Rich--house.ru

Строительный журнал Rich—house.ru
39 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Где взять нужный трансформатор для блока питания?

Как сделать трансформатор своими руками?

Несмотря на многообразие электрооборудования на рынке, далеко не во всех ситуациях можно найти подходящий преобразовательный агрегат для решения конкретной задачи. Поэтому многие обыватели пытаются изготовить трансформатор своими руками для получения определенных параметров работы. Стоит отметить, что намотать трансформатор может каждый, даже без специализированного оборудования и особых навыков, но этот процесс довольно трудоемкий и кропотливый. Поэтому изначально вам придется определиться с типом и характеристиками прибора.

Что понадобится для сборки?

Все преобразователи подразделяются на две основные категории – повышающие и понижающие трансформаторы.

В зависимости от предназначения, конструктивных особенностей и места установки их можно разделить на такие категории:

Практически каждое из вышеперечисленных устройств вы можете воссоздать в домашних условиях. Наиболее простым вариантом является перемотка трансформатора из заводского изделия, так как он уже содержит необходимые элементы. Главное, чтобы первичная обмотка подходила по номиналу питающего напряжения и мощности. Куда хуже, если перематывать нужно обе обмотки, к примеру, если и первичная, и вторичная обмотка пробиты или получили механическое повреждение.

Для изготовления трансформатора своими руками вам понадобятся:

  • Магнитопровод – служит в качестве проводника магнитного потока, лучше взять из старого трансформатора, так как он изготовлен из электротехнической стали и обеспечивает необходимые параметры работы, характеризуется малыми потерями в железе.
  • Провода нужного вам сечения в лаковой, полимерной или стеклотканевой изоляции. Чем тоньше этот слой, тем плотнее прилягут витки к каркасу и друг к другу.
  • Каркас – служит в качестве основания для обмоток трансформатора, устанавливает габариты по ширине. Можно взять из старого трансформатора, а можно изготовить своими руками. Материалом для каркаса может послужить электротехнический картон, гетинакс или текстолит, важно чтобы он не занимал много места в зазоре между сердечником и проводом.
  • Изоляция – предназначена для электрического отделения токоведущих элементов друг от друга и от конструктивных элементов трансформатора. В промышленном производстве используется лакотканевая лента, фторопласт, парафиновая пропитка, но при самостоятельном изготовлении подойдет любой имеющийся у вас материал, главное, чтобы его диэлектрической прочности хватало для напряжения сети.
  • Намоточный станок – позволяет упростить процесс и обеспечить постоянное натяжение. Можно изготовить своими руками из ручной дрели или по принципу вертела на двух шарнирах. Важно, чтобы изготовленный станок имел как можно меньший люфт.

Помимо этого вам могут пригодиться: молоток с деревянной пресс-планкой, паяльник для соединения проводов, ножницы, пассатижи. Но перед изготовлением, обязательно рассчитайте параметры трансформатора.

Расчеты

Наиболее сложный вариант, если вы будете изготавливать трансформатор своими руками с нуля. В таком случае расчет электрической машины производится в зависимости от выходной мощности. Исходя из этого параметра, рассчитывается мощность первичной обмотки. Если вы используете заводской сердечник, то можно считать эти величины одинаковыми, если вы соберете его самостоятельно, то P2 = 0,9 * P1

Это приблизительный расчет с учетом потерь в сердечнике. В зависимости от качества шихтовки своими руками, разница мощностей может находиться в пределах от 5 до 20%.

В зависимости от мощности первички определяется сечение магнитопровода, которое вычисляется по формуле: S = √P1

Следует отметить, что мощность для вычислений берется в Ваттах, а размеры сердечника получаем в квадратных сантиметрах.

Далее определяется коэффициент передачи электромагнитной энергии: k = f/S,

Где k – коэффициент передачи, f – частота сетевого напряжения переменного тока, S – площадь сечения магнитопровода.

Исходя из полученного коэффициента, определяется число витков в обмотках по величине входных и выходных напряжений: N1 = k*U1, N2 = k*U2

Это приблизительные вычисления, предназначенные для бытового применения радиолюбителями. Заводские трансформаторы имеют более сложную процедуру расчета, которая производится по справочникам и зависит от их типа и назначения (силовые, измерительные, трехобмоточные, тороидальные устройства и т.д.)

Далее рассчитывается сила тока в первичной обмотке трансформатора: I1 = P1 / U1

Соответственно, ток, протекающий по вторичной обмотке трансформатора, вычисляется по формуле: : I2 = P2 / U2

Исходя из величины тока в каждой обмотке, выбирается сечение жилы. Но заметьте, что проводник в обмотке значительно хуже охлаждается, поэтому запас сечения делается на 20 – 30%. Проще выполнять данную работу медными проводами, но это требование не критично.

Таблица: выбор сечения, в зависимости от протекающего тока

Медный проводникАлюминиевый проводник
Сечение жил, мм 2Ток, АСечение жил. мм 2Ток, А
0,511
0,7515
117
1.5192,522
2.527428
438636
6461050
10701660
16802585
2511535100
3513550135
5017570165
7021595200
95265120230
120300

Сборка повышающего трансформатора

Особенностью повышающего трансформатора является большее сечение жил первичной обмотки трансформатора по отношению к вторичной. Ярким примером может служить любой агрегат, повышающий напряжение питания 220 Вольт до 400, 500, 1000 В и т.д., соответственно класс изоляции трансформатора выбирается по номиналу вторичной обмотки, как в сетевых трансформаторах.

Заметьте, что проводник большого сечения не получится намотать самодельным станком, поскольку вы не сможете выдать достаточное усилие. Определить это довольно просто – если первые витки свободно двигаются по каркасу катушки или хуже того, вы видите явный зазор между жилой и каркасом, переходите к ручной намотке.

Для сборки вам потребуется выполнить такую последовательность действий:

  • Соберите основание из диэлектрического материала, для этого можно вырезать его по лекалу из картона. Сборка каркаса производится внахлест при помощи клея. Рис. 2: изготовьте каркас для трансформатора

Если у вас имеется готовый образец, можете переходить к следующему этапу.

  • Сделайте отверстия в щеке катушки под выводы в электрическую сеть и к потребителю. Проденьте в них выводы. Рис. 3: проденьте вывод первичной обмотки
  • Уложите первый слой изоляции под первичку. Рис. 4: нанесите слой изоляции на катушку
  • Намотайте первичную обмотку трансформатора – если позволяет толщина, используйте станок, в противном случае, сделайте это руками. При намотке каждые 4 -5 витков проверяйте жесткость фиксации и плотность прилегания. Рис. 5: намотайте первичку

В случае наличия видимых зазоров рекомендуется придавливать витки деревянной пресс-плашкой или прибивать их через плашку молотком.

  • Посчитайте количество витков, оно должно соответствовать расчетному, выводы проденьте в отверстия. Уложите слой изоляции на первичку.
  • После слоя изоляции намотайте вторичку, так как здесь будет использоваться более тонкий провод, эту процедуру проще выполнять на станке. Рис. 6: намотайте вторичную обмотку

Периодически проверяйте плотность витков и их фиксацию на стержне. Хорошая фиксация не должна прогибаться и деформироваться при нажатии пальцами.

  • Если все витки не помещаются в один слой, их выкладывают в несколько, тогда важно соблюдать одно и то же количество витков в каждом из них. Слои перекладываются диэлектрическим материалом, заметьте, что толщина изоляции не должна существенно влиять на общие габариты катушек. Рис. 7: заизолируйте первый слой
  • Выведете концы вторичной обмотки на щечку каркаса.
  • Поместите магнитопровод в окно каркаса, сборка сердечника выполняется поочередно с каждой стороны, иначе потери окажутся слишком большими. Затем сердечник распирается для плотности фиксации. Рис. 8: поместите катушки на сердечник

Мощные трансформаторы на большой номинал напряжения дополнительно пропитывается парафиновой изоляцией. Такая процедура приводит к повышению емкостных потерь, но создает дополнительную защиту от электрического тока.

Сборка понижающего трансформатора

Понижающий трансформатор будет отличаться большим количеством витков на первичке. В быту их можно часто встретить в блоках питания, сварочных аппаратах и прочем оборудовании. Правда, в импульсных блоках используется другая технология, поэтому ремонт таких устройств производится без трансформаторов.

Так как изготовление сварочного трансформатора своими руками довольно актуально для домашних самоделок, рассмотрим на примере этот вариант. Требования к процессу сборки соответствует предыдущему. Отличительной особенностью такого агрегата является большое сечение провода во вторичной обмотке, так как сварочный ток может достигать сотен ампер.

Процесс изготовления заключается в следующем:

  1. Возьмите старое или изготовьте основание для катушки.
  2. Зафиксируйте на трансформаторном каркасе слой изоляции.
  3. Намотайте первичную обмотку с попеременной изоляцией слоев.
  4. Заизолируйте первичку и намотайте вторичную обмотку, так как большой диаметр проводов не позволит сделать это вручную, используйте слесарный инструмент.
  5. Зафиксируйте выводы обеих катушек.
  6. Установите пластины сердечника.

Испытание

Для проверки работоспособности П-образных или тороидальных трансформаторов в домашних условиях можно воспользоваться обычным мультиметром. Для этого переведите измерительный прибор в режим прозвона и проверьте целостность каждой из обмоток. Затем проверьте изоляцию между каждой из обмоток и магнитопроводом и сопротивление между обеими обмотками. Это наиболее простой комплекс испытаний, который даст общее представление об исправности самодельного агрегата.

Для проверки отсутствия короткозамкнутых витков используется лампа, включающаяся последовательно к первичной обмотке.

Помимо этого электрические машины испытываются в режиме холостого хода и короткого замыкания. Такие проверки показывают, насколько качественно собран преобразователь, но выполнять их в домашних условиях не обязательно.

БЕСТРАНСФОРМАТОРНОЕ ПИТАНИЕ СХЕМ

Принципиальная схема бестрансформаторного блока питания

Итак, детали для схемы. Вот так выглядят высоковольтные металлопленочные конденсаторы (те что красные), и слева от них электролитический конденсатор на 100 мкФ.

Вместо микросхемы 78l08 можно использовать такие стабилизаторы напряжения, как КР1157ЕН5А (78l08) или КР1157ЕН5А (7905).

Если отсутствует выпрямительный диод 1N4007, то его можно заменить на 1N5399 или 1N5408, которые рассчитаны на более высокий ток. Серый кружок на диоде обозначает его катод.

Резистор R1 взял на 5W, а R2 — на 2W, для страховки, хотя оба можно было применять и на 0,5 Вт.

Стабилитрон BZV85C24 (1N4749), рассчитан на мощность 1,5 W, и на напряжение до 24 вольт, заменить его можно отечественным 2С524А.

Этот бестрансформаторный БП собрал без регулировки выходного напряжения, но если вы хотите организовать такую функцию, то просто подключите к выводу 2 микросхемы 78L08 переменный резистор примерно на 1 кОм, а второй его вывод — к минусу схемы.

Плата к схеме бестрансформаторного блока питания конечно есть, формат лэй, скачать можно тут. Думаю вы поняли, что диоды без пометки — это 1n4007.

Готовую конструкцию нужно обязательно поместить в пластиковый корпус, из-за того что включенная в сеть схема находиться под напряжением 220 вольт и прикасаться к ней ни в коем случае нельзя!

На этих фото вы можете видеть напряжение на входе, то есть напряжение в розетке, и сколько вольт мы получаем на выходе БП.

Видео работы схемы бестрансформаторного БП

Большим плюсом этой схемы можно считать очень скромные размеры готового устройства, ведь благодаря отсутствию трансформатора этот БП можно сделать маленьким, и относительно недорогая стоимость деталей для схемы.

Минусом схемы можно считать то, что есть опасность случайно дотронуться к работающему источнику и получить удар током. Автор статьи — egoruch72.

Обсудить статью БЕСТРАНСФОРМАТОРНОЕ ПИТАНИЕ СХЕМ

Правильная намотка импульсного трансформатора

Из рисунка выше видно, что к двухтактным относят: мост, полумост и пуш-пул. В этих схемах зазора в сердечнике быть не должно, причем это касается не только силового трансформатора, но и ТГР.

Что касается однотактных схем, они бывают прямоходовые и обратноходовые, вот у них зазор в сердечнике должен быть обязательно, поэтому первым делом всегда необходимо более подробно ознакамливаться с тем, что вы делаете.

Для более наглядного примера в этой статье мы рассмотрим намотку 2-ух различных трансформаторов, один для двухтактной схемы, второй соответственно для однотактной.

Как видим из схемы — это полумост. Таким образом данный тип относится к разряду двухтактных схем, следовательно, как упоминалось в начале статьи — зазор в сердечнике не нужен.

С этим определились, но это еще не все. Перед намоткой необходимо произвести специальные вычисления (рассчитать трансформатор). Благо в интернете без особого труда можно найти и скачать специальные программы Владимира Денисенко для расчета трансформатора.

При включенной галочке программа автоматом накидывает пару витков на вторичку для зазора работы ШИМ.
Второе поле — это охлаждение. Если оно присутствует, то можно из трансформатора выжать больше мощности.

И последнее, но самое важное – необходимо указать какой сердечник будет использоваться при намотке данного трансформатора.



Стараемся равномерно укладывать витки, также необходимо избегать пересечение провода и различных узелков, петель и тому подобных явлений. От того как вы намотаете трансформатор зависит дальнейшая работа всего блока питания.

Мотаем ровно половину первички и делаем отвод, только не прямо на пин трансформатора, а вверх. Дальше будем мотать вторичку, а поверх неё оставшуюся первичку.

Припаиваемся к началу обмотки и равномерно виток к витку мотаем. При этом желательно чтобы вторичка поместилась в один слой. Но если же вы рассчитали на большее напряжение, то необходимо второй слой равномерно растянуть по всему каркасу.

Когда намотали слой, то опять же делаем отвод вверх и начинаем мотать вторую часть вторички. Мотается она точно так же, как и первая.

Вот тут уже стоит каким-либо образом пометить где у вас первая половина вторички и где вторая.

Следующий шаг – домотка первичной обмотки. В этом случае автор обычно оставляет себе пустой пин на печатной плате, чтобы туда можно было подключить среднюю точку первички.

Примечание для начинающих! Как правило начинающие радиолюбители делают свои первые блоки питания не стабилизированными на микросхемах типа IR2153 и постоянно сталкиваются со следующей проблемой: мол намотал на одно напряжение, а на выходе получил другое. Перемотка результатов не дает. В чем же дело? А дело в том, что необходимо проводить измерения при нагрузке как минимум 15% от номинала. А то получается, что выходной конденсатор зарядился до амплитудного значения, собственно его вы и измеряете, и не можете понять что не так.

Намотка трансформатора обратноходового блока питания ничем не отличается от предыдущего, только для расчета будем использовать уже другую программу из того же пакета программ – «Flyback – Программа расчета трансформатора обратноходового преобразователя» (Версия 8.1).


На этом все. Благодарю за внимание. До новых встреч!

Видеоролик автора:

Тема: Трансформаторный БП для компа.

Опции темы
  • Версия для печати
  • Подписаться на эту тему…

Трансформаторный БП для компа.

Достал меня этот импульсный БП. Хочу сделать аналоговый БП, ватт этак на 300. Можно, конечно, и самому все расчитать. Но может кто видел готовые схемы. А то надо и схему запуска и sleep питание и последовательность появления и выключения напряжений.

Re: Трансформаторный БП для компа.

А поледовательность появления напряжения важна? Помоему там всё одновременно появляется.

Re: Трансформаторный БП для компа.

Костя, поддерживаю!
Я тоже озадачен этой проблемой. Дорогие звуковые карты с хорошими ЦАПами просто теряют актуальность с такими дерьмовым БП.

Я где-то видел переделку БП из АТ в АТХ. А АТ по сути не имеет каких-либо Sleep*ов и программных стартов. Там простой выключатель.
Что думаю: собираем аналог АТ по напряжениям и потребляемому току на хороших мощных стабилизаторах, не жалеем емкостей в цепях стабилизации (думаю, 20000 µF в плечо будет самое то ). Собираем согласно статье программный старт и радуемся.

Читать еще:  Электрооборудование токарных станков и автоматов

Вот только не знаю что за OK на разъеме. Наверное, какое-то напряжение, постоянно подающееся на этот контакт относительно земли.

Re: Трансформаторный БП для компа.

По стандарту АТХ всегда присутствует +5В (даже если комп вырублен, только не из розетки ) это для всяких wake он модем или лан, ещё может быть трабл если у вас мощная видюха!

Кондёры сели и система не пустится. Сам такое встречал, звонит друг купил крутую видюху вот только она не работает, старую ставишь и всё нормально. Я ему подсказл что стоит выключить систему тоько кнопкой повер (спереди ), а затем вместо старой поставить новую видюху, звонит через минуты две, кричит что всё получилось. вобще с АТХ не особо ковырялся, мож там ещё что подаётся в выключенном режиме.

Нужно просто взять блок питания, замкнуть перемычкой зелёный провод (в конектере от материнки) на землю, тогда блок запустится, а там смотреть что и как он подаёт.

Re: Трансформаторный БП для компа.

Костя Мусатов,
Себестоимость и габариты такого БП пробовал расчитывать? Для меня проблема тоже актуальна. Я думаю, что ИИП тоже надо оставить и чтобы была возможность переключаться между этими двумя БП.

Где взять нужный трансформатор для блока питания?

Делал тут намедни презентацию на тему «Однополярные и двуполярные трансформаторные блоки питания», решил заодно и здесь продублировать. Наверное, будет полезно для начинающих.

Блок питания радиоэлектронной аппаратуры является вторичным источником питания, то есть он служит для преобразования электроэнергии (первичные — для ее производства). Как правило, происходит преобразование переменного тока напряжением 220 В в постоянный с напряжением, необходимым для нормальной работы устройства. Из этих функций вытекает структурная схема трансформаторного блока питания: трансформатор, выпрямитель, сглаживающий фильтр и стабилизатор.


Последние две части могут отсутствовать, как, например, в трансформаторных зарядных устройствах ACP-7E телефонов Nokia .

В последнее время трансформаторные блоки активно вытесняются импульсными (легкими, компактными, способными переварить любую дрянь из розетки: 110-240 вольт, 50-60 Гц — трансформатор такого не потерпит), однако все еще есть ниши, где они актуальны: например, устройства высококачественного воспроизведения звука или радиоприемники, которые подвержены действию помех, излучаемых импульсными БП (да-да, некоторые экземпляры можно использовать как маленькие глушилки длинных, средних и коротких волн).

Рассмотрим наиболее простой и наиболее часто встречающийся подвид: однополярный трансформаторный блок питания

Сразу оговорюсь, что однополупериодная схема выпрямителя (один диод, как в детекторном приемнике) в трансформаторной схемотехнике не снискала популярности ввиду низкого КПД и высокого уровня пульсаций.

В разрывы первичной и вторичной обмотки включены предохранители (у современных трансформаторов по первичной обмотке включен термопредохранитель, срабатывающий при перегреве магнитопровода). По «вторичке» предохранителя может и не быть, но по «первичке» он обязателен — это электро- и пожаробезопасность.

Вторичных обмоток может быть несколько (на разные напряжения), у одной обмотки могут быть несколько отводов от разных витков… Все это можно узнать из паспорта на трансформатор.

Диодный мост выпрямляет напряжение, а конденсаторный фильтр сглаживает его пульсации (минимально рекомендуемая емкость — 100 мкФ, максимальная ограничивается экономическими соображениями, размерами корпуса устройства, максимально возможным током через диоды и здравым смыслом). Не стоит забывать о физике: на диодном мосту неизбежно потеряется 1 — 2 вольта, но после конденсатора то, что останется, увеличится в корень из двух (1,41) раз (конденсатор заряжается до амплитудного значения напряжения). Например, с трансформатора идут 12 вольт «переменки» (действующее значение). 1,4 вольта отдадим диодам — итого уже 10,6. А на конденсаторе будет 14,94 вольта (амплитудное значение). Поэтому рабочее напряжение конденсатора должно быть с запасом — 25 вольт вполне хватит, а вот 16 — это уже пороховая бочка. Может, и не долбанет, но ресурс быстрее выработается.

Выходное напряжение снимается с конденсатора и может питать устройство как напрямую, так и через стабилизатор: в этом случае рекомендуется, чтобы выходное напряжение БП было на 3 — 5 вольт выше номинального выходного напряжения стабилизатора. Используя интегральные стабилизаторы серии L78XX и компоненты из примера выше, можно сделать шикарный блок питания на девять вольт. Или на двенадцать, если падение напряжения на самом стабилизаторе 2-3 вольта (эта информация находится в даташите микросхемы). Или на пять, но 14,94 — 5 = 9,94 вольта, которые надо куда-то девать. А куда? Только в тепло. Поэтому стабилизаторы на малое напряжение, подключенные к большому входному, очень сильно греются.

Это слайд-шоу требует JavaScript.

Примеры устройств с таким БП: радиоприемник VEF 216 (встроенный) , радиотелефоны (внешний), магнитофон «Весна 306» (встроенный).

Это слайд-шоу требует JavaScript.

Принцип работы мостового выпрямителя незатейлив: в течение каждого полупериода ток идет через два диода, включенные в прямом направлении (на одном кремниевом диоде в среднем падает 0,7 вольт — отсюда и берется число потерь 1,4). Таким образом, на конденсатор будет приходить напряжение, пульсирующее с удвоенной частотой питающей сети. Если за эти полпериода конденсатор не будет успевать разрядиться, то можно рассчитывать на то, что уровень пульсаций выходного напряжения будет низок (здесь, например, это хорошо показано: красное напряжение — с конденсатора, серое — с моста).

Следующие схемотехнические решения можно заметить в звуковоспроизводящей аппаратуре высокого класса: это пленочные конденсаторы, шунтирующие первичную и вторичную обмотки трансформатора (высоковольтный C1, C2), керамические конденсаторы, шунтирующие диоды моста (C3C6), и керамический или пленочный конденсатор емкостью 10 — 100 нФ, шунтирующий выходной электролитический (C7).

Конденсаторы на обмотках трансформатора предназначены для гашения высокочастотных помех от близких грозовых разрядов, щеточно-коллекторных узлов работающих электродвигателей и пр.

Шунтирование диодов помогает бороться с мультипликативной помехой радиоприему: она проявляется как фон в приемнике с частотой 100 Гц при настройке на мощную станцию в АМ-диапазоне.

Шунтирование выходного электролитического конденсатора помогает продлить срок его службы, так как «электролиты» склонны быстрее деградировать под действием высокочастотных помех. При наличии керамического или пленочного шунта малой емкости эти помехи через него закорачиваются на «землю».

Преимущества однополярных трансформаторных БП:

-Просты в изготовлении.
-Относительно легкие и маленькие.
-Легко обеспечить батарейное питание, что актуально для переносной техники (нужно всего лишь напыжевать достаточно батареек «в послед»).

К недостаткам можно отнести:

-Повышенное падение напряжение на выпрямителе (полтора вольта теряются, и при выпрямлении малого напряжения, например, трех вольт, это уже будет ощутимо — после конденсатора останется только 2,1 В).
-Мощные диоды в металлическом корпусе должны устанавливаться на радиатор через электроизолирующие прокладки, что в ряде случаев может быть затруднительно.

Следующий на очереди — двуполярный трансформаторный блок питания

Здесь используется трансформатор с двумя одинаковыми вторичными обмотками, соединенными последовательно (или это может быть одна обмотка со средней точкой). В этом случае средняя точка объявляется «землей», а с фильтров снимается напряжение как положительной, так и отрицательной полярности (измерения, разумеется, относительно «земли». И логично, что между «плюсом» и «минусом» 2Uвых).

Это слайд-шоу требует JavaScript.

Примеры устройств с таким БП: магнитофон «Вильма М-212С», усилитель «Радиотехника У-101», осциллограф «С1-94».

Это слайд-шоу требует JavaScript.

Диодный мост работает точно так же, как и в случае однополярного блока питания. Попеременно открываясь, то одна, то другая пара диодов пропускает переменное напряжение к конденсаторам фильтра.

К достоинствам двуполярного БП можно отнести:

-Значительное упрощение схем с операционными усилителями (исключаются цепочки, создающие «искусственный ноль» на входе — достаточно сравнить первую и вторую схемы отсюда).
-Уменьшение количества межкаскадных емкостей, так как в большинстве случаев постоянная составляющая сигнала отсутствует. А все мы знаем, что «электролиты» имеют свойство пересыхать.
-Акустика, подключенная к выходу исправного и настроенного усилителя с двуполярным питанием, не будет хлопать при включении, так как на выходе нет постоянной составляющей и конденсатора, блокирующего ее.

Однако есть и определенные недостатки:

-Снова повышенное падение напряжение на выпрямителе.
-Трансформатор со средней точкой сложен в изготовлении; он большой, тяжелый и совсем не портативный.
-Устройство чувствительно к перекосу плеч питания — например, если в звуковоспроизводящей технике при номинальных +/-14 вольт де-факто будут +12 и -16, форма выходного сигнала может сильно исказиться относительно нуля.
-«Исправный и настроенный усилитель», став вдруг неисправным, может выжечь акустику постоянным напряжением на выходе: нужна схема ее защиты при аварии.

Как следствие, такие блоки питания прижились в стационарной аппаратуре, где нет нужды в батарейном питании.

Необычная схема: однополярный БП с выпрямителем Миткевича

Этот блок питания также основывается на трансформаторе со средней точкой, но в качестве выпрямителя применяются два четвертьмоста, соединенные параллельно (выпрямитель Миткевича). Это двухполупериодный выпрямитель, и ток на фильтрующий конденсатор течет то с одной половины обмотки, то с другой через диод, находящийся в этот момент в прямом включении. Это было достаточно типичное решение для тех времен, когда диоды стоили дороже меди.

Пример устройства с таким БП: радиоприемник «Ишим».

Это слайд-шоу требует JavaScript.

Первым делом в глаза бросается то, что выпрямитель и фильтр включены по схеме с общим «плюсом», и с конденсатора снимается напряжение отрицательной полярности. Это обычная схемотехника 60-70-х гг.: тогда применялись германиевые транзисторы в основном p-n- p -структуры (ограничение технологии), у которых эмиттер подключается к «плюсу», а база и коллектор — к «минусу» питания.

В течение каждого полупериода ток протекает через один диод.

Положительными сторонами таких блоков питания можно считать:

-Экономию на диодах.
-Потери в выпрямители в два раза меньше, чем в мостовой схеме (ток в каждом полупериоде течет только через один диод).

Однако недостатки загнали этот вид блока питания в «Красную книгу РЭА»:

-Трансформатор со средней точкой сложен в изготовлении; он большой, тяжелый и совсем не портативный.
-В каждом полупериоде одна половина обмотки простаивает. Меди много, но работает она не вся.

Как быстро отличить импульсный блок питания от трансформаторного (имеются в виду те, что вставляются в розетку)?

Ипульсный: компактный, почти невесомый, часто бывает вытянут в осевом направлении. Жрет что угодно: чудовищный разброс по напряжению 110-240 вольт и частоте сети его не пугает (обычно эти параметры написаны на наклейке). Выходной ток при высоких напряжениях как правило, тоже достаточно большой — до 2 ампер. На секундочку: 2 А * 12 В = 24 Вт!

Трансформаторный: тяжелый, сбитый «кубик«. На наклейке обычно указано входное напряжение 230 вольт, иногда с маленькими зазорами (плюс-минус десять вольт). Частота — строго 50 Гц для постсоветского пространства. Ток обычно скромный: тот, что на картинке — девятивольтовый с полуамперным выходом (0,5 А * 9 В = 4,5 Вт). А ведь уже и такой блок достаточно громоздкий.

Для питания радиоприемников и другой старой техники, конечно, лучше выбрать трансформаторный.

Трансформаторные блоки питания.

Любой радиолюбитель в своей жизни не раз собирал блок питания для своих электронных устройств. Поэтому его устройство и принцип работы должен знать каждый, кто занимается электроникой.

Ведь собрав даже самый простой блок питания своими руками, начинающие радиолюбители получают такой восторг, потому что простой блок питания не требует никакой настройки и никакой регулировки, он сразу начинает работать.

Блоки питания бывают нескольких типов: трансформаторные, бестрансформаторные, импульсные.

Принципиальная схема БП

Трансформаторные блоки питания — самые простые и надежные блоки питания. Также из простых блоков питания они являются самыми безопасными по электробезопасности .

Простой трансформаторный блок питания состоит из: трансформатора, выпрямителя и фильтра. Если требуется более качественное стабилизированное питание, то устанавливается стабилизатор. Блоки питания будем рассматривать блоками. Внизу представлена принципиальная схема.

Трансформатор

На первичную обмотку трансформатора W1 (иногда её называют сетевой, так как она подключается к сети 220 вольт) поступает входное напряжение. При подаче на первичную обмотку переменное напряжение, в нашем случае — сетевое напряжение 220 В, по магнитопроводу будет протекать переменное электромагнитное поле. Если на магнитопроводе находится вторая обмотка, электромагнитное поле будет проходить и через вторичную обмотку W2. При этом во вторичной обмотки будет наводится электродвижущая сила, и на вторичной обмотке появится выходное напряжение. Со вторичной обмотки трансформатора выходит переменное, обычно пониженное напряжение для питания устройств напряжением 3,3 В, 5 В, 9 В, 12 В и 15 В и тд. Но бывают и повышающие трансформаторы, у них на входе напряжение ниже чем на выходе. Но мы будем рассматривать понижающие трансформаторы.

Мы возьмем трансформатор на выходе вторичной обмотки которой будет выходить 12 вольт.

Можно уже и таким блоком питания пользоваться, но только если для подключения лампы накаливания на 12 Вольт, ведь на выходе у нас переменное напряжение.

Диодный мост

Мы продолжим собирать простой блок питания своими руками. И для получения постоянного напряжения нам понадобится диодный мост, или по-другому его еще называют — диодный выпрямитель. Диодный мост служит для преобразования переменного напряжения вторичной обмотки в постоянное, так как для питания устройств в основном используется постоянное напряжение.

Диодный мост собран на четырех диодах VD1 — VD4. Рассмотрим работу диодного моста за один период. В первом полупериоде ток протекает через обмотку трансформатора, VD3 и VD4 заперты, и ток проходит через диод VD1 и выходит с диода +12В на нагрузку На схеме нагрузкой служит светодиод VD5 подключенный через токоограничивающий резистор R1.

С диода VD1 ток проходит через токоограничивающий резистор R1, через светодиод VD5, проходит через диод VD2, и уходит на вторичную обмотку трансформатора. На этом первый полупериод завершен.

Второй полупериод проходит также через обмотку трансформатора, но в обратном направлении. С обмотки трансформатора ток протекает теперь через диод VD3. VD1 и VD2 заперты, и далее ток через токоограничивающий резистор R1 на светодиод VD5, далее ток протекает через диод VD4 и уходит на трансформатор.

Вот мы рассмотрели и второй полупериод работы диодного моста.После диода выходное напряжение выходит пульсирующим, можно посмотреть на рисунке ниже.

Таким пульсирующим напряжением уже можно подключать некоторые устройства, которые не бояться пульсаций, например для зарядки автомобильного или другого аккумулятора. Но для питания приемника, усилителя, светодиодной ленты, и тд., такой блок питания не пойдет, к нему на выход диодов надо подключить фильтр, сглаживающий пульсации.

Фильтрующий конденсатор

Без этого фильтра устройство, которое будет питаться от этого блока питания может работать нестабильно, или вообще не работать. Фильтром служат электролитические конденсаторы. У конденсаторов два вывода, плюсовой вывод длиннее минусового. Также возле минусового вывода на корпусе наносится знак «-«

Читать еще:  Особенности эксплуатации листогибочных прессов с ЧПУ

Ниже на рисунке показана схема, и уровень пульсаций в каждой точке

В устройствах, где требуется ещё и стабильное напряжение без скачков, например в электронике с применением микроконтроллеров, добавляют в схему еще и стабилизатор напряжения.

Стабилизатор

Продолжаем улучшать наш простой блок питания своими руками. Для получения качественного и стабильного напряжения без малейших пульсаций, скачков, и просадки напряжения используют стабилизатор напряжения.

В качестве стабилизатора используют стабилитрон, или интегральный стабилизатор напряжения. Мы собрали схему блока питания для устройства, которое нуждается в стабилизированном источнике питания. Это устройство собрано на контроллере, и без стабильного напряжения оно работать не будет. При небольшом повышении напряжении контроллер сгорит. А при понижении напряжении устройство откажется работать. Вот для таких устройств и предназначен стабилизатор.

Вывод 1 интегрального стабилизатора — входное напряжение. Вывод 2 — общий (земля). Вывод 3 — выходит стабилизированное напряжение.

Максимум, что может выдать L7805 — ток в 1,5 А, поэтому надо рассчитывать остальные детали на ток более 1,5 А. Выход трансформатора выбираем на ток более 1,5 ампера и напряжением выше стабилизированного значения больше на два вольта. Например, для LM7812 с выхода трансформатора должно выходить 14 — 15 В, для LM7805 7 – 8 В. Но не забывайте, что эти стабилизаторы греются из-за внутреннего сопротивления. Чем больше перепад между входом и выходом, тем больше нагрев. Ведь лишнее напряжение эти стабилизаторы гасят на себе.

Интегральные стабилизаторы бывают с общим минусом LM78**, или с общим плюсом LM79**. На месте звездочек находятся цифры указывающие напряжение стабилизации. Например LM7905 — общий плюс, напряжение стабилизации -5 В. Еще один пример LM7812 — общий минус, напряжение стабилизации 12 В. А теперь посмотрим распиновку, или назначение выводов интегрального стабилизатора.

Стабилизированный блок питания на LM7805

На рисунке ниже представлена схема простого блока питания со стабилизатором.

На первичную обмотку трансформатора TV1 поступает сетевое напряжение 220 В. Со вторичной обмотки трансформатора выходит пониженное переменное напряжение от 7 до 8 вольт. Далее ток проходит через диодный мост, и на выходе моста получается выпрямленное напряжение. На конденсаторах С1 и С2 выпрямленное напряжение сглаживается.

На выходе стабилизатора LM7805 выходит стабилизированное напряжение 5 вольт. Далее на конденсатор сглаживающий импульсы. И вот уже выпрямленное и стабильное напряжение поступает на светодиод VD5 с токоограничивающим резистором. Светодиод служит индикатором напряжения.

Если требуется источник питания малой мощности, то можно рассмотреть как вариант- бестрансформаторный блок питания. Но это уже другая история.

Как сделать блок питания для шуруповерта

Автономный электроинструмент — это, конечно, очень удобно. Но, во-первых, аккумулятора обычно не хватает для проведения всех работ, во-вторых, при выходе батареи из строя приходится покупать новую, цена которой составляет 80 % от цены того же шуруповёрта. В этой статье мы изготовим сетевой блок питания для аккумуляторного шуруповёрта, который выручит в обоих случаях — ведь нередко на месте проведения работ есть розетка.

  1. Общие сведения о питании и мощности шуруповёртов
  2. Использование светодиодного драйвера
  3. Переделка электронного трансформатора
  4. Другие варианты импульсных блоков питания
  5. Использование универсальных БП
  6. Самодельный блок питания для шуруповёрта
  7. Использование БП от компьютера
  8. Схема трансформаторного блока питания шуруповёрта

Общие сведения о питании и мощности шуруповёртов

Сначала рассмотрим электрическую составляющую аккумуляторного шуруповёрта. Инструмент представляет собой низковольтный двигатель постоянного тока с редуктором, который получает питание от аккумулятора. Обороты патрона регулируются при помощи планетарной системы редуктора и электронного ШИМ-узла, совмещённого с кнопкой включения. В зависимости от класса и мощности инструмента, он может питаться напряжением 12 В, 14 В или 18 В.

Один из вариантов электрической схемы шуруповёрта

В качестве батареи питания используется набор никель-кадмиевых или литиевых аккумуляторов. Последние дороже, но с лучшими характеристиками при небольших габаритах. Что касается потребляемого от батареи тока, он зависит от мощности применяемого двигателя и может достигать 7–10 А для простых бытовых моделей и 30–40 А — для профессиональных.

Использование светодиодного драйвера

Для 12-вольтового инструмента такой драйвер — самый простой вариант, хотя и не самый дешёвый. Единственное условие — мощность драйвера должна быть на 10–15 % больше мощности инструмента. В противном случае блок питания выйдет в защиту уже при пуске инструмента, а если запустит его, то не позволит развить достаточную мощность для затягивания шурупа.

Если, к примеру, 12-вольтовый шуруповёрт потребляет ток в 10 А, то мощность блока питания должна быть хотя бы 130 Вт. Для 30-амперного инструмента понадобится уже 400-ваттный блок питания. Найти такой прибор, конечно, не проблема, но стоимость его может превышать стоимость самого шуруповёрта.

Драйвер для светодиодной ленты самый простой, но не самый дешёвый

Как переделать шуруповёрт под такой блок питания? Если штатная батарея выходит из строя, то мы её просто разбираем, вынимаем аккумуляторы, а к клеммам подачи напряжения на инструмент припаиваем провода, подключенные к выходным зажимам драйвера, обязательно соблюдая полярность. Сам драйвер подключаем к сети через входные клеммы — и переделка окончена. Вставляем «батарею» в шуруповёрт — и пользуемся.

Если аккумулятор исправен, то его, конечно, разрушать не надо. Просто разбираем шуруповёрт и подпаиваем колодку питания к питающим клеммам самого инструмента. Колодку, естественно, выводим наружу, провод питания оснащаем ответной частью разъёма. Соединили разъём — работаем от сети. Отключили БП, установили батарею — и у нас автономный инструмент.

Разъём поможет удобно хранить и транспортировать шуруповёрт с сетевым питанием и оперативно отключить БП для штатного режима работы от АКБ

Важно! 10 А — приличный ток, поэтому сечение проводов должно быть достаточно большим, а их длина как можно меньше (в разумных пределах). В противном случае на питающих проводах будет большое падение напряжения, и шуруповёрт не разовьёт нужную мощность.

Переделка электронного трансформатора

Неплохой и достаточно компактный блок питания можно сделать из так называемого электронного трансформатора (ЭТ), предназначенного для питания низковольтных галогенных ламп.

Электронный трансформатор для питания 12-вольтовых галогенных ламп

Но чтобы использовать трансформатор совместно с шуруповёртом, его (блок) необходимо доработать. Взглянем на классическую схему простейшего ЭТ.

Электрическая схема электронного трансформатора

Это простейший импульсный понижающий источник питания, собранный по двухтактной схеме. Выходное напряжение снимается со вторичной обмотки выходного трансформатора. Схема, приведённая на рисунке, конечно, не единственная. Есть приборы проще, есть сложнее. Есть со стабилизацией выходного напряжения, системой плавного пуска и защитой от короткого замыкания. Но то, что нас интересует, является неизменной частью любого электронного трансформатора. Так, в чем трудность?

Проблема заключается в том, что выходное напряжение подобных БП переменное с частотой десятки килогерц, да ещё и промодулированное частотой 50 Гц. Оно годится для питания ламп накаливания, но не подходит для шуруповёрта. Значит, его нужно выпрямить и сгладить. Для этого используем диод VD1 и два сглаживающих конденсатора — С1 и С2, подключив их по схеме, приведённой ниже.

Схема доработанного электронного трансформатора

Лампа Н1 служит нагрузочной, когда шуруповёрт отключён. Она необходима для старта преобразователя — без нагрузки он просто не запустится. Высоковольтный электролитический конденсатор можно взять из БП для компьютера или любого другого устройства, скажем, из телевизора с импульсным блоком питания. Он находится в корпусе электронного трансформатора. Диод и конденсатор помещают в корпус инструмента, а лампу устанавливают так, чтобы она ещё и рабочее место освещала — убила, как говорится, сразу двух зайцев. Такая лампа будет много удобнее штатной подсветки, которая включается только вместе с инструментом. Вслепую целишься в темноте, потом запускаешь шуруповёрт и смотришь, куда попал.

Диод КД2960 представляет собой быстродействующий выпрямительный диод, рассчитанный на ток 20 А и выдерживающий обратное напряжение 1200 В. Его зарубежный аналог — 20ETS12. Заменить этот диод обычным выпрямительным не получится — у него слишком низкое быстродействие, и на частоте в десятки килогерц он будет больше греться, чем выпрямлять.

Но замена есть. Вполне подходит диод Шоттки, выдерживающий ток 15–20 А и обратное напряжение не ниже 25 В. Найти такие диоды можно в блоках питания ПК. Там они служат для этих же целей. Диод, конечно, нужно поставить на теплоотвод.

Лампочка миниатюрная. Её можно найти в советских новогодних гирляндах или использовать две на 6,3 В, включённые последовательно. Собираем выпрямитель, размещаем его в корпусе инструмента, выводим через проделанное отверстие провода, подпаиваем одну часть разъёма. Вторую подпаиваем к проводам от трансформатора — и доработка закончена. Поскольку напряжение на выходе электронного трансформатора переменное, полярность подключения проводов от ЭТ к выпрямителю можно не соблюдать.

Как указывалось выше, существуют трансформаторы, обеспечивающие плавный пуск галогенных ламп. Подойдут ли они нам? Вполне. Как только мы подключим ЭТ к сети, он запустится и в течение 1–3 секунд выйдет на рабочий режим — это будет хорошо заметно по плавному разгоранию лампы Н1. После этого инструментом можно пользоваться без проблем.

Другие варианты импульсных блоков питания

Какие ещё есть варианты питания 12-вольтового шуруповёрта? Первое, что приходит на ум, — БП от ноутбука. Прелесть решения заключается в том, что, в отличие от предложенных драйверов и электронных трансформаторов, подобные блоки питания могут быть и на 15, и на 19 В. То есть подобрав соответствующий БП, можно питать им инструмент на 14 и 18 В.

К сожалению, такой вариант работать не будет, поскольку блоки питания от ноутбука не смогут обеспечить необходимым током даже самый простой и маломощный шуруповёрт. Максимум, что можно от них получить, — 4–5 А. Десятиамперных БП этого типа просто не существует.

Этот достаточно мощный БП для 19-вольтового ноутбука выдаст ток не более 4,75 А

Использование универсальных БП

Какие у нас ещё есть варианты? Можно использовать для питания шуруповёрта так называемые универсальные блоки питания. На фото, приведённом ниже, БП выдает сразу несколько напряжений и подходит для питания как 12-вольтового, так и 18-вольтового инструмента мощностью до 120 Ватт.

Мощный универсальный импульсный блок питания

Но тут опять всё упирается в цену. Стоимость такого БП окажется выше цены на сам инструмент, а вдобавок мы получаем за эти деньги кучу переходников, которые будут валяться без дела.

Самодельный блок питания для шуруповёрта

Если мы имеем знания по электронике, то сможем собрать импульсный блок питания для шуруповёрта своими руками — соответствующих схем много. В качестве примера рассмотрим относительно простую конструкцию.

Схема самодельного импульсного блока питания для шуруповёрта

Как она работает? Сетевое напряжение выпрямляется диодным мостом, собранным на диодах VD1–VD4, сглаживается конденсатором С1 и поступает на мощный двухтактный автогенератор, собранный на полевых транзисторах VT2, VT3 и трансформаторе Т1, обеспечивающим вместе с обмоткой 2 трансформатора Т2 автогенератору положительную обратную связь.

Цепь, собранная на транзисторе VT1, обеспечивает начальный запуск генератора и после этого в процессе не участвует — её блокирует диод VD8. Нагрузкой автогенератора служит понижающий трансформатор Т2. Пониженное напряжение с его обмотки 3 выпрямляется мостом VD7, сглаживается конденсатором С5 и подаётся на инструмент. Ёмкость конденсатора выбрана достаточно большая для обеспечения высокого пускового тока шуруповёрта.

Т1 намотан на ферритовом кольце типоразмера 12х8х3. Все обмотки одинаковы и имеют по 20 витков провода ПЭВ 0.33. Т2 намотан на кольце 40х25х11. Обмотка 1 имеет 100 витков провода ПЭВ 0.54. Обмотка 2 — 9 витков провода ПЭВ 0.33, обмотка 3 — 13 витков провода ПЭВ 0.96. Феррит бывает марки 1000НМ, 2000НМ или 3000НМ. Диодный мост VD4 можно собрать на четырёх быстродействующих диодах, выдерживающих ток 10 А. Транзисторы VT2 и VT3 необходимо установить на радиаторы.

Полезно! Предлагаемый блок питания рассчитан на выходное напряжение 18 В. Если необходимо получить другое напряжение, достаточно изменить количество витков обмотки 3 трансформатора Т2.

Использование БП от компьютера

Ну и закончим разговор об импульсных блоках питания переделкой компьютерного блока питания для работы с шуруповёртом 12 В. Да, он будет великоват, но зато купить такой блок, конечно, БУ можно недорого, а переделка очень проста. Правда, питать он сможет только 12-вольтовый инструмент. При желании, конечно, можно переделать БП компьютера и на 18 В, но переделка достаточно сложна и потребует глубоких знаний в электронике. Перед покупкой БП смотрим, выдаст ли он необходимый нам ток по шине 12 В. (Все выдаваемые им токи указаны прямо на корпусе).

Этот БП в состоянии выдать 11 А по 12-вольтовой шине, 1 и 13 А — по шине 2

Как видим на фото, выдаст и даже с запасом — если соединить шины параллельно, можно получить ток в 24 А. Можно было бы взять устройство и слабее, но что есть, то есть. Вскрываем прибор, вынимаем плату и выпаиваем все провода шлейфов питания, оставив лишь зелёный (включение БП), два чёрных, два жёлтых (шина 1+12 В) и красный (+5 В).

Такой пучок проводов нам просто не нужен, лишние выпаиваем

Полезно! Если мы хотим увеличить мощность, соединив 12-вольтовые шины параллельно, то оставляем и два жёлто-чёрных провода — шина 2 + 12 В.

Соединяем чёрный с чёрным, жёлтый с жёлтым. По два мы оставили для увеличения общего их сечения и меньшего падения напряжения. Теперь зелёный впаиваем на место любого из выпаянных чёрных. Этим мы дадим команду на безусловное включение блока питания при подаче на него сетевого напряжения.

Остался красный. Зачем он нужен? Дело в том, что некоторые БП контролируют наличие нагрузки на шине +5 В. Без нагрузки они просто сразу выходят в защиту. Итак, подключаем наш доработанный источник к сети и измеряем напряжение между чёрными и жёлтыми проводами. Есть 12 В?

Подключаем к этим же проводам автомобильную лампочку. Напряжение пропало? Блоку питания нужна базовая нагрузка. Между чёрными и красным проводами подключаем небольшую нагрузку — ту же 12-вольтовую лампочку от автомобильных габаритов. Если БП не отключается, то нагрузка не нужна, и красный провод можно выпаять. Осталось собрать БП, а к чёрным и жёлтым проводам припаять колодку — к ней будет подключаться инструмент. Чёрный провод будет минусом, жёлтый — плюсом питания.

Вот и всё, подключаем шуруповёрт к БП, включаем шнур питания источника в сеть, щёлкаем выключателем (если он есть) и работаем.

Если такого выключателя нет, то блок питания запустится сразу после подключения к розетке

Схема трансформаторного блока питания шуруповёрта

Напоследок сделаем своими руками трансформаторный блок питания для шуруповёрта 12, 14 или 18 В. Такой источник, конечно, будет достаточно громоздким, но прелесть конструкции заключается в её простоте. С повторением схемы справится и начинающий радиотехник, имеющий лишь общие знания по электротехнике.

Читать еще:  Станок для изготовления блоков: простое устройство или виброустановка?

Для этого самодельного блока питания понадобится трансформатор, способный выдать необходимый нам ток при напряжении 12–13 В (для 12-вольтового инструмента), 14–16 В (для 14-вольтового) или 18–20 В для 18-вольтового инструмента. Ещё придётся найти 4 мощных выпрямительных диода и несколько электролитических конденсаторов.

Если у нас шуруповёрт на 12 вольт, потребляющий ток до 10 А (большинство бытовых), то можно взять унифицированный анодно-накальный трансформатор ТАН-138-127/220-50 (ТАН-138 220-50), имеющий 2 обмотки по 6,3 В при токе 10 А. Весит он, правда, более 6 кг.

Реинкарнация компьютерных БП. Часть 1

Те, кто уже имел дело с силовыми трансформаторами компьютерных БП, знают, что первичная обмотка трансформатора содержит около 40 витков провода, разделенных, как правило, на 2 секции, наматываемых до и после вторичной обмотки. Таким образом достигается уменьшение паразитной емкости первичной обмотки и усиливается индуктивная связь между обмотками, что важно для ШИ-возможностей БП. Суммарное же количество витков вторичных полуобмоток — 7 (3+4). Таким образом, коэффициент трансформации штатного трансформатора приблизительно равен 5,7. Для полумостовой схемы преобразователя амплитуда прямоугольных импульсов будет равна половине питающего напряжения преобразователя, т.е. — 220Х1,4/2=154В (пренебрегая падением напряжения на К-Э-переходах транзисторных ключей).

Это значит, что действующее значение «переменки» на выходе трансформатора составит приблизительно 27В. Значение выходного напряжения первой части полуобмоток (первые 3 витка от средней точки) — 11,5В. Выпрямив полученные напряжения, получим «постоянку» с приблизительными значениями, соответственно, 38 и 16 Вольт. Габаритная мощность магнитопроводов трансформаторов современных и чуть менее современных компьютерных БП составит не менее 250Вт на частотах преобразования от 30кГц. Это значит, что при расчетных выходных напряжениях мы можем расчитывать на выходной ток от 6,5 Ампер. Впечатляет? Причем все ЭТО можно получить при простой схемотехнике и незначительных усилиях при конструировании, учитывая, разумеется, отсутствие такого сервиса, как стабилизация выходных напряжений, например. А во многих случаях стабилизация и не нужна. Взамен получаем мощность, приемлемый набор выходных напряжений, позволяющий использование возрожденного БП в широком диапазоне задач (от построения лабораторного БП до питания мощных усилителей) компактность, малый вес. А эти показатели перекрывают такой минус, как отсутствие стабилизации.

У трансформаторов компьютерных БП есть один большой плюс, помимо уже замеченных в этом тексте, — стандартный установочный профиль. Это обстоятельство делает задачу разработки универсальной схемы с применением тр-ов от разных БП очень простой, равно, как и разработку печатной платы для этой схемы. Это значит, изготовление БП с подобными трансформаторами можно поставить на поток, не взирая на габаритные и мощностные различия трансформаторов. Еще один плюс силовых трансформаторов компьютерных БП — высокая надежность, обусловленная применением качественных современных ферритов, эпоксдной пропиткой, избыточным сечением обмоточных проводов. Никто из тех, кому доводилось ремонтировать компьютерные БП, не сможет, пожалуй, припомнить гибель такого трансформатора. И еще — трансформатор можно легко экранировать полоской фольги, создав КЗ-виток вокруг самого трансформатора.

Задача проста. Схема должна быть максимально простой и повторяемой при использовании трансформаторов от разных БП. Для этой цели попробуем применить трансформатор в схеме двухтактного полумостового автогенераторного преобразователя, так полюбившегося производителями электронных трансформаторов (Рис 1а) с любым из узлов запуска (Рис 1б — рис 1г).

Проще схемы, пожалуй, не бывает.

До сборки схемы по рис 1а необходимо намотать коммутирующий (управляющий) трансформатор на ферритовом кольце размером 10Х6Х3мм (наружный диаметр Х внутренний диаметр Х высота) или другом, имеющим близкие габариты из материалов 1000/1500/2000/3000НН. Можно попробовать и другие размеры и марки феррита, но следует учесть, что размеры бОльшие, чем те, что указаны, могут значительно снизить частоту коммутации, а то и вовсе привести к неспособности трансформатора к насыщению. При этом габариты трансформатора должны обеспечивать определенную мощность для создания в его обмотках тока, достаточного для открывания транзисторов. Кроме того, габариты трансформатора должны обеспечить и достаточное пространство для размещения необходимого количества витков. «Базовые» обмотки могут содержать от 3 до 10 витков медного провода диаметром не менее 0,3мм в эмалевой или любой другой изоляции. Возможно использование одножильного монтажного провода с жилой указанного диаметра. Таким же проводом наматываем и обмотку связи — 1-10 витков.

Обмотка связи в виде 1-4 витков провода делается и на «компьютерном» трансформаторе. Практически в любом трансформаторе найдется зазор между имеющимися обмотками и боковыми частями магнитопровода для нескольких дополнительных витков провода казанного сечения.
Собираем макет электрической схемы преобразователя (рис 2, рис 3), подпаиваем к схеме выводы


«компьютерного» трансформатора; к выводам его вторичной обмотки подпаиваем нагрузочный резистор, обеспечивающий небольшую, до 10Вт, потребляемую мощность (но можно и без нагрузки); параллельно любой из вторичных обмоток подключаем осциллограф и через лампу накаливания мощностью 150-200Вт подключаем схему к сети. Увидев на дисплее осциллографа импульсы правильной прямоугольной формы

и не заметив свечения нити балластной лампы, понимаем, что преобразователь — работает. Выключаем, проверяем на нагрев радиатор, на котором закреплены транзисторы (MJE13007), трансформатор. Если все эти предметы не изменили своей температуры за несколько секунд проверочного включения относительно той, что была до включения, то — продолжаем эксперементировать.

Измеряем частоту преобразования и при необходимости подбираем ее значение с помощью подбора витков обмоток связи одного из трансформаторов и резистора R3 (рис 1а). При подборе частоты указанными манипуляциями следует учесть, что при увеличении витков обмотки связи трансформатора Tr2, частота преобразования будет снижаться, а ток через резистор R3 — возрастет. Увеличение числа витков обмотки связи на Tr1 так же будет способствовать снижению частоты, равно. как и уменьшение сопротивления резистора R3. Оптимальным следует считать режим преобразования с частотой равной или большей той частоты, при которой трансформатор эксплуатировался в исходном БП. Т.е. — от 30-35кГц. Преобразователь, собранный по схеме на рис 1а, работает уверенно и на более низких частотах. Правда, продолжительность испытаний не превышала получаса для каждого варианта (см таблицу 1), а мощность нагрузки не превышала 55Вт.

При указанных в таблице 1 изменениях номиналов деталей и обмоточных данных, нагрев транзисторов, установленных на радиаторе в макете (на рис 2, 3) не превышал 40 градусов при получасе работы. Нагрев существенно может быть снижен достижением оптимального количества витков обмоток связи обоих трансформаторов. Эта же мера снизит разогрев и резистора R3. Правильный подбор витков будет способствовать и общей стабильности схемы. При испытаниях умышленно было выбрано неверное соотношение витков. О хорошем и правильном — в продолжении.

А результаты испытания ЭТОЙ схемы с трансформатором из компьютерного БП показали следующее.
1. Действующие напряжения вторичных обмоток трансформаторов (а испытывались четыре различных трансформатора от разных БП) оказались несколько выше расчетных: 11,8 — 13,6В (пятивольтовая полуобмотка разных тран-в), 28-30,5В — (двенадцативольтовая полуобмотка).

Как видно, схема — все та же, но в качестве ключей применены мощные полевые транзисторы. Выбраны были IRFP460A, т.к. просто оказались в наличии именно эти транзисторы. Обмотки коммутирующего тр-ра, разумеется, намотаны уже несколько иначе, т.к. порог открывания полевых транзисторов — 5-12В. Затворные обмотки коммутирующего трансформатора и обмотка связи содержат одинаковое количество витков — по 20 — медного провода в диаметром 0,3 в эмали. Перед наматыванием провода в эмалевой изоляции, не лишним будет окунуть магнитопровод в клей («момент» или «БФ-2») для создания изоляционного слоя поверх проводящего, в общем-то, материала магнитопровода. Габариты кольца такие-же, как и у трансформатора из предыдущей схемы. Количество витков обмотки связи силового тр-ра так же придется увеличить (3-4 витка) для создания необходимого напряжения на обмотке связи тр-ра Tr1.

Фото макета на рис 4, 5.


3. Резисторы обратной связи R3 практически не нагреваются, каких бы номиналов они ни применялись при испытании. Это обстоятельство позволяет применить в качестве R3 маломощные (от 0,25Вт) резисторы.

4. Практически отсутствует нагрев ключей. Это значит, что и площадь охлаждающих радиаторов может быть относительно небольшой, а устройство в целом — более компактным.
5. ЭТА схема по своим свойствам сопоставима со схемой на на полумостовом драйвере типа IR2151-IR2153, но имеет более высокий КПД за счет отсутствия цепей питания самого драйвера; схема меньше уязвима и менее требовательна к компоновке в отличии от схемы со специализированным драйвером.

Надеюсь, статья поможет многим переосмыслить собственные взгляды на старые компьютерные БП и сэкономить при создании таких несложных и нужных БП.

Камрад, рассмотри датагорские рекомендации

? Халва для своих! +1800.00₽ для новичка на Aliexpress

Камрад, регистрируйся на Али по этой нашей ссылке. Ты получишь купон на 1800.00₽ на первый заказ. Не тяни, время действия купона ограничено.

? Полезные и проверенные железяки — можно брать!

Куплено и опробовано читателями или в лаборатории редакции.

Где взять нужный трансформатор для блока питания?

Чтобы первые радиолюбительские конструкции обеспечить постоянным напряжением, нужен маломощный блок питания, работающий от сети переменного тока. Но готовый блок не всегда удается найти в магазине, поэтому зачастую приходится думать о самодельной конструкции. Чтобы облегчить эту задачу, и были разработаны простейшие методы расчета, которые позволят подобрать нужные детали для блока питания в зависимости от предъявляемых к нему требований. Схема предполагаемого блока питания, обеспечивающего нужное выходное напряжение постоянного тока, приведена ниже. В нем использован трансформатор питания, включаемый первичной обмоткой (I) в осветительную розетку и понижающий напряжение (оно снимается с обмотки II) до заданного значения, двухполупериодный выпрямитель на диодах VD1 -VD4 и конденсатор С1, сглаживающий пульсации выпрямленного напряжения. Полученное в итоге почти постоянное напряжение (пульсации его при подключении нагрузки все же будут) снимают с выходных гнезд XS1 и XS2. Расчет блока питания начинают с выпрямителя. Задача расчета — правильно выбрать выпрямительные диоды и конденсатор фильтра, а также определить необходимое переменное напряжение, снимаемое для выпрямления со вторичной (II) обмотки сетевого трансформатора.

Исходными данными для расчета выпрямителя служат требуемое напряжение на нагрузке (Uн) и потребляемый ею максимальный ток (Iн). Порядок расчета следующий: Сначала определяют переменное напряжение U II , которое должно быть на вторичной обмотке трансформатора:

где Uн — постоянное напряжение на нагрузке, вольт; B -коэффициент, зависящий от тока нагрузки, который определяют по таблице 1.

коэффициентТок нагрузки, А
0,10,20,40,60,81,0
B0,811,21,41,51,7
C2,42,221,91,81,8

По току нагрузки определяют максимальный ток, протекающий через каждый диод выпрямительного моста:

где Iд — ток через диод, ампер ; Iн — максимальный ток нагрузки, А; С — коэффициент, зависящий от тока нагрузки и определяемый из таблицы 1.

Далее подсчитывают обратное напряжение, которое будет приложено к каждому диоду выпрямителя:

где Uo6p — обратное напряжение, В; Uн — напряжение на нагрузке, В.

Теперь надо выбрать диоды, у которых значения выпрямленного тока и допустимого обратного напряжения равны или превышают полученные расчетные Вами расчетные значения. В заключение можно определить емкость конденсатора фильтра:

Сф=3200 Iн / UнКп

где Сф — емкость конденсатора фильтра, мкФ; Iн -максимальный ток нагрузки. А: Uн — напряжение на нагрузке, В: Кп — коэффициент пульсаций выпрямленного напряжения (отношение амплитудного значения переменной составляющей частотой 100 Гц на выходе выпрямителя к среднему значению выпрямленного напряжения).

Коэффициент пульсаций выбирают самостоятельно в зависимости от предполагаемой нагрузки, допускающей питание постоянным током вполне определенной «чистоты». К примеру, для питания малогабаритных транзисторных радиоприемников и магнитофонов коэффициент пульсаций выпрямленного напряжения может достигать 10 -3 . 10 -2 , усилителей радио и промежуточной частоты — 10 -4 . 10 -3 предварительных каскадов усилителей звуковой частоты и микрофонных усилителей — 10 -5 . 10 -4 . В дальнейшем, когда Вы будете строить подобные выпрямители с последующей стабилизацией выпрямленного напряжения транзисторным стабилизатором, расчетную емкость фильтрующего конденсатора можно будет уменьшить в 5. 10 раз.

Следующий этап — это расчет трансформатора питания.

Данные на него у вас уже есть — необходимое напряжение на вторичной обмотке (UII) и максимальный ток нагрузки ( I II ). Здесь тоже существует определенная последовательность расчета. Сначала определяют максимальное значение тока, протекающего через вторичную обмотку:

где I II — ток через обмотку ║ трансформатора, А; Iн -максимальный ток нагрузки, А.

Далее определяют мощность, потребляемую выпрямителем от вторичной обмотки трансформатора:

где РII — максимальная мощность, потребляемая от вторичной обмотки, Вт; UII — напряжение на вторичной обмотке. В; III — максимальный ток через вторичную обмотку, А.

Затем подсчитывают мощность трансформатора:

где Ртр -мощность трансформатора, Вт; РII — максимальная мощность, потребляемая от вторичной обмотки трансформатора, Вт. Если изготавливают трансформатор с несколькими вторичными обмотками, то сначала подсчитывают максимальную мощность, потребляемую от каждой вторичной обмотки, потом их суммарную мощность, а затем и мощность самого трансформатора.

Теперь можно подсчитать ток, протекающий через первичную обмотку:

где II, — ток через обмотку I, А; Ртр — подсчитанная мощность трансформатора, Вт: UI — напряжение на первичной обмотке трансформатора (сетевое напряжение),

После этого рассчитывают необходимую площадь сечения сердечника магнитопровода:

где S — сечение сердечника магнитопровода, см 2 ; Ртр — мощность трансформатора, Вт.

Определяют число витков первичной (сетевой) обмотки:

где WI — число витков обмотки; UI — напряжение на первичной обмотке В; S — сечение сердечника магнитопровода, см 2 .

Подсчитывают число витков вторичной обмотки:

Где WII — число витков вторичной обмотки; UII — напряжение на вторичной обмотке. В; S — сечение магнитопровода, см 2 .

В заключение определяют диаметр провода обмоток:

где (d — диаметр провода, мм; I — ток через обмотку, мА. Иногда диаметр провода удобнее выбрать по таблице 2.

Iобм, мА2525. 6060. 100100. 160160. 250250. 400400. 700700. 1000
d, мм0,10,150,20,250,30,40,50,6

По полученным данным можно подбирать подходящее железо и провод и изготавливать трансформатор. Правда, нелишне сначала прикинуть, разместится ли весь провод на каркасе будущего трансформатора при данных Ш — образных пластинах
— ведь однотипные (по ширине средней части) пластины имеют неодинаковую площадь окна. Для приблизительной оценки достаточно подсчитанную ранее мощность трансформатора Ртр умножить на 50 и сравнить полученный результат (это необходимая площадь окна в мм2) с измеренной площадью окна имеющихся пластин. При выборе сердечника магнитопровода следует придерживаться и еще одного правила
— отношение ширины средней части сердечника к толщине набора (отношение сторон сердечника) должно быть в пределах 1. 2.. Полностью методика расчета описывается в [60].

0 0 голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты