельное сопротивление алюминия, следует помнить, что данная величина характеризует способность какого-либо вещества, препятствовать прохождению через него электрического тока.

Медь – основной материал для проводников

Квалифицированный выбор подходящего материала сопровождается комплексной оценкой нескольких факторов. Медный проводник не повреждается коррозией, потому что на поверхности образуется защитный слой из окислов. Структурная целостность сохраняется при малом радиусе поворота, после многократных изгибов. Отмеченные параметры пригодятся для оснащения помещений с повышенной влажностью и прокладки линий сложной конфигурации.

Тем не менее, главным преимуществом является малое сопротивление проводов из меди. Кроме улучшения токопроводимости с одновременным снижением потерь при передаче энергии, следует отметить уменьшение веса и размеров кабельной продукции, по сравнению с альтернативными вариантами.

Таблица удельных сопротивлений проводников

Материал проводникаУдельное сопротивление ρ в
Серебро
Медь
Золото
Латунь
Алюминий
Натрий
Иридий
Вольфрам
Цинк
Молибден
Никель
Бронза
Железо
Сталь
Олово
Свинец
Никелин (сплав меди, никеля и цинка)
Манганин (сплав меди, никеля и марганца)
Константан (сплав меди, никеля и алюминия)
Титан
Ртуть
Нихром (сплав никеля, хрома, железа и марганца)
Фехраль
Висмут
Хромаль
0,015
0,0175
0,023
0,025… 0,108
0,028
0,047
0,0474
0,05
0,054
0,059
0,087
0,095… 0,1
0,1
0,103… 0,137
0,12
0,22
0,42
0,43… 0,51
0,5
0,6
0,94
1,05… 1,4
1,15… 1,35
1,2
1,3… 1,5
Читать еще:  Кто придумывает названия цветов типа «Голубая ФЦ» или «Марсала»?

Из таблицы видно, что железная проволока длиной 1 м и сечением 1 мм2 обладает сопротивлением 0,13 Ом. Чтобы получить 1 Ом сопротивления нужно взять 7,7 м такой проволоки. Наименьшим удельным сопротивлением обладает серебро. 1 Ом сопротивления можно получить, если взять 62,5 м серебряной проволоки сечением 1 мм2. Серебро — лучший проводник, но стоимость серебра исключает возможность его массового применения. После серебра в таблице идет медь: 1 м медной проволоки сечением 1 мм2 обладает сопротивлением 0,0175 Ом. Чтобы получить сопротивление в 1 Ом, нужно взять 57 м такой проволоки.

Химически чистая, полученная путем рафинирования, медь нашла себе повсеместное применение в электротехнике для изготовления проводов, кабелей, обмоток электрических машин и аппаратов. Широко применяют также в качестве проводников алюминий и железо.

Сопротивление проводника можно определить по формуле:

где r — сопротивление проводника в омах; ρ — удельное сопротивление проводника; l — длина проводника в м; S — сечение проводника в мм2.

Пример 1. Определить сопротивление 200 м железной проволоки сечением 5 мм2.

Пример 2. Вычислить сопротивление 2 км алюминиевой проволоки сечением 2,5 мм2.

Из формулы сопротивления легко можно определить длину, удельное сопротивление и сечение проводника.

Пример 3. Для радиоприемника необходимо намотать сопротивление в 30 Ом из никелиновой проволоки сечением 0,21 мм2. Определить необходимую длину проволоки.

Пример 4. Определить сечение 20 м нихромовой проволоки, если сопротивление ее равно 25 Ом.

Пример 5. Проволока сечением 0,5 мм2 и длиной 40 м имеет сопротивление 16 Ом. Определить материал проволоки.

Материал проводника характеризует его удельное сопротивление.

По таблице удельных сопротивлений находим, что таким сопротивлением обладает свинец.

Выше было указано, что сопротивление проводников зависит от температуры. Проделаем следующий опыт. Намотаем в виде спирали несколько метров тонкой металлической проволоки и включим эту спираль в цепь аккумулятора. Для измерения тока в цепь включаем амперметр. При нагревании спирали в пламени горелки можно заметить, что показания амперметра будут уменьшаться. Это показывает, что с нагревом сопротивление металлической проволоки увеличивается.

У некоторых металлов при нагревании на 100° сопротивление увеличивается на 40 — 50 %. Имеются сплавы, которые незначительно меняют свое сопротивление с нагревом. Некоторые специальные сплавы практически не меняют сопротивления при изменении температуры. Сопротивление металлических проводников при повышении температуры увеличивается, сопротивление электролитов (жидких проводников), угля и некоторых твердых веществ, наоборот, уменьшается.

Способность металлов менять свое сопротивление с изменением температуры используется для устройства термометров сопротивления. Такой термометр представляет собой платиновую проволоку, намотанную на слюдяной каркас. Помещая термометр, например, в печь и измеряя сопротивление платиновой проволоки до и после нагрева, можно определить температуру в печи.

температурный коэффициент сопротивления — это изменение сопротивления проводника при его нагревании, приходящееся на 1 Ом первоначального сопротивления и на 1° температуры, обозначается буквой α.

Если при температуре t0 сопротивление проводника равно r0, а при температуре t равно rt, то температурный коэффициент сопротивления

Примечание. Расчет по этой формуле можно производить лишь в определенном интервале температур (примерно до 200°C).

Приводим значения температурного коэффициента сопротивления α для некоторых металлов (таблица 2).

Понятия, связанные с удельным сопротивлением

Величина, противоположная удельному сопротивлению, носит наименование удельной проводимости или электропроводности. Обычное электрическое сопротивление свойственно лишь проводнику, а удельное электрическое сопротивление характерно только для того или иного вещества.

Как правило, эта величина рассчитывается для проводника, имеющего однородную структуру. Для определения электрического сопротивления однородных проводников используется формула:

Физический смысл этой величины заключается в определенном сопротивлении однородного проводника с определенной единичной длиной и площадью поперечного сечения. Единицей измерения служит единица системы СИ Ом•м или внесистемная единица Ом•мм2/м. Последняя единица означает, что проводник из однородного вещества, длиной 1 м, имеющий площадь поперечного сечения 1 мм2, будет иметь сопротивление в 1 Ом. Таким образом, удельное сопротивление любого вещества можно вычислить, используя участок электрической цепи, длиной 1 м, поперечное сечение которого будет составлять 1 мм2.

Таблица удельных сопротивлений проводников. Таблица удельных сопротивлений металлов

Раздел недели: Набор прочности бетоном. Время твердения бетона. Тепловыделение цемента (бетонной смеси)

Удельное сопротивлене меди и ее влияние на свойства металла

Термин «удельное сопротивление» обозначает параметр, которым обладает медь или любой другой металл, и довольно часто встречается в специальной литературе. Стоит разобраться, что понимается под этим.

Одна из разновидностей медного кабеля

Общие сведения об электрическом сопротивлении

Для начала следует рассмотреть понятие электрического сопротивления. Как известно, под действием электрического тока на проводник (а медь является одним из лучших металлов-проводников) часть электронов в нем покидают свое место в кристаллической решетке и устремляются по направлению к положительному полюсу проводника. Однако не все электроны покидают кристаллическую решетку, часть из них остаются в ней и продолжают совершать вращательное движение вокруг ядра атома. Вот эти электроны, а также атомы, расположенные в узлах кристаллической решетки, и создают электрическое сопротивление, препятствующее продвижению высвободившихся частиц.

Данный процесс, который мы вкратце обрисовали, характерен для любого металла, для меди в том числе. Естественно, что различные металлы, у каждого из которых особая форма и размеры кристаллической решетки, сопротивляются продвижению по ним электрического тока по-разному. Как раз эти различия и характеризует удельное сопротивление – показатель, индивидуальный для каждого металла.

Удельное электрическое сопротивление некоторых веществ

Применение меди в электрических и электронных системах

Для того чтобы понять, причину популярности меди как материала для изготовления элементов электрических и электронных систем, достаточно посмотреть в таблице значение ее удельного сопротивления. У меди данный параметр равен 0,0175 Ом*мм2/метр. В этом отношении медь уступает только серебру.

Именно низкое удельное сопротивление, измеряемое при температуре 20 градусов Цельсия, является основной причиной того, что без меди сегодня не обходится практически ни одно электронное и электротехническое устройство. Медь – это основной материал для производства проводов и кабелей, печатных плат, электродвигателей и деталей силовых трансформаторов.

Низкое удельное сопротивление, которым характеризуется медь, позволяет использовать ее для изготовления электротехнических устройств, отличающихся высокими энергосберегающими свойствами. Кроме того, температура проводников из меди повышается очень незначительно при прохождении через них электрического тока.

Зависимость сопротивления меди от температуры

Что влияет на величину удельного сопротивления?

Важно знать, что существует зависимость величины удельного сопротивления от химической чистоты металла. При содержании в меди даже незначительного количества алюминия (0,02%) величина этого ее параметра может значительно возрасти (до 10%).

Влияет на этот коэффициент и температура проводника. Объясняется это тем, что при повышении температуры усиливаются колебания атомов металла в узлах его кристаллической решетки, что и приводит к тому, что коэффициент удельного сопротивления возрастает.

Именно поэтому во всех справочных таблицах значение данного параметра приведено с учетом температуры 20 градусов.

Как рассчитать общее сопротивление проводника?

Знать, чему равно удельное сопротивление, важно для того, чтобы проводить предварительные расчеты параметров электротехнического оборудования при его проектировании. В таких случаях определяют общее сопротивление проводников проектируемого устройства, обладающих определенными размерами и формой. Посмотрев значение удельного сопротивления проводника по справочной таблице, определив его размеры и площадь поперечного сечения, можно рассчитать величину его общего сопротивления по формуле:

В данной формуле используются следующие обозначения:

  • R — общее сопротивление проводника, которое и необходимо определить;
  • p — удельное сопротивление металла, из которого изготовлен проводник (определяют по таблице);
  • l — длина проводника;
  • S — площадь его поперечного сечения.

Влияние примесей на удельное сопротивление меди

Удельное сопротивление меди

Что такое удельное сопротивление

Понятие удельного электрического сопротивления вещества следует из определения электрического сопротивления проводника R с геометрическими размерами L (длина) и S (поперечное сечение):

Удельное электрическое сопротивление меди получают, пользуясь результатами измерений вольт-амперных U(I) характеристик на образцах меди различных размеров. Измерив вольтметром напряжение U, амперметром величину тока I, и применив формулу закона Ома, рассчитывают величину сопротивления образца меди:

Далее, с помощью формулы (1), вычисляется величина ρ.

Рис. 1. Таблицы удельных сопротивлений различных металлов.

Медь – это один из самых первых металлов, который человек научился добывать и обрабатывать. Период с IV по III тысячелетие до н.э. называют медным веком. Считается, что в это время люди научились делать первые предметы и орудия труда из меди. Применение меди в электротехнике началось только в начале XIX века.

Основные параметры меди

Перечислим основные физические характеристики меди, которую делают ее столь незаменимой для электротехнической продукции:

  • Главное достоинство меди — низкое удельное сопротивление, равное 0,0175 Ом*мм 2 м. У серебра — “рекордсмена” по этому параметру — 0,016 Ом*мм 2 м;
  • Сравнительно небольшой температурный коэффициент α, равный 0,004 0 К -1 ;
  • Температура плавления Тпл = 1085 0 С, что в полтора раза выше аналогичного параметра у алюминия, который тоже широко используется в электропроводке;
  • Высокие пластичные свойства изделий из меди позволяют подвергать провода многократным изгибам без опасений разрушения целостности изделий;
  • На поверхности меди быстро образуется пленка из окислов, которая выполняет защитную роль — предотвращает поверхность проводов от коррозии;
  • Высокая механическая и ударная прочность;
  • Высокая теплопроводность меди способствует быстрому отводу тепла в различных электротехнических устройствах. Например, на компьютерных платах с электрическими компонентами большой мощности (блоки питания, видеокарты) устанавливают радиаторы (кулеры) из меди для сброса тепла;
  • Стоимость меди существенно меньше стоимости серебра и других драгметаллов, что определяет экономическую выгоду ее применения;
  • Медь легко поддается пайке, поэтому она столь популярна среди радиолюбителей.

Примеры электротехнической продукции с применением меди

Приведем примеры использования меди в электротехнических изделиях:

  • Кабельные изделия различного назначения;
  • Шины (медные полосы) контактных проводов, телеграфного и телефонного оборудования, электронных плат;
  • Катушки и обмотки электродвигателей;
  • Первичные и вторичные обмотки трансформаторов.

Рис. 2. Электрические двигатели с обмотками из меди.

Электрические параметры меди имеют сильную зависимость от количества примесей, которые оказываются центрами дефектов внутри кристаллической решетки и увеличивают удельное сопротивление. Например, присутствие 1% примеси марганца увеличивает удельное сопротивление в 3 раза. Поэтому перед массовым изготовлением продукции контролю чистоты исходной меди придается особое значение.

Рис. 3. Кабельная продукция и провода из меди.

Что мы узнали?

Итак, мы узнали, что удельное электрическое сопротивление меди одно из самых низких среди металлических проводников. Медь является незаменимым материалом для изготовления электротехнических проводов и кабелей. В большинстве электродвигателей сегодня в качестве обмоток используется медный провод. Кроме низкого удельного сопротивления медь имеет прекрасные пластичные свойства, что позволяет изгибать медные провода при монтаже электропроводки.

Удельное сопротивление меди таблица. Удельное сопротивлене меди и ее влияние на свойства металла

Поэтому важно знать параметры всех используемых элементов и материалов. И не только электрические, но и механические. И иметь в распоряжении какие-то удобные справочные материалы, позволяющие сравнивать характеристики разных материалов и выбирать для проектирования и работы именно то, что будет оптимальным в конкретной ситуации.
В линиях передачи энергии, где задачей ставится наиболее продуктивно, то есть с высоким КПД, довести энергию до потребителя, учитывается как экономика потерь, так и механика самих линий. От механики — то есть устройства и расположения проводников, изоляторов, опор, повышающих/понижающих трансформаторов, веса и прочности всех конструкций, включая провода, растянутые на больших расстояниях, а также от выбранных для выполнения каждого элемента конструкции материалов, зависит и конечная экономическая эффективность линии, ее работы и затрат на эксплуатацию. Кроме того, в линиях, передающих электроэнергию, более высоки требования на обеспечение безопасности как самих линий, так и всего окружающего, где они проходят. А это добавляет затрат как на обеспечение проводки электроэнергии, так и на дополнительный запас прочности всех конструкций.

Читать еще:  Браковка текстильных стропов нормы и правила

Для сравнения данные обычно приводятся к единому, сопоставимому виду. Зачастую к таким характеристикам добавляется эпитет «удельный», а сами значения рассматриваются на неких унифицированных по физическим параметрам эталонах. Например, удельное электрическое сопротивление — это сопротивление (ом) проводника, выполненного из какого-то металла (меди, алюминия, стали, вольфрама, золота), имеющего единичную длину и единичное сечение в используемой системе единиц измерения (обычно в СИ). Кроме того, оговаривается температура, так как при нагревании сопротивление проводников может вести себя по-разному. За основу берутся нормальные средние условия эксплуатации — при 20 градусах Цельсия. А там, где важны свойства при изменении параметров среды (температуры, давления), вводятся коэффициенты и составляются дополнительные таблицы и графики зависимостей.

Виды удельного сопротивления

Так как сопротивление бывает:

  • активное — или омическое, резистивное, — происходящее от затрат электроэнергии на нагревание проводника (металла) при прохождении в нем электрического тока, и
  • реактивное — емкостное или индуктивное, — которое происходит от неизбежных потерь на создание всякими изменениями тока, проходящего через проводник электрических полей, то и удельное сопротивление проводника бывает двух разновидностей:
  1. Удельное электрическое сопротивление постоянному току (имеющее резистивный характер) и
  2. Удельное электрическое сопротивление переменному току (имеющее реактивный характер).

Здесь удельное сопротивление 2 типа является величиной комплексной, оно состоит из двух компонент ТП — активной и реактивной, так как резистивное сопротивление существует всегда при прохождении тока, независимо от его характера, а реактивное бывает только при любом изменении тока в цепях. В цепях постоянного тока реактивное сопротивление возникает только при переходных процессах, которые связаны с включением тока (изменение тока от 0 до номинала) или выключением (перепад от номинала до 0). И их учитывают обычно только при проектировании защиты от перегрузок.

В цепях же переменного тока явления, связанные с реактивными сопротивлениями, гораздо более многообразны. Они зависят не только от собственно прохождения тока через некоторое сечение, но и от формы проводника, причем зависимость не является линейной.

Дело в том, что переменный ток наводит электрическое поле как вокруг проводника, по которому протекает, так и в самом проводнике. И от этого поля возникают вихревые токи, которые дают эффект «выталкивания» собственно основного движения зарядов, из глубины всего сечения проводника на его поверхность, так называемый «скин-эффект» (от skin — кожа). Получается, вихревые токи как бы «воруют» у проводника его сечение. Ток течет в некотором слое, близком к поверхности, остальная толщина проводника остается неиспользуемой, она не уменьшает его сопротивление, и увеличивать толщину проводников просто нет смысла. Особенно на больших частотах. Поэтому для переменного тока измеряют сопротивления в таких сечениях проводников, где все его сечение можно считать приповерхностным. Такой провод называется тонким, его толщина равна удвоенной глубине этого поверхностного слоя, куда вихревые токи и вытесняют текущий в проводнике полезный основной ток.

Разумеется, уменьшением толщины круглых в сечении проводов не исчерпывается эффективное проведение переменного тока. Проводник можно утончить, но при этом сделать его плоским в виде ленты, тогда сечение будет выше, чем у круглого провода, соответственно, и сопротивление ниже. Кроме того, простое увеличение площади поверхности даст эффект увеличения эффективного сечения. Того же можно добиться, используя многожильный провод вместо одножильного, к тому же, многожилка по гибкости превосходит одножилку, что часто тоже бывает ценно. С другой стороны, принимая во внимание скин-эффект в проводах, можно сделать провода композитными, выполнив сердцевину из металла, обладающего хорошими прочностными характеристиками, например, стали, но невысокими электрическими. При этом поверх стали делается алюминиевая оплетка, имеющая меньшее удельное сопротивление.

Кроме скин-эффекта на протекание переменного тока в проводниках влияет возбуждение вихревых токов в окружающих проводниках. Такие токи называются токами наводки, и они наводятся как в металлах, не играющих роль проводки (несущие элементы конструкций), так и в проводах всего проводящего комплекса — играющих роль проводов других фаз, нулевых, заземляющих.

Все перечисленные явления встречаются во всех конструкциях, связанных с электричеством, это еще более усиливает важность иметь в своем распоряжении сводные справочные сведения по самым разным материалам.

Удельное сопротивление для проводников измеряется очень чувствительными и точными приборами, так как для проводки и выбираются металлы, имеющие самое низкое сопротивление -порядка ом *10 -6 на метр длины и кв. мм. сечения. Для измерения же удельного сопротивления изоляции нужны приборы, наоборот, имеющие диапазоны очень больших значений сопротивления — обычно это мегомы. Понятно, что проводники обязаны хорошо проводить, а изоляторы хорошо изолировать.

Таблица

Таблица удельных сопротивлений проводников (металлов и сплавов)

Состав (для сплавов)

Удельное сопротивление ρ мом × мм 2 / м

Понятие удельного электрического сопротивления медного проводника

Удельное сопротивление — прикладное понятие в электротехнике. Оно обозначает то, какое сопротивление на единицу длины оказывает материал единичного сечения протекающему через него току — другими словами, каким сопротивлением обладает провод миллиметрового сечения длиной один метр. Это понятие используется в различных электротехнических расчетах.

Важно понимать различия между удельным электрическим сопротивлением постоянному току и удельным электросопротивлением переменному току. В первом случае сопротивление вызывается исключительно действием постоянного тока на проводник. Во втором случае переменный ток (он может быть любой формы: синусоидальной, прямоугольной, треугольной или произвольной) вызывает в проводнике дополнительно действующее вихревое поле, которому также создается сопротивление.

Физическое представление

В технических расчетах, предполагающих прокладку кабелей различных диаметров, используются параметры, позволяющие рассчитать необходимую длину кабеля и его электрические характеристики. Одним из основных параметров является удельное сопротивление. Формула удельного электрического сопротивления:

  • ρ — это удельное сопротивление материала;
  • R — омическое электросопротивление конкретного проводника;
  • S — поперечное сечение;
  • l — длина.

Размерность ρ измеряется в Ом•мм 2 /м, или, сократив формулу — Ом•м.

Значение ρ для одного и того же вещества всегда одинаковое. Следовательно, это константа, характеризующая материал проводника. Обычно она указывается в справочниках. Исходя из этого уже можно проводить расчет технических величин.

Важно сказать и об удельной электрической проводимости. Эта величина является обратной удельному сопротивлению материала, и используется наравне с ним. Ее также называют электропроводностью. Чем выше эта величина, тем лучше металл проводит ток. Например, удельная проводимость меди равна 58,14 м/(Ом•мм 2 ). Или, в единицах, принятых в системе СИ: 58 140 000 См/м. (Сименс на метр — единица электропроводности в СИ).

Удельное сопротивление различных материалов

Говорить об удельном сопротивлении можно только при наличии элементов, проводящих ток, так как диэлектрики обладают бесконечным или близким к нему электросопротивлением. В отличие от них, металлы — очень хорошие проводники тока. Измерить электросопротивление металлического проводника можно с помощью прибора миллиомметра, или еще более точного — микроомметра. Значение измеряется между их щупами, приложенными к участку проводника. Они позволяют проверить цепи, проводку, обмотки двигателей и генераторов.

Металлы разнятся между собой по способности проводить ток. Удельное сопротивление различных металлов — параметр, характеризующий это отличие. Данные приведены при температуре материала 20 градусов по шкале Цельсия:

  • Серебро (ρ = 0,01498 Ом•мм 2 /м);
  • Алюминий (ρ = 0,027);
  • Медь (ρ = 0,01721);
  • Ртуть (ρ = 0,94);
  • Золото (ρ = 0,023);
  • Железо (ρ = 0,1);
  • Вольфрам (ρ = 0,0551);
  • Латунь (ρ = 0,026…0,109);
  • Бронза (ρ = 0,095);
  • Сталь (ρ = 0,103…0,14);
  • Сплав никеля, марганца, железа и хрома — нихром (ρ = 1,051…1,398).

Параметр ρ показывает, каким сопротивлением будет обладать метровый проводник с сечением 1 мм 2 . Чем больше это значение, тем больше электросопротивление будет у нужного провода определенной длины. Наименьшее ρ, как видно из списка, у серебра, сопротивление одного метра из этого материала будет равно всего 0,015 Ом, но это слишком дорогой металл для использования его в промышленных масштабах. Следующим идет медь, которая в природе встречается гораздо чаще (не драгоценный, а цветной металл). Поэтому медная проводка очень распространена.

Применение медных проводников

Медь является не только хорошим проводником электрического тока, но и очень пластичным материалом. Благодаря этому свойству медная проводка лучше укладывается, она устойчива к изгибам и растяжению.

Медь очень востребована на рынке. Из этого материала производят множество различных изделий:

  • Огромное многообразие проводников;
  • Автозапчасти (например, радиаторы);
  • Часовые механизмы;
  • Компьютерные составляющие;
  • Детали электрических и электронных приборов.

Удельное электрическое сопротивление меди является одним из лучших среди проводящих ток материалов, поэтому на ее основе создается множество товаров электроиндустрии. К тому же медь легко поддается пайке, поэтому очень распространена в радиолюбительстве.

Высокая теплопроводность меди позволяет использовать ее в охлаждающих и обогревающих устройствах, а пластичность дает возможность создавать мельчайшие детали и тончайшие проводники.

Зависимость электропроводности от температуры

Проводники электрического тока бывают первого и второго рода. Проводники первого рода — это металлы. Проводники второго рода- это проводящие растворы жидкостей. Ток в первых переносят электроны, а переносчики тока в проводниках второго рода —ионы, заряженные частицы электролитической жидкости.

Говорить о проводимости материалов можно только в контексте температуры окружающей среды. При более высокой температуре проводники первого рода увеличивают свое электросопротивление, а второго, напротив, уменьшают. Соответственно, существует температурный коэффициент сопротивления материалов. Удельное сопротивление меди Ом м возрастает при увеличении нагрева. Температурный коэффициент α тоже зависит только от материала, эта величина не имеет размерности и для разных металлов и сплавов равна следующим показателям:

  • Серебро — 0,0035;
  • Железо — 0,0066;
  • Платина — 0,0032;
  • Медь — 0,0040;
  • Вольфрам — 0,0045;
  • Ртуть — 0,0090;
  • Константан — 0,000005;
  • Никелин — 0,0003;
  • Нихром — 0,00016.

Определение величины электросопротивления участка проводника при повышенной температуре R (t), вычисляется по формуле:

R (t) = R (0) · [1+ α·(t-t (0))], где:

  • R (0) — сопротивление при начальной температуре;
  • α — температурный коэффициент;
  • t — t (0) — разность температур.

Например, зная электросопротивление меди при 20 градусах Цельсия, можно вычислить, чему оно будет равно при 170 градусах, то есть при нагреве на 150 градусов. Исходное сопротивление увеличится в [1+0,004·(170−20)] раз, то есть в 1,6 раз.

При увеличении температуры проводимость материалов, напротив, уменьшается. Так как это величина, обратная электросопротивлению, то и уменьшается она ровно во столько же раз. Например, удельная электропроводность меди при нагреве материала на 150 градусов уменьшится в 1,6 раз.

Существуют сплавы, которые практически не изменяют своего электросопротивления при изменении температуры. Таков, к примеру, константан. При изменении температуры на сто градусов его сопротивление увеличивается всего на 0,5%.

Если проводимость материалов ухудшается с нагревом, она улучшается с понижением температуры. С этим связано такое явление, как сверхпроводимость. Если понизить температуру проводника ниже -253 градусов Цельсия, его электросопротивление резко уменьшится: практически до нуля. В связи с этим падают затраты на передачу электрической энергии. Единственной проблемой оставалось охлаждение проводников до таких температур. Однако в связи с недавними открытиями высокотемпературных сверхпроводников на базе оксидов меди, охлаждать материалы приходится уже до приемлемых значений.

0 0 голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты