Сверхпроводящий трансформатор почти своими руками
Digitrode
цифровая электроника вычислительная техника встраиваемые системы
- Вычислительная техника
- Микроконтроллеры микропроцессоры
- ПЛИС
- Мини-ПК
- Силовая электроника
- Датчики
- Интерфейсы
- Теория
- Программирование
- ТАУ и ЦОС
- Перспективные технологии
- 3D печать
- Робототехника
- Искусственный интеллект
- Криптовалюты
Чтение RSS
Как сделать трансформатор своими руками для импульсного источника питания
Как самостоятельно собрать трансформатор
Разработка эффективной схемы источника питания – довольно сложная задача. Те, кто уже работал с цепями импульсного источника питания, легко согласятся с тем, что конструкция обратноходового трансформатора играет жизненно важную роль в разработке эффективной цепи электропитания. В большинстве случаев эти трансформаторы не доступны в продаже в том же наборе характеристик, который соответствует нашему проекту.
Таким образом, в этом уроке по проектированию трансформаторов мы узнаем, как создать собственный трансформатор в соответствии с требованиями нашей схемы. Обратите внимание, что этот урок охватывает только теорию, на основе которой позже в другом уроке мы построим импульсную схему на 5 В и 2 A с трансформатором ручной работы, как показано на рисунке выше для практической демонстрации.
Конструкция трансформатора импульсного источника питания имеет различные части трансформатора, которые непосредственно отвечают за его работу. Компоненты, представленные в трансформаторе, описаны ниже, мы узнаем важность каждого компонента и то, как он должен быть выбран для вашей конструкции трансформатора. Эти компоненты в большинстве случаев одинаковы и для других типов трансформаторов.
Сердечник трансформатора
Трансформаторы импульсного блока питания сильно зависят от частоты, на которой они работают. Высокая частота переключения открывает возможности выбора более малых трансформаторов. Эти высокочастотные трансформаторы используют ферритовые сердечники.
Конструкция сердечника трансформатора является самой важной вещью в строении трансформатора. Сердечник имеет другой тип AL (коэффициент индуктивности активной зоны), в зависимости от материала сердечника, размера сердечника и типа сердечника. Популярным типом материала сердечника являются N67, N87, N27, N26, PC47, PC95 и т. д. Кроме того, производитель ферритовых сердечников предоставляет подробные параметры в техническом описании, которые будут полезны при выборе сердечника для вашего трансформатора. Например, вот документация для популярного сердечника EE25.
Изображение выше представляет собой данные на сердечник EE25 из материала PC47 от популярного производителя сердечников TDK. Каждый бит информации будет необходим для создания трансформатора. Однако сердечники имеют прямую зависимость от выходной мощности, поэтому для различной мощности источника питания требуются разные форма и размер сердечника.
Далее представлен список сердечников в зависимости от мощности. Список основан на конструкции 0-100 Вт. Источник списка взят из документации Power Integration. Эта таблица будет полезна для выбора правильного сердечника для вашей конструкции трансформатора на основе его номинальной мощности.
Здесь термин TIW обозначает конструкцию с тройной изолированной обмоткой. Е-сердечники являются наиболее популярными и широко используются в трансформаторах импульсных источников. Тем не менее, E-сердечники имеют несколько корпусов, таких как EE, EI, EFD, ER и т. д. Все они выглядят как буква «E», но центральная часть отличается для каждого вещества. Общие типы сердечников E-вида проиллюстрированы ниже с помощью изображений.
EE-сердечник
EI-сердечник
ER-сердечник
EFD-сердечник
Бобина трансформатора
Бобина – это корпус для сердечников и обмоток. Такая бобина или катушка имеет эффективную ширину, которая необходима для расчета диаметров проволоки и конструкции трансформатора. Не только это, бобина трансформатора также имеет пунктирную метку, которая обеспечивает информацию для первичных обмоток. Обычно используемая катушка трансформатора EE16 показана ниже.
Вся обмотка трансформатора будет иметь первичную обмотку и как минимум одну вторичную обмотку, в зависимости от конструкции она может иметь больше вторичной обмотки или вспомогательной обмотки. Первичная обмотка является первой и самой внутренней обмоткой трансформатора. Она напрямую связана с первичной стороной источника питания. Обычно количество обмоток на первичной стороне больше, чем на других обмотках трансформатора. Найти первичную обмотку в трансформаторе легко; нужно просто проверить точечную сторону трансформатора на предмет первичной обмотки. Как правило, она расположена на стороне высокого напряжения силового транзистора.
В схеме импульсных источников питания вы можете заметить, что имеется линия постоянного тока высокого напряжения от высоковольтного конденсатора, соединенного с первичной стороной трансформатора, а другой конец соединен с драйвером питания или с отдельным стоковым выводом MOSFET-транзистора высокого напряжения.
Вторичная обмотка преобразует напряжение и ток на первичной стороне в требуемое значение. Найти вторичный выход немного сложно, так как в некоторых конструкциях трансформатор обычно имеет несколько вторичных выходов. Однако выходная сторона или сторона низкого напряжения цепи импульсного источника питания обычно подключена к вторичной обмотке. Одна сторона вторичной обмотки постоянного тока, GND, а другая сторона подключена через выходной диод.
Существуют различные типы импульсных схем, где для схемы драйвера требуется дополнительный источник напряжения. Вспомогательная обмотка используется для подачи этого дополнительного напряжения в схему управления. Например, если ваша микросхема драйвера работает от 12 В, то у трансформатора будет вспомогательная выходная обмотка, которая может использоваться для питания этой микросхемы.
Трансформаторы не имеют электрического соединения между разными обмотками. Поэтому перед намоткой разных обмоток необходимо обмотать изоляционные ленты вокруг обмоток для разделения. Типичные полиэфирные барьерные ленты используются с различной шириной для разных типов катушек. Толщина лент должна составлять 1-2 мил для обеспечения изоляции.
Этапы проектирования трансформатора
Теперь, когда мы знаем основные элементы трансформатора, мы можем выполнить следующие шаги, чтобы спроектировать наш собственный трансформатор.
Шаг 1: Найдите правильный сердечник для желаемого результата. Выберите правильные сердечники, перечисленные в разделе выше.
Шаг 2: Выяснение количество оборотов для первичных и вторичных обмоток. Первичный и вторичный витки взаимосвязаны и зависят от других параметров. Формула конструкции трансформатора для расчета первичного и вторичного витков следующая:
Np – количество витков первичной обмотки, Ns – количество витков вторичной обмотки, Vmin – минимальное входное напряжение, Vds – напряжение сток-исток силового транзистора, Vo – выходное напряжение, Vd – выходное напряжение диодов прямого падения напряжения, Dmax – максимальная скважность.
Следовательно, первичный и вторичный витки взаимосвязаны и характеризуются коэффициентом витков. Из приведенного выше расчета можно установить соотношение, и, таким образом, путем выбора вторичных витков можно определить первичные витки. Хорошей практикой является использование 1 витка на выходное напряжение вторичной обмотки.
Шаг 3: Следующим этапом является определение первичной индуктивности трансформатора. Это можно рассчитать по приведенной ниже формуле:
P0 – выходная мощность, z – коэффициент потерь, n – КПД, fs – частота переключения, Ip – пиковый первичный ток, KRP – пульсирующее отношение тока к пиковому значению.
Шаг 4: Следующий этап – выяснить эффективную индуктивность для нужного сердечника с зазором.
Lp – первичная индуктивность, Np – количество витков первичной обмотки.
Изображение выше показывает, что такое сердечник с зазором. Создание зазаора – это методика уменьшения значения первичной индуктивности сердечника до желаемого значения. Основные производители предоставляют сердечники с зазором для желаемого показателя эффективной индуктивности. Если такое значение недоступно, можно добавить проставки между сердечниками, чтобы получить желаемое значение.
Шаг 5: Следующий шаг – выяснить диаметр первичного и вторичного проводов. Диаметр провода для первичной обмотки в миллиметрах:
Где BWe — эффективная ширина бобины, а Np – число первичных витков.
Диаметр проводника для вторичной обмотки в миллиметрах составляет:
Ns – число витков вторичной обмотки, а M – запас с обеих сторон. Провода должны быть преобразованы в стандарт AWG или SWG.
Для вторичного проводника более 26 AWG не допускается из-за усиления скин-эффекта. В таком случае могут быть сформированы параллельные провода. При параллельной намотке проводов это означает, что для намотки вторичной стороны требуется более двух проводов, диаметр каждого провода может указывать на фактическое значение одного провода для облегчения намотки на вторичной стороне трансформатора. Вот почему вы можете увидеть некоторые трансформаторы, имеющие два провода на одной катушке.
Правильная намотка импульсного трансформатора
Из рисунка выше видно, что к двухтактным относят: мост, полумост и пуш-пул. В этих схемах зазора в сердечнике быть не должно, причем это касается не только силового трансформатора, но и ТГР.
Что касается однотактных схем, они бывают прямоходовые и обратноходовые, вот у них зазор в сердечнике должен быть обязательно, поэтому первым делом всегда необходимо более подробно ознакамливаться с тем, что вы делаете.
Для более наглядного примера в этой статье мы рассмотрим намотку 2-ух различных трансформаторов, один для двухтактной схемы, второй соответственно для однотактной.
Как видим из схемы — это полумост. Таким образом данный тип относится к разряду двухтактных схем, следовательно, как упоминалось в начале статьи — зазор в сердечнике не нужен.
С этим определились, но это еще не все. Перед намоткой необходимо произвести специальные вычисления (рассчитать трансформатор). Благо в интернете без особого труда можно найти и скачать специальные программы Владимира Денисенко для расчета трансформатора.
При включенной галочке программа автоматом накидывает пару витков на вторичку для зазора работы ШИМ.
Второе поле — это охлаждение. Если оно присутствует, то можно из трансформатора выжать больше мощности.
И последнее, но самое важное – необходимо указать какой сердечник будет использоваться при намотке данного трансформатора.
Стараемся равномерно укладывать витки, также необходимо избегать пересечение провода и различных узелков, петель и тому подобных явлений. От того как вы намотаете трансформатор зависит дальнейшая работа всего блока питания.
Мотаем ровно половину первички и делаем отвод, только не прямо на пин трансформатора, а вверх. Дальше будем мотать вторичку, а поверх неё оставшуюся первичку.
Припаиваемся к началу обмотки и равномерно виток к витку мотаем. При этом желательно чтобы вторичка поместилась в один слой. Но если же вы рассчитали на большее напряжение, то необходимо второй слой равномерно растянуть по всему каркасу.
Когда намотали слой, то опять же делаем отвод вверх и начинаем мотать вторую часть вторички. Мотается она точно так же, как и первая.
Вот тут уже стоит каким-либо образом пометить где у вас первая половина вторички и где вторая.
Следующий шаг – домотка первичной обмотки. В этом случае автор обычно оставляет себе пустой пин на печатной плате, чтобы туда можно было подключить среднюю точку первички.
Примечание для начинающих! Как правило начинающие радиолюбители делают свои первые блоки питания не стабилизированными на микросхемах типа IR2153 и постоянно сталкиваются со следующей проблемой: мол намотал на одно напряжение, а на выходе получил другое. Перемотка результатов не дает. В чем же дело? А дело в том, что необходимо проводить измерения при нагрузке как минимум 15% от номинала. А то получается, что выходной конденсатор зарядился до амплитудного значения, собственно его вы и измеряете, и не можете понять что не так.
Намотка трансформатора обратноходового блока питания ничем не отличается от предыдущего, только для расчета будем использовать уже другую программу из того же пакета программ – «Flyback – Программа расчета трансформатора обратноходового преобразователя» (Версия 8.1).
На этом все. Благодарю за внимание. До новых встреч!
Видеоролик автора:
Разные варианты изготовления сверхединичного трансформатора своими руками
Обычные трансформаторы устроены таким образом, что первичный и вторичный контур обладают примерно одинаковыми показателями по энергии, мощности работы. Но во время эксплуатации первичный контур затрачивает чуть больше энергии на выполнение основных операций. Потому КПД у обычных трансформаторов несколько снижается. Нужно собрать сверхединичный трансформатор своими руками для исправления проблемы.
Асимметричные виды трансформаторов
Устройства свободной энергии отличаются применением трансформаторов, у которых в работе первичных и вторичных контуров наблюдается некоторая асимметрия. Следующие два фактора облегчают получение результата:
- Использование фаз в правильном порядке.
- Соответствующая работа тактовых элементов от вторичных контуров.
Эти обстоятельства приводят к отсутствию Противо-ЭДС на контурах первичного типа. Потому и затраты мощности для контура первичного сильно уменьшаются. Такие устройства, по сути, работают за счёт асимметрии, которая появляется при взаимодействии контуров друг с другом.
Именно такие трансформаторы становятся основными источниками, благодаря которым схемы получают дополнительную энергию. Работа в этом случае связана с сохранением больших показателей по частотам, потому в схемах могут отсутствовать сердечники.
Есть две разработки сверхединичного трансформатора, на примере которых это отлично видно:
- Дона Смита.
- Тариэля Капанадзе.
Особенности схемы Дона Смита
Она взята из книги, написанной другим изобретателем – Патриком Келли. Главное – нарисовать правильную схему, применимую для конкретного случая. Ведь всегда есть вероятность, что сами учёные ошиблись. Можно привести в пример основные параметры, на которые идёт упор.
- 160 кВт – мощность выхода, для входа – 80 Вт.
- Итог – возрастание показателя в 2 тысячи раз.
- Процесс повышение мощности проходит в два этапа.
- Сначала происходит увеличение в 40, затем – в 50 раз.
Соединение земляного заряда с высоким сопротивлением происходит за первый этап. В это же время происходит образование нескольких других явлений: разрядник, колебания трансформаторного первичного контура.
На втором этапе мощность увеличивается внутри передающего трансформатора, у которого нет сердечника. Вторичная обмотка образует индукцию за счёт первичной. Последняя при таких обстоятельствах не ведёт к появлению сил с противо-ЭДС. Каждое 300-500 колебание приводит к потенциалу энергии с соответствующей долей, который появляется на трансформаторном выходе. Эта доля затем переходит к накопителям, на следующем этапе – к полезной нагрузке.
Можно сделать вывод о двухтактности описываемой схемы. Не важно, чья рука к нему прикладывается.
О способах получения дополнительной энергии
Стандартные правила можно изменить по отношению ко времени и пространству в равной степени. Рассмотрим только возможности получить дополнительную энергию во времени.
- Первый вариант.
Эффективная работа контура возможна только при соблюдении двух условий. Первое включает сохранение у этого же контура короткого импульса ЭДС. Второе – запаздывающий ток из-за индукции от этого показателя, у вторичного контура. Энергия генерируется так же, как и при обычной работе импульсных трансформаторов.
- Ещё один вариант.
При некоторых других раскладах появления противо-эдс тоже не происходит. Один из них – отключение вторичной обмотки для 1 и 3 такта, включение – на 2 и 4. Результат – асимметричный вид работы трансформатора, без недостатков ближайших аналогов. КПД можно увеличивать, если повышать число витков во вторичной обмотке.
- Ещё один из способов.
В 1 и 3 тактах можно уменьшить индуктивность катушки. Это тоже способствует повышению энергии на устройствах. Во 2 и 4 тактах индуктивность увеличивают, чтобы сохранить результат. Для достижения результата владельцам устройств достаточно подключать, либо отключать определённое количество витков на разных этапах работы.
Обычно для нечётных тактов количество витков уменьшают.
- Есть и ещё один вариант действий. Свой сверхединичный трансформатор просто регулируем в зависимости от конкретных условий.
О бифилярной обмотке в качестве дополнительного элемента
Гашение электромагнитных полей индуктивности – главное назначение, которое выполняется подобным устройством. Обмотка дополнительного типа способствует сохранению тока. Из-за этого в 1 и 3 тактах цикла происходит снижение индуктивного сопротивления.
В такие моменты предполагают продолжающееся воздействие сил противо-эдс из-за самоиндукции катушки.
Что касается 3 и 4 такта, то здесь силы самоиндукции позволяют поддерживать так внутри катушки. Тогда одну из частей бифилярной катушки надо отключить, иначе не начинается работа индукции второй части и обмотки, из-за которой создавался первоначальный ток. Единичный трансформатор в этом случае работает.
Мощность растёт у устройства, выступающего в качестве источника дополнительной энергии. Сохранение следующих условий предполагает постоянное возбуждение тока в катушке:
- Мощности тратят немного.
- Малая величина ЭДС.
- 1,3 такты с большим количеством тока.
2 и 4 такт сопровождаются подключением дополнительной ЭДС.
По поводу усилителей мощности
Усиление поступающей внутрь энергии происходит в 3-5 раз. Снаружи устройства выглядят на ящики, созданные из металла или пластмассы. Внутри располагается электрическая схема по типу инвертора. Она дополняется трансформатором, который чаще всего бывает асимметричным. Главное – проверить трансформатор с усилителем до того, как начать работу. Принцип сохраняется тот же, что и раньше.
Дополнительные советы
В любых электрических сверхединичных схемах присутствует 5 основных элементов:
- Источник дополнительной энергии.
Обычно это индуктивность, либо трансформатор с асимметричной работой. Но можно использовать и другие устройства, создающие электрические, либо электростатические поля.
Другое название – эквивалентный преобразователь энергии электричества. Имеются в виду частицы и напряжение, ток.
- Накопитель энергии.
Аккумулятор, конденсатор и другие подобные устройства выполняют данную функцию без проблем.
- Контроллер, который управляет самой схемой и тем, как по ней движется энергия.
- Нагрузки.
Работа с основой в виде конкретной схемы, источник с дополнительной энергией – основные части любой конструкции. Остальные части можно назвать обслуживающими. За их счёт происходит не только распределение энергии, но и частичный возврат мощности, компенсирующий сопротивление.
Немного об универсальных энергетических установках
Универсальными электрическими установками называют приспособления, которые выполняют следующие условия:
- Использование не потенциальных полей для работы.
- Энергия у входа не потребляется.
- На выходе её появление заметно.
Свойство не потенциального электромагнитного поля создавать энергию даёт больше всего энергии для таких ситуаций. Асимметрия работы тоже влияет на итоговые показатели.
Структура у таких установок всегда остаётся одинаковой. В любой конструкции присутствуют следующие части:
- Источник дополнительной энергии. Опора ведётся на поля не потенциального типа.
- Инвертор. Дополняется преобразователем электромагнитной энергии, её энергии, характеристик вольт-амперной и частотной групп.
- Контроллер. Контролирует то, как работает система.
- Накопитель. Для организации хранения в промежутках, запуска энергии инверторного типа.
- Нагрузка.
Работа трансформаторов со сложной схемой ведёт к образованию энергии. Сначала происходит намотка на трубы из пластика. Система строится на последовательности из контуров вторичного, первичного типа.
Кроме того, система дополняется модуляторами и фильтрами, подстроенными контурами. Колебания внутри установки происходят всегда. Из дополнительных функций устройств – генераторы с отдельным управлением. Не ёмкости, а индуктивности приводят к появлению дополнительной энергии.
Вывод
Сверх единичные трансформаторы сложно создавать, но результат окупит все усилия. Установки обладают повышенным показателем КПД вне зависимости от того, к каким устройствам их подключают.
Надо только грамотно разработать схему и проследить за тем, чтобы показатели соответствовали потребностям владельцев. В этом случае проблем с дальнейшей эксплуатацией не возникает, характеристики сохраняются надолго.
Сварочный трансформатор — без схем и формул
Авторизация на сайте
Далее удаляется обмотка. Причём — в два приёма. Сначала убирают её с какой-нибудь одной стороны, воспользовавшись ножовкой по металлу. Хотя вполне можно применить для этой же цели молоток со стамеской, направляя силу удара по касательной к диаметру статора. Ну а затем уже, зайдя с противоположной стороны, начинают пассатижами вытаскивать отрезки «наполовину разлохмаченных» проводов из пазов. Освобождающийся от обмотки магнитопровод и станет тороидальным сердечником сварочного трансформатора.
Рис.1. Сварочный трансформатор с магнитопроводом из статора сгоревшего электродвигателя (изоляция между обмотками, их слоями, а также магнитопроводом условно не показана):
1 — ножка-амортизатор (от флаконов с бытовой химией, резина, 6 шт.), 2 — стенка-корпус (10-мм термостойкий листовой изолятор, 2 шт.), 3 — клемма-стяжка (болт М8 из меди или латуни, 6 шт.), 4 — гайка М8 (из меди или латуни, 18 шт.), 5 — шайба медная (28 шт.), 6 — кабель силовой одножильный сечением 20 мм2 (2 шт.), 7 — гайка-барашек М8 (2 шт.), 8 — отвод (отрезок провода электрического многожильного сечением 20 мм2 в хлопчатобумажной изоляции, 4 шт.), 9 — магнитопровод с сечением a x b (из статора сгоревшего электродвигателя), 10 — кабель сетевой двухжильный, 11 — вывод вторичной обмотки трансформатора (2 шт.).
Как показывает практика, при выборе «пакета железа» для него надо стремиться к тому, чтобы размер «а» статора-заготовки находился бы в пределах 30. 40 мм. Тогда для получения оптимального сечения в 20. 25 см2 придётся расчленить наш исходный тор на 2-3 части, чтобы размер «в» оказался равным 50. 80 мм. Лучше это сделать ножовкой по металлу, пропилив наружные литые стяжки в пазах (обычно их 8). Затем, удалив «попорченные» 3. 4 листа «статорного железа», расклёпывают стяжки, скрепляя тем самым каждый из будущих тороидальных сердечников. А вот дуговой резкой-сваркой здесь увлекаться не следует, так как возникающие в этих местах вихревые токи Фуко ведут к разогреву магнитопровода и существенно снижают эффективность работы трансформатора.
Рис.2. Заточка зубила-крейцмейселя.
Внутренние зубцы — полюса статора — выбираются зубилом-крейцмейселем с особой заточкой (см. рис.). Естественно, не следует при этом пренебрегать правилами техники безопасности. Обязательно надо использовать очки и рукавицы. Зубило лучше всего держать пассатижами, а не руками.
Ни в коем случае нельзя срезать зубцы электро- или газосваркой. Ведь в магнитопроводе при работе трансформатора опять-таки возникнут токи Фуко. Поэтому лучше всего воспользоваться здесь «дедовским методом» с зубилом и молотком массой в 1 кг. А остающиеся после вырубки зубцов неровности целесообразно убрать шлифовкой с помощью абразивного круга. Готовый магнитопровод-тор обматывается киперной или другой изоляционной лентой на тканевой основе.
Теперь дело за первичной обмоткой. Количество витков в ней с приемлемой для практики точностью можно найти, умножив значение напряжения в сети на частное от деления «40» на площадь поперечного сечения (в см2) сердечника трансформатора. В нашем случае этот коэффициент, характеризующий расчётное число витков на 1 В, равен двум.
Таким образом для сетевой (первичной) обмотки предлагаемого мной «сварочника» потребуется всего лишь 440 витков. Причём лучше всего использовать здесь медный провод сечением 2. 3 мм2 (диаметром 1,6. 2 мм) в стеклотканевой изоляции. Слои первичной обмотки тщательно изолируются друг от друга. Как, впрочем, и слои вторичной, число витков в которой, исходя из требуемого напряжения (56 В) и вышеназванного коэффициента (2), должно быть равно 112, а сечение — 10. 30 мм2. Обмоточные провода можно взять из старых электродвигателей с фазным ротором мощностью 3. 6 кВт. Я, например, использовал именно от них провод с стеклотканевой изоляцией (сечение — 3 мм2) для первичной обмотки. Кстати, из этих же электродвигателей можно заимствовать и шинопровод сечением 18 мм для вторичной обмотки сварочного трансформатора. Тем более что всё это — из чистейшей меди.
Естественно, для намотки «сварочника» можно довольствоваться и алюминием. Но тогда размер сечения каждой из обмоток увеличивается в 1,65 раза. Например, для первичной потребуется провод уже не менее 3,3. 5 мм2. Помня об этом, я в одном из вариантов сварочных трансформаторов был вынужден использовать двужильный алюминиевый провод — «лапшу» с сечением 2×2,5 мм2 (диаметр одной жилы у него составляет почти 1,9 мм).
Сколько надо взять провода для той или иной обмотки? Определить это, как говорится, проще простого. Измерив расход провода на 1 виток обмотки (см. рис.), надо данную величину помножить на расчётное число витков обмотки. Но взять (учитывая толщину изоляции и пр.) с трёхпроцентным запасом (для первичной) или шестипроцентным (для вторичной обмотки).
В своих «сварочниках» предусматриваю 5 ступеней регулировки (до максимума в 56 В), делая отводы во вторичной обмотке, рассчитанные на напряжения 32 В, 38 В, 44 В и 50 В. При переходе на витки это, соответственно, будут 64, 76, 88 и 100. Отводы предпочитаю выполнять путём подмотки отрезков гибкого провода сечением не менее 10 мм2.
Найти точные места выводов во вторичной обмотке проще всего экспериментально, методом «проб и ошибок». Особенно если её намотка «рыхлая», да ещё и велась гибким проводом. Тогда смело включают трансформатор в сеть и условно, приняв первый вывод вторичной обмотки за «общий», протыкают изоляцию щупом-иглой то в одном, то в другом месте. А найдя таким образом напряжения 32 В, 38 В, 44 В, 50 В, маркируют их. Если же вторичная обмотка намотана шинопроводом, то придётся-таки ограничиться «расчётным» методом. То есть заранее определять, на каком витке будет выполнен тот или иной отвод, умножая вышеназванный коэффициент (2) на требуемое число вольт.
Готовому трансформатору придают удобную и надёжную с точки зрения пользователей форму. Для этого вырезают два квадрата из 10-мм фанеры. А ещё лучше — из стеклотекстолита или другого термостойкого изолятора. В середине высверливают 30-мм круг для вентиляции (см. рис.), а симметрично ему и по углам — семь 8-мм отверстий для прохода клемм-стяжек и сетевого провода.
Корпус, по сути, готов. Ну а остальное, думаю, ясно из иллюстраций, которые здесь приводятся. Убеждён: сделать себе добротный сварочный трансформатор по изложенной выше методике сможет любой желающий.
В предлагаемом сварочном во вторичной обмотке сделаны выводы с шагом в 6 В. Используя же принцип автотрансформатора, можно иметь на выходе целую «гамму» напряжений: от 6 до 56 В. В частности, используя выводы 56 В и 50 В, легко получить разностное напряжение 6 В. Выводы 44 В и 56 В позволяют иметь на выходе 12 В. Подключив, например, к такому трансформатору выпрямитель на 200 А, можно смело запускать стартер двигателя.
Да, «сварочник» действительно выдает до 200 А во вторичной обмотке. А это значит, что можно уже использовать электроды диаметром 2. 5 мм! Будучи сделанным по предлагаемой технологии, сварочный трансформатор имеет небольшие габариты (в пределах 350x350x200 мм) и поистине минимальную массу (до 25 кг).
Сверхпроводящий трансформатор почти своими руками
Есть готовые протравленные платы, с отверстиями, без отверстий, луженые.
Есть все детали, может кто конструктор хочет собрать. Пишите в личку.
Самое простое и доступное пищевой контейнер подходящего размера. Еще можно сходит в магазин электропроводки и там подобрать короб разветвительный от гофры или кабель каналов. Сколотить из фанеры или досок. Привод ДВД не рабочий выпотрошить и туда впихнуть. Корпус от компьютерного блока питания. Банка литровая))). Корпус от колонки или советского радио. Пластиковые трубы 100мм. Корпус от магнитоллы. Можно перечислять бесконечно.
Добавлено (19.06.2017, 15:10)
———————————————
А что если вместо катушки зажигания поставить 15 ватный 12 вольтный трансформатор в качестве повышающего? Сила тока будет ниже смертельной почти в 2 раза. Но будет выше чем ток не отпускания. Однако, выставив частоту импульсов можно дать животному шанс отпуститься и убежать. Зачем такое высокое напряжение? Что бы била искра с 3 сантиметров?
Думаю, что выход 220 вольт с трансформатор а достаточен для того, что бы разряд прошел через тело и землю, но недостаточен для того, что бы прошить изолятор. Таким образом проблема с изоляторами снимается, и с джоулями похоже то же.
Добавлено (20.06.2017, 01:31)
———————————————
Ну и если на выходе я получу 150-200 вольт, то не проблема, намотаю свой трансформатор на каком ни будь торроидальном сердечнике. Сам сделаю какое надо напряжение на выходе. Правда мотать придется много витков по 5 на каждый вольт.
Добавлено (20.06.2017, 20:07)
———————————————
Наэксперементировавшись до сыта, я сам пару раз получил как следует и свиней в конец зашугал пришел к умозаключениям:
1. Электропастух средство вспомогательное, но не основное. Нужен старый добрый крепкий забор и электропастух, что бы пресекал попытки опасного животного приблизиться к изгороди.
2. При выпасе в поле, нужен приученный к этому скот с выработанным условным рефлексом боязни проволоки с детства и человек — пастух для присмотра.
3. Удержать взрослого быка или кабана не возможно, даже если в проволоке смертельный ток. Пищевой рефлекс, инстинкт размножения и ярость сильнее инстинкта самосохранения. Они все порвут, разнесут, закоротят на землю. Либо сбегут, либо умрут.
4. Если использовать большой ток, но оочень кратковременно, животное падает на колени и либо между импульсами рвет вперед, либо, если импульсы частые и ток большой оно не успевает сбежать и может погибнуть. Либо животное падая на коленки сдает назад, только изгородь на жиденьких столбиках будет уже повреждена. Да и опасна она с током свыше 10 ма уже для окружающих людей и рационализатору светит ст. 109 УК если вдруг чего. Или с ним разберутся родственники пострадавшего ребенка например.
5. Есть два пути, купить сертифицированный прибор и разделить всю ответственность с производителем.
6. Создать свой и взять ответственность на себя.
Но помнить, что ни один прибор не обеспечит 100 процентного успеха, если, А) в стаде не приученные животные Б) в стаде есть сильные и агрессивные.
Поэтому я выбираю, сделать сам, на безопасной катушке зажигания, построить крепкий забор и использовать электропастуха для выпаса в сухую погоду свиней с целью предотвращения подкопа, поломки досок и последующего побега с непредсказуемыми последствиями. Считаю, что без использования правильных возможно керамических изоляторов изгородь в дождь работать не будет.
В общем избавиться от присмотра за животными полностью не удастся, хотя идею электро изгороди можно вполне успешно применять с учетом выше изложенных нюансов.
Катушка зажигания довольно сильно бъет, ощущуние такое, как будто взялся за фазу 220 вольт стоя на сухом деревянном полу.
Всем спасибо, всем удачи, берегите себя и окружающих, ни один электропастух не стоит тех проблем, которые он может вам создать.
Закон Ома всем в помощь.
Даже спорить не буду, все отлично, лаконично подведено, только странно, почему трансы не заработали? Я пробовал трансформатор ы начиная от китайского радиоприемника, он выдавал в импульсе 1800 вольт (так показал мультиметр спределом в 600 вольт), правда его через минуту пробило, искру было видно сквозь обмотку с краю.
Пробовал твк 110 на обмотки на 13, 17 и 22 вольта, опять же по мультиметру и наконец неизвестный трансформатор 42вольта на 380, вот он выдавал от 27 до 400 вольт в импульсе, свинья ткнувшись пятаком пала на коленки. Осталось попробовать ламповый на 6.3 вольта, с вторичкой на 127 и 220. Проблема с изоляторами решилась сама собой при таких напряжениях, но бляха — муха холодок пробежал по спине. Шить стало с плюса аккумулятора, с переменных резисторов. Короче говоря опыт свой я для себя обобщил, кой какие измерения и расчеты по формулам ома произвел и перестал этим заниматься, пока самого не убило. Идеи есть, теперь надо только копилочку знаний пополнить. Про частоту тока и связанные с этим эффекты.
А отказываться от этой прекрасной схемы ни ни ни! Свиньи, включая кабана видя проволоку, на 80 см не подходят. Специально не кормил целый день (фашист), они возмущаться стали! Я им сыпанул под проволоку, стоят, слюни текут, они психуют, набрасываются друг на друга, а к еде ни ногой!
Вот я и говорю:
А) приучить с детства, ссаться от проволоки.
Б) Не выпускать буйных пастись. И при определенных доработках все получится.
А про ферритовые сердечники скажу так, их ведь валом в блоках питания компов (сжег вчера один пастухом), в старых видиках, вполне можно подобрать с габаритной мощностью на 80 ватт и намотать не на 100 тыс вольт, а на 700 вольт. И пробивать при таком напряжении ничего не будет.
Хорошо бы кто то поделился своими результатами опытов. Век информации, а все равно все по крупицам приходится добывать.
Как сделать трансформатор своими руками?
Несмотря на многообразие электрооборудования на рынке, далеко не во всех ситуациях можно найти подходящий преобразовательный агрегат для решения конкретной задачи. Поэтому многие обыватели пытаются изготовить трансформатор своими руками для получения определенных параметров работы. Стоит отметить, что намотать трансформатор может каждый, даже без специализированного оборудования и особых навыков, но этот процесс довольно трудоемкий и кропотливый. Поэтому изначально вам придется определиться с типом и характеристиками прибора.
Что понадобится для сборки?
Все преобразователи подразделяются на две основные категории – повышающие и понижающие трансформаторы.
В зависимости от предназначения, конструктивных особенностей и места установки их можно разделить на такие категории:
Практически каждое из вышеперечисленных устройств вы можете воссоздать в домашних условиях. Наиболее простым вариантом является перемотка трансформатора из заводского изделия, так как он уже содержит необходимые элементы. Главное, чтобы первичная обмотка подходила по номиналу питающего напряжения и мощности. Куда хуже, если перематывать нужно обе обмотки, к примеру, если и первичная, и вторичная обмотка пробиты или получили механическое повреждение.
Для изготовления трансформатора своими руками вам понадобятся:
- Магнитопровод – служит в качестве проводника магнитного потока, лучше взять из старого трансформатора, так как он изготовлен из электротехнической стали и обеспечивает необходимые параметры работы, характеризуется малыми потерями в железе.
- Провода нужного вам сечения в лаковой, полимерной или стеклотканевой изоляции. Чем тоньше этот слой, тем плотнее прилягут витки к каркасу и друг к другу.
- Каркас – служит в качестве основания для обмоток трансформатора, устанавливает габариты по ширине. Можно взять из старого трансформатора, а можно изготовить своими руками. Материалом для каркаса может послужить электротехнический картон, гетинакс или текстолит, важно чтобы он не занимал много места в зазоре между сердечником и проводом.
- Изоляция – предназначена для электрического отделения токоведущих элементов друг от друга и от конструктивных элементов трансформатора. В промышленном производстве используется лакотканевая лента, фторопласт, парафиновая пропитка, но при самостоятельном изготовлении подойдет любой имеющийся у вас материал, главное, чтобы его диэлектрической прочности хватало для напряжения сети.
- Намоточный станок – позволяет упростить процесс и обеспечить постоянное натяжение. Можно изготовить своими руками из ручной дрели или по принципу вертела на двух шарнирах. Важно, чтобы изготовленный станок имел как можно меньший люфт.
Помимо этого вам могут пригодиться: молоток с деревянной пресс-планкой, паяльник для соединения проводов, ножницы, пассатижи. Но перед изготовлением, обязательно рассчитайте параметры трансформатора.
Расчеты
Наиболее сложный вариант, если вы будете изготавливать трансформатор своими руками с нуля. В таком случае расчет электрической машины производится в зависимости от выходной мощности. Исходя из этого параметра, рассчитывается мощность первичной обмотки. Если вы используете заводской сердечник, то можно считать эти величины одинаковыми, если вы соберете его самостоятельно, то P2 = 0,9 * P1
Это приблизительный расчет с учетом потерь в сердечнике. В зависимости от качества шихтовки своими руками, разница мощностей может находиться в пределах от 5 до 20%.
В зависимости от мощности первички определяется сечение магнитопровода, которое вычисляется по формуле: S = √P1
Следует отметить, что мощность для вычислений берется в Ваттах, а размеры сердечника получаем в квадратных сантиметрах.
Далее определяется коэффициент передачи электромагнитной энергии: k = f/S,
Где k – коэффициент передачи, f – частота сетевого напряжения переменного тока, S – площадь сечения магнитопровода.
Исходя из полученного коэффициента, определяется число витков в обмотках по величине входных и выходных напряжений: N1 = k*U1, N2 = k*U2
Это приблизительные вычисления, предназначенные для бытового применения радиолюбителями. Заводские трансформаторы имеют более сложную процедуру расчета, которая производится по справочникам и зависит от их типа и назначения (силовые, измерительные, трехобмоточные, тороидальные устройства и т.д.)
Далее рассчитывается сила тока в первичной обмотке трансформатора: I1 = P1 / U1
Соответственно, ток, протекающий по вторичной обмотке трансформатора, вычисляется по формуле: : I2 = P2 / U2
Исходя из величины тока в каждой обмотке, выбирается сечение жилы. Но заметьте, что проводник в обмотке значительно хуже охлаждается, поэтому запас сечения делается на 20 – 30%. Проще выполнять данную работу медными проводами, но это требование не критично.
Таблица: выбор сечения, в зависимости от протекающего тока
Медный проводник | Алюминиевый проводник | ||
Сечение жил, мм 2 | Ток, А | Сечение жил. мм 2 | Ток, А |
0,5 | 11 | — | — |
0,75 | 15 | — | — |
1 | 17 | — | — |
1.5 | 19 | 2,5 | 22 |
2.5 | 27 | 4 | 28 |
4 | 38 | 6 | 36 |
6 | 46 | 10 | 50 |
10 | 70 | 16 | 60 |
16 | 80 | 25 | 85 |
25 | 115 | 35 | 100 |
35 | 135 | 50 | 135 |
50 | 175 | 70 | 165 |
70 | 215 | 95 | 200 |
95 | 265 | 120 | 230 |
120 | 300 |
Сборка повышающего трансформатора
Особенностью повышающего трансформатора является большее сечение жил первичной обмотки трансформатора по отношению к вторичной. Ярким примером может служить любой агрегат, повышающий напряжение питания 220 Вольт до 400, 500, 1000 В и т.д., соответственно класс изоляции трансформатора выбирается по номиналу вторичной обмотки, как в сетевых трансформаторах.
Заметьте, что проводник большого сечения не получится намотать самодельным станком, поскольку вы не сможете выдать достаточное усилие. Определить это довольно просто – если первые витки свободно двигаются по каркасу катушки или хуже того, вы видите явный зазор между жилой и каркасом, переходите к ручной намотке.
Для сборки вам потребуется выполнить такую последовательность действий:
- Соберите основание из диэлектрического материала, для этого можно вырезать его по лекалу из картона. Сборка каркаса производится внахлест при помощи клея.
Рис. 2: изготовьте каркас для трансформатора
Если у вас имеется готовый образец, можете переходить к следующему этапу.
- Сделайте отверстия в щеке катушки под выводы в электрическую сеть и к потребителю. Проденьте в них выводы.
Рис. 3: проденьте вывод первичной обмотки
- Уложите первый слой изоляции под первичку.
Рис. 4: нанесите слой изоляции на катушку
- Намотайте первичную обмотку трансформатора – если позволяет толщина, используйте станок, в противном случае, сделайте это руками. При намотке каждые 4 -5 витков проверяйте жесткость фиксации и плотность прилегания.
Рис. 5: намотайте первичку
В случае наличия видимых зазоров рекомендуется придавливать витки деревянной пресс-плашкой или прибивать их через плашку молотком.
- Посчитайте количество витков, оно должно соответствовать расчетному, выводы проденьте в отверстия. Уложите слой изоляции на первичку.
- После слоя изоляции намотайте вторичку, так как здесь будет использоваться более тонкий провод, эту процедуру проще выполнять на станке.
Рис. 6: намотайте вторичную обмотку
Периодически проверяйте плотность витков и их фиксацию на стержне. Хорошая фиксация не должна прогибаться и деформироваться при нажатии пальцами.
- Если все витки не помещаются в один слой, их выкладывают в несколько, тогда важно соблюдать одно и то же количество витков в каждом из них. Слои перекладываются диэлектрическим материалом, заметьте, что толщина изоляции не должна существенно влиять на общие габариты катушек.
Рис. 7: заизолируйте первый слой
- Выведете концы вторичной обмотки на щечку каркаса.
- Поместите магнитопровод в окно каркаса, сборка сердечника выполняется поочередно с каждой стороны, иначе потери окажутся слишком большими. Затем сердечник распирается для плотности фиксации.
Рис. 8: поместите катушки на сердечник
Мощные трансформаторы на большой номинал напряжения дополнительно пропитывается парафиновой изоляцией. Такая процедура приводит к повышению емкостных потерь, но создает дополнительную защиту от электрического тока.
Сборка понижающего трансформатора
Понижающий трансформатор будет отличаться большим количеством витков на первичке. В быту их можно часто встретить в блоках питания, сварочных аппаратах и прочем оборудовании. Правда, в импульсных блоках используется другая технология, поэтому ремонт таких устройств производится без трансформаторов.
Так как изготовление сварочного трансформатора своими руками довольно актуально для домашних самоделок, рассмотрим на примере этот вариант. Требования к процессу сборки соответствует предыдущему. Отличительной особенностью такого агрегата является большое сечение провода во вторичной обмотке, так как сварочный ток может достигать сотен ампер.
Процесс изготовления заключается в следующем:
- Возьмите старое или изготовьте основание для катушки.
- Зафиксируйте на трансформаторном каркасе слой изоляции.
- Намотайте первичную обмотку с попеременной изоляцией слоев.
- Заизолируйте первичку и намотайте вторичную обмотку, так как большой диаметр проводов не позволит сделать это вручную, используйте слесарный инструмент.
- Зафиксируйте выводы обеих катушек.
- Установите пластины сердечника.
Испытание
Для проверки работоспособности П-образных или тороидальных трансформаторов в домашних условиях можно воспользоваться обычным мультиметром. Для этого переведите измерительный прибор в режим прозвона и проверьте целостность каждой из обмоток. Затем проверьте изоляцию между каждой из обмоток и магнитопроводом и сопротивление между обеими обмотками. Это наиболее простой комплекс испытаний, который даст общее представление об исправности самодельного агрегата.
Для проверки отсутствия короткозамкнутых витков используется лампа, включающаяся последовательно к первичной обмотке.
Помимо этого электрические машины испытываются в режиме холостого хода и короткого замыкания. Такие проверки показывают, насколько качественно собран преобразователь, но выполнять их в домашних условиях не обязательно.
Сверхпроводящий трансформатор почти своими руками
Изобретение относится к области электротехники и предназначено для применения в качестве бесконтактного электромагнитного устройства ввода электрической энергии от обычной или сверхпроводящей энергетической сети или источника электроэнергии в однофазный сверхпроводящий кабель или сверхпроводящую магнитную систему переменного тока промышленной частоты.
Известен сверхпроводящий трансформатор, состоящий из магнитопровода, криостата, сверхпроводящих первичной и вторичной обмоток. Сверхпроводящие первичная и вторичная обмотки, размещенные на поверхностях кольцеобразных, концентрично расположенных трубчатых каркасов, имеют спиральную намотку такую, что витки обмоток образуют одну скрутку вокруг продольной оси кольцеобразной поверхности. Благодаря выполнению сверхпроводящей обмотки в виде спиральной, скрученной вокруг кольцевой поверхности трубчатого каркаса, все витки обмотки имеют одинаковую длину и занимают одинаковое положение в магнитном поле, образуя таким образом симметричную обмотку и симметричное магнитное поле, что позволяет уменьшить потери в сверхпроводящих обмотках. Применение в сверхпроводящих обмотках трансформатора проводников обмоток на расстоянии друг от друга по периметру поверхности кольцеобразного трубчатого каркаса позволяет снизить магнитное поле рассеяния и потери в сверхпроводнике и повысить токонесущую способность и КПД трансформатора (а.с. СССР №1228708, 1988 г.).
Недостатком такой конструкции сверхпроводящего трансформатора является наличие составляющей тока возбуждения в первичном токе первичной силовой обмотки, что приводит к наличию магнитного поля возбуждения в зоне расположения силовых первичной и вторичной обмоток, что снижает величину критического тока трансформатора, уменьшает его удельную мощность и, вызывая потери в силовых обмотках, уменьшает кпд сверхпроводящего трансформатора, увеличивает расход хладагента и электроэнергии на компенсацию потерь в сверхпроводящем трансформаторе.
Известен сверхпроводящий трансформатор, состоящий из разомкнутого магнитопровода, находящегося при комнатной температуре и выполненного без одного стержня, внутри которого размещен тороидальный неметаллический криостат. В гелиевой зоне криостата размещены первичная и вторичная сверхпроводящие силовые обмотки. Сверхпроводящий трансформатор снабжен отдельной обмоткой возбуждения, состоящей из плотно намотанных слоев и витков, находящейся при комнатной температуре и изготовленной из обычного проводникового материала (медь, алюминий) и экраном, изготовленным из высокотемпературного сверхпроводника и размещенным между обмоткой возбуждения и силовыми сверхпроводящими обмотками (а.с. СССР №1653465, 1991 г.).
Наличие сверхпроводящего экрана, внутри которого находится обмотка возбуждения, позволяет практически устранить влияние сильного магнитного поля возбуждения на область расположения силовых сверхпроводящих обмоток трансформатора и тем самым, уменьшая магнитные потери в них, увеличить кпд, токонесущую способность и мощность сверхпроводящего трансформатора.
Недостатком указанного сверхпроводящего трансформатора является выполнение обмотки возбуждения из обычного проводникового материала и размещение ее при комнатной температуре, что увеличивает массогабаритные показатели сверхпроводящего трансформатора. Наличие высокотемпературного сверхпроводящего экрана, размещенного в жидкоазотной полости криостата между силовыми первичной и вторичной сверхпроводящими обмотками и обмоткой возбуждения трансформатора, увеличивает массогабаритные показатели сверхпроводящего трансформатора и затраты на его охлаждение за счет потерь энергии в экране, а также расходы на высокотемпературный сверхпроводник, из которого изготовлен экран, снижает технико-экономические показатели сверхпроводящего трансформатора. Изготовление силовых сверхпроводящих обмоток трансформатора плотной намоткой слоев и витков значительно снижает токонесущую способность трансформатора ввиду воздействия магнитных полей рассеяния силовых первичных и вторичных обмоток друг на друга и одновременно увеличивая магнитные потери в обмотках снижает кпд, токонесущую способность и мощность сверхпроводящего трансформатора.
Технический результат, на достижение которого направлено предлагаемое техническое решение, заключается в устранении указанных недостатков, то есть в увеличении токонесущей способности, мощности и кпд сверхпроводящего трансформатора, уменьшении потерь энергии, расхода электроэнергии и хладагента.
Указанный технический результат достигается тем, что сверхпроводящий трансформатор содержит магнитопровод, криостат, силовые первичную и вторичную, многослойные цилиндрические сверхпроводящие обмотки с концентрически расположенными слоями витков и многослойную цилиндрическую обмотку возбуждения с концентрически расположенными, плотно намотанными витками и слоями, прилегающими друг к другу, присоединенную параллельно силовой первичной обмотке и размещенную между магнитопроводом и силовыми первичной и вторичной обмотками сверхпроводящего трансформатора, и витки силовой первичной и вторичной обмоток выполнены неплотно намотанными, а слои витков размещены с зазором относительно друг друга, причем многослойная цилиндрическая обмотка возбуждения размещена в криостате, вне жидкоазотной полости криостата размещен конденсатор, который параллельно подключен к обмотке возбуждения, при этом обмотка возбуждения пространственно удалена от силовой первичной обмотки на расстояние (0,12÷0,15)R, а число витков первичной обмотки равно (1,02÷1,05) W,
где R — радиус поперечного сечения силовой первичной обмотки,
W — число витков обмотки возбуждения,
и обмотка возбуждения выполнена из высокотемпературного сверхпроводящего многожильного ленточного провода.
Сущность изобретения поясняется чертежами, где на фиг. 1 схематически представлена конструктивная схема сверхпроводящего трансформатора, а на фиг. 2 — его электрическая схема.
Сверхпроводящий трансформатор 1 содержит магнитопровод 2 с размещенным на нем криостатом 3, внутри которого расположены силовые первичная обмотка 4, вторичная обмотка 5, цилиндрическая многослойная обмотка возбуждения 6 и находящийся вне криостата конденсатор 7.
Магнитопровод 2 стержневого типа представляет собой плоскошихтованную конструкцию, материалом которой является традиционная текстурированная холоднокатаная электротехническая сталь. В случае выполнения магнитопровода 2 из аморфной электротехнической стали, магнитная проницаемость которой во много раз выше лучших сортов традиционной электротехнической стали, магнитные потери энергии в нем значительно снижаются (в 5÷6 раз) как и ток намагничивания, что увеличивает токонесущую способность, мощность и кпд сверхпроводящего трансформатора.
Криостат 3 сверхпроводящего трансформатора представляет собой цилиндрическую тороидальную конструкцию, выполненную из неметаллического, например, стеклопластикового материала, исключающего появление как вихревых, так и круговых токов в режиме работы сверхпроводящего трансформатора 1. Рабочая низкотемпературная полость криостата 3 заполняется жидким азотом, в ней размещаются высокотемпературные сверхпроводящие силовые первичная обмотка 4, вторичная обмотка 5 и обмотка возбуждения 6 сверхпроводящего трансформатора 1.
Силовые цилиндрические первичная 4 и вторичная 5 обмотки сверхпроводящего трансформатора 1 выполнены многослойными с концентрически расположенными слоями и как и обмотка возбуждения 6 изготовлены из высокотемпературного сверхпроводящего многожильного ленточного провода первого или второго поколения. Но в отличие от обмотки возбуждения 6, витки силовых первичной 4 и вторичной 5 обмоток выполнены неплотной намоткой, а слои витков размещены с зазором относительно друг друга и имеют между собой сильную магнитную связь за счет близкого взаиморасположения и пространственно удалены от обмотки возбуждения 6 и магнитопровода 2 сверхпроводящего трансформатора 1.
Цилиндрическая многослойная обмотка возбуждения 6 с концентрически расположенными плотно прилегающими друг к другу слоями и плотно намотанными витками выполнена из высокотемпературного сверхпроводящего многожильного ленточного провода первого или второго поколения, присоединена параллельно силовой первичной обмотке 4 сверхпроводящего трансформатора 1 и функционирует как и силовые первичные 4 и вторичные 5 обмотки в жидкоазотной полости криостата 3. При этом обмотка возбуждения 6 пространственно удалена от силовой первичной обмотки 4 сверхпроводящего трансформатора 1 на расстояние равное (0,12÷0,15)R, а число витков силовой первичной обмотки 4 равно (1,02÷1,05)W, где R — радиус поперечного сечения силовой первичной обмотки 4; W — число витков обмотки возбуждения 6. Параллельно обмотке возбуждения 6 присоединен конденсатор 7, размещенный вне жидкоазотной полости криостата 3 и функционирующий при комнатной температуре. Конденсатор 7 предназначен для компенсации реактивной мощности силовой вторичной обмотки 5 сверхпроводящего трансформатора 1. Обмотка возбуждения 6 пространственно удалена от силовых первичной 4 и вторичной 5 обмоток, ввиду чего имеет с ними слабую магнитную связь и расположена ближе к магнитопроводу 2 сверхпроводящего трансформатора 1, находясь между магнитопроводом 2 и силовыми первичной 4 и вторичной 5 обмотками.
Сверхпроводящий трансформатор 1 работает следующим образом. При подключении силовой первичной обмотки 4 к источнику переменного напряжения в режиме нагрузки происходит перераспределение первичного тока сверхпроводящего трансформатора 1. Реактивная намагничивающая составляющая первичного тока протекает в обмотке возбуждения 6 и создает основной магнитный поток в магнитопроводе 2 сверхпроводящего трансформатора 1. Это происходит за счет выбора числа витков обмотки возбуждения 6, в 1,02÷1,05 раза меньшей, чем числа витков силовой первичной обмотки 4, к которой она присоединена параллельно. Перенос реактивной намагничивающей составляющей первичного тока из силовой первичной обмотки 4 в обмотку возбуждения 6 дает возможность разгрузить силовую первичную обмотку 4 от нескомпенсированного тока намагничивания (возбуждения). Таким образом происходит полная компенсация ампервитков силовых первичной 4 и вторичной 5 обмоток сверхпроводящего трансформатора 1. Разгрузка силовой первичной обмотки 4 от намагничивающего тока возбуждения снижает магнитное поле возбуждения в силовых первичной 4 и вторичной 5 обмотках сверхпроводящего трансформатора 1, что увеличивает критический ток его силовых обмоток, токонесущую способность сверхпроводящего трансформатора 1 и его мощность, а также уменьшая магнитные потери в обмотках, увеличивает кпд сверхпроводящего трансформатора 1.
Удаление в пространстве обмотки возбуждения 6, создающей сильное магнитное поле возбуждения от силовой первичной обмотки 4 сверхпроводящего трансформатора 1 на расстоянии равное (0,12÷0,15)R, а также и от силовой вторичной обмотки 5, позволит снизить до минимального уровня сильное магнитное поле возбуждения в зоне расположения силовых первичной 4 и вторичной 5 обмоток, что увеличивает их токонесущую способность и, уменьшая потери в этих обмотках, повышает кпд и мощность сверхпроводящего трансформатора 1.
Предложенный сверхпроводящий трансформатор с увеличенной токонесущей способностью, мощностью и кпд предназначен для сверхпроводящих энергетических систем и комплексов, его применение повышает технико-экономические показатели и конкурентноспособность этих систем по сравнению с энергосистемами с применением сверхпроводящих трансформаторов традиционного исполнения.
Как рассчитать и сделать простой тороидальный трансформатор
Большинство электронных устройств для своей работы нуждаются в определённом типе питания, отличающегося от поступающего из промышленной сети. Одним из видов таких устройств является тороидальный трансформатор. Прибор нашёл широкое применение в различных областях энергетики, электроники и радиотехники. Наиболее часто трансформаторы используются в электрических сетях и в блоках питания всевозможной электронной техники.
Конструкция и принцип работы
Трансформатор — название слова происходит от латинского transformare, что в переводе означает превращать. Общепринятое определение для него следующее: трансформатор — это устройство, которое, используя явление электромагнитной индукции, способно изменять амплитуду напряжения без изменения формы и частоты сигнала.
Трансформатор — это электротехнический прибор, с помощью которого происходит уменьшение или увеличение переменного электрического напряжения. Такие трансформаторы называют понижающими или повышающими. При этом следует отметить, что существуют и такие приборы, которые оставляют величину синусоидального сигнала без изменения, они называются гальваническими или дроссельными.
Любой трансформатор в своей конструкции содержит следующие компоненты:
- магнитопровод (сердечник);
- обмотки;
- каркас для расположения обмоток;
- изолятор;
- различные дополнительные элементы (скобы для крепления, планки для вывода контактов и т. п. ).
Трансформатор в своей конструкции имеет две или более обмотки с индуктивной связью. Выпускаются они как проволочного, так и ленточного типа и всегда покрываются слоем изоляции. Обмотки закрепляются на магнитопроводе, изготовленном из мягкого ферромагнитного материала. Первичная обмотка подсоединяется к источнику напряжения, а вторичная к нагрузке.
Общий принцип работы устройства, независимо от его вида и назначения, заключается в следующем. На первичную обмотку прибора подаётся переменный сигнал, что приводит к появлению в ней переменного тока. Этот ток, в свою очередь, наводит в сердечнике переменное магнитное поле, под действием, которого происходит возникновение переменной электродвижущей силы (ЭДС) в обмотках. При подключении нагрузки к вторичной обмотке по ней начинает протекать переменный ток. Обмотка, на которую подаётся сигнал, называется первичкой. Обмотка, подключённая к нагрузке, называется вторичкой.
По способу охлаждения тороидальные устройства различаются на использующие воздушное и жидкостное охлаждение. Кроме этого, существуют трансформаторы с совмещённым охлаждением — жидкостно-воздушным. К главным техническим параметрам устройства относятся:
- Величина входного напряжения: допустимое значение напряжения, подаваемое на первичку.
- Величина выходного напряжения. Определяется коэффициентом трансформации.
- Тип трансформации. Существует с повышением или понижением уровня сигнала.
- Число фаз. В зависимости от сети, в которой используются трансформаторы, они делятся на однофазные или трехфазные.
- Число обмоток. Существуют двухобмоточные или многообмоточные устройства.
К основным параметрам устройства относят: номинальную мощность и коэффициент трансформации. Единица измерения мощности вольт-ампер (ВА). Коэффициент трансформации показывает соотношение уровней напряжения на входе устройства к его выходу. Его значение прямо пропорционально отношению количества витков первички к вторичке.
В тороидальном трансформаторе в качестве основы используется кольцевой сердечник, геометрически представляющий собой тор. Преимущество такого вида магнитопровода заключается в простой перемотке трансформатора своими руками и получении наибольшего коэффициента полезного действия (КПД) по сравнению с другими типами трансформаторов при тех же габаритных значениях. К недостаткам торов относят повышенный нагрев при работе.
Трансформатор тока
Кроме стандартного типа трансформаторов напряжения существует особый вид, называемый трансформатором тока. Основное его назначение — изменять значение тока относительно своего входа. Другое название такого вида устройства — токовый.
Токовый трансформатор — измерительный прибор, предназначенный для измерения силы переменного тока. Применяются токовые устройства тогда, когда нужно измерить ток большой силы или для защиты полупроводниковых приборов от возникших на линии нештатных его значений.
Токовое устройство по виду ничем не отличается от трансформатора напряжения, его отличия — в подключении и количестве витков в обмотке. Первичка выполняется с помощью одного или пары витков. Эти витки пропускаются через тороидальный магнитопровод, и именно через них измеряется ток. Токовые устройства выполняются не только тороидального типа, но и могут быть выполнены и на других видах сердечниках. Главным условием является то, чтобы измеряемый провод совершил полный виток.
Вторичная обмотка при таком исполнении шунтируется низкоомным сопротивлением. При этом величина напряжения на этой обмотке не должна быть большого значения, так как во время прохождения наибольших токов сердечник будет находиться в режиме насыщения.
В некоторых случаях измерения проводятся на нескольких проводниках которые пропущены через тор. Тогда величина тока будет пропорциональна силе суммы токов.
Расчёт параметров изделия
Перед тем как намотать тороидальный трансформатор в домашних условиях понадобится рассчитать его значения. Для этого нужно знать исходные данные. К ним относят: величину напряжения на выходе, внешний и внутренний диаметр сердечника.
Мощность устройства определяется произведением площадей S и Sо, умноженных на коэффициент: P=1,9* S * Sок.
Площадь поперечного сечения рассчитывается по формуле: S=h*(D-d)/2, где:
- S- площадь сечения;
- h- высота конструкции;
- D- наружный диаметр;
- d — внутренний диаметр.
Для вычисления площади окна используется формула: Sок=3,14*d2/4.
Количество витков во вторичной обмотке равно произведению W2=U2*50/Sок.
Далее остаётся рассчитать количество витков в первичке. Для этого используется выражение: W1=(Uвх*W2)/Uвых, где Uвх — напряжение на входе, а Uвых — напряжение на выходе устройства.
Такую методику расчёта можно применить почти для любого вида тороидального трансформатора. Но для расчёта некоторых изделий существует своя методика.
Сварочное устройство
Такой тип трансформатора характеризуется большой силой тока на выходе. В качестве вводных параметров используется максимальная сила тока и напряжение. Например, для устройства с величиной сварочного тока 200 ампер и напряжением 50 вольт расчёт происходит следующим образом:
1. Рассчитывается мощность трансформатора: Р = 200 А * 50 В = 1000 Вт.
2. Вычисляется сечение окна: Sок = π * d2/ 4 = 3,14 * 144 / 4 (см2) ≈ 113 см².
3. Площадь поперечного сечения: Sс=h * Н = 2 см * 30 см = 60 см².
4. Мощность сердечника: Рс = 2,76 * 113 * 60 (Вт) ≈ 18712,8 Вт.
5. Количество витков первичной обмотки: W1 = 40 * 220 / 60 = 147 витков.
6. Количество витков для вторичной обмотки: W2 = 42 * 60 / 60 = 42 витка.
7. Площадь провода вторички находится исходя из наибольшего рабочего тока: Sпр = 200 А /(8 А/мм2) ≈ 25 мм².
8. Вычисляется площадь провода первички: S1 = 43 А /(8 А/мм2) ≈ 5,4 мм².
Такой вариант расчёта применим не только для сварочников, но и с успехом может быть использован для других типов. Как видно, никаких трудностей при расчёте возникнуть не должно.
Токовый трансформаторный прибор
Трансформатор тока своими руками сделать несложно, но перед его изготовлением понадобится выполнить расчёт. Такой расчёт отличаетчя от общепринятого в связи с конструктивными особенностями изделия. Начинается он с необходимой величины тока вторички (единица измерения ампер): Iам = Iпер / Iвт, где:
• Iпер — величина тока первичной обмотки, умноженная на число витков в ней;
• Iвт — количество витков во вторичной обмотке.
Для того чтобы разобраться, как правильно выполнить расчёт, проще рассмотреть практический пример самодельного токового устройства. Пусть на выходе токового устройства необходимо получить 4 вольта, а ток ограничить уровнем 5 ампер.
Поэтапно методика вычисления выглядит так:
- Берётся ферритовое кольцо, для примера 20×12х6 из 2000hМ.
- Мотается 100 витков провода. Эти витки составляют вторичную обмотку, так как первичная — это просто один виток проволоки, пропущенный через феррит.
- Значение тока во вторичке будет равно: I/Kтр = 5 / 100 = 0,05 A. где Ктр — коэффициент трансформации трансформатора (отношение количества первичной обмотки к вторичной).
- Величина нагрузочного шунта рассчитывается согласно закону Ома: R = U/I. Получается R= 4/0,05 = 80 Ом.
Таким образом можно выполнить расчёт для любых требуемых параметров. Независимо от формы тока на входе, на выходе токового устройства напряжение всегда двухполярное. В качестве шунта вторичной обмотки используется именно сопротивление, а не диод. Если есть необходимость в диоде, то вначале подключается резистор, а затем диод или диодный мост. Во втором случае сопротивление включается в диагональ моста.
Самостоятельное изготовление
Цена на готовые изделия велика, при этом не всегда удаётся найти прибор с требуемыми параметрами. Поэтому целесообразно изготовить трансформатор или автотрансформатор своими руками. Кроме изготовления трансформатора с нуля существует возможность перемотать неисправное устройство.
Для изготовления изделия потребуются трансформаторное железо и провод. Железо представляет собой пластины собранные в виде тора и образующие магнитопровод. Его можно купить либо взять со старых разобранных приборов. Например, взять пластины от промышленных трансформаторов и, используя приспособление в виде разрезанного кольца, скатать из металла пластинки в виде бублика. Пластинки собрать, сердечник обтянуть стеклотканью и залить лаком.
Витки обмоток изготавливаются из медного провода нужного диаметра. Сама намотка не вызывает сложностей:
- Наматывается первичная обмотка. Для этого один конец проволоки закрепляется на расстоянии около трёх сантиметров от поверхности железа, а оставшаяся часть провода сворачивается в виде полоски.
Полоска с проводом поочерёдно продевается через внутреннее отверстие сердечника, обматывая его грани, и равномерно распределяется по всей поверхности. В конце вывод фиксируется и выводится в районе начала обмотки на таком же расстоянии, что и начало.
- Сверху первичная обмотка проматывается слоем диэлектрика (стеклотканью).
- Таким же способом наматывается вторичная обмотка.
- После выполнения требуемого количество витков сверху наматывается стеклоткань, и трансформатор покрывается лаком.
Если в процессе намотки необходимо выполнить отвод, тогда наматываемый провод разрывается. На место разрыва впаивается отвод, а основной провод мотается дальше. Место отвода, как правило, тщательно изолируется. Закрепление концов обмоток обычно выполняется с помощью ниток, которыми привязываются провода к поверхности сердечника или проложенного провода. Полоску продеваемого провода лучше разместить на «челнок». Изготавливается он из небольшого пластикового профиля с прорезями в торцах для фиксации проволоки.
Такая работа требует внимательности и аккуратности, особенно при наматывании первичной обмотки. Для изготовления нескольких устройств целесообразно использовать станок для намотки тороидальных трансформаторов. Своими руками такой прибор выполнить сложно, но возможно.
Намоточный станок своими руками
Один из возможных вариантов — сделать станок, оснащённый регулируемым укладчиком и счётчиком витков, используя принцип велосипедного колеса.
Колесо надевается на штырь в стене, при этом его обод снабжается резиновым кольцом. Для того чтобы на обод надеть сердечник, предварительно потребуется его разрезать, а затем снова скрепить, получив цельный круг. Намотав на него необходимую длину проволоки, один ее конец подсоединяется к свободно расположенному на ободе сердечнику. Катушка передвигается по ободу полными кругами, в результате чего проволока укладывается на каркас. При этом для подсчёта оборотов используется велосипедный счётчик.
Создание более совершенного устройства потребует применение шаговых двигателей с позиционированием их положения. Для этого используются микроконтроллеры и электронный счётчик. Такое конструирование требует определённых навыков в радиоэлектронике.
Originally posted 2018-07-04 07:14:26.
Онлайн помощник домашнего мастера
Трансформатор своими руками – пошаговая инструкция по созданию и проверке в домашних условиях (видео инструкция)
- Инструкции
На сегодняшний период времени увеличивающие или уменьшающие трансформаторы применяются для изменения напряжения. Данное устройство является машиной с высоким уровнем КПД и используется в большинстве сферах техники. Нередко людей интересует, как создать каркас и другие части трансформатора собственноручно.
Чтобы выполнить подобную задачу не обойтись без специальных умений. Помимо этого важно быть в курсе всего технологического процесса.
Краткое содержимое статьи:
- Создаём трансформатор
- Какую мощь будет иметь?
- Обустройство катушечного корпуса
- Создание обмоток для увеличивающего трансформатора
- Сборка трансформатора увеличивающего
- Инструменты
- Фото трансформаторов своими руками
Создаём трансформатор
При необходимости сделать данный прибор, важно ответить на ряд вопросов, в том числе:
- Какое непосредственно напряжение должен он пропускать?
- На какой именно частоте планируется запустить в работу устройство?
- Для каких целей требуется аппарат: для снижения или увеличения тока?
Какую мощь будет иметь?
Как только вы сможете ответить на каждый из перечисленных вопросов, приобретайте требуемые материалы. Необходимые материалы вы можете без сложностей купить в специализированных магазинах. Вам потребуются провода, изоляция ленточного типа высшего качества, сердечник.
Трансформатор собственноручно требует намотку. В этих целях следует создать станок, изготовление которого осуществляется из доски длиною сорок сантиметров и шириною десять сантиметров. На доску необходимо прикрепить несколько брусков, посредством шурупов.
Расстояние, имеющееся между брусками не должно быть менее чем тридцать сантиметров. Затем следует просверлить отверстия восемь миллиметров диаметром. В созданные отверстия нужно вставить специальные пруты для катушки аппарата.
С одной из сторон следует создать резьбу. Закрутив обустроенную шайбу, вы получите его ручку. Габариты станка для намотки можно выбрать на собственное усмотрение. Прежде всего, правильный выбор напрямую зависит от габарита сердечника. При кольцевидной его форме намотка создаётся вручную.
Согласно схеме трансформаторного устройства, аппарат может быть оснащён разнообразным числом витков. Требуемое их количество рассчитывается, ориентируясь на мощность. К примеру, при необходимости создания прибора до 220 вольт, мощность должна достигать не менее 150 ватт.
Форма магнитного провода должна быть о-образной. Можно обустроить его из бу телевизора. При этом сечение определяется посредством определённой формулы.
Обустройство катушечного корпуса
Корпус делают из качественной картонной бумаги. Внутренняя его сторона слега больше в сравнении со стержневой частью сердечника. При применении о-образного сердечника потребуется несколько катушек. При сердечнике ш-образном достаточно использовать всего одну катушку.
Применяя сердечник круглой формы, его следует обмотать, применяя изоляцию. Затем можно осуществлять проводную намотку. Как только вы завершите с обмоткой первичной, её следует закрыть несколькими изоляционными слоями. После этого нужно накрутить очередной слой. Концы имеющихся обмоток выводятся на наружную сторону.
При применении магнитного провода корпус трансформатора собирается пошагово:
- Осуществляется выкраивание определённого размера гильзы с требуемыми отворотами.
- Создаются картонные щёчки.
- Основная часть катушки сворачивается в специальную коробочку.
- На гильзы надеваются щёчки.
Создание обмоток для увеличивающего трансформатора
Следует надеть катушку на брусок из натурального массива. В нём необходимо просверлить специальное отверстие для прутка намоточного.
К одному из серьёзных этапов относится подключение тока. Деталь вставляется внутрь станка и можно производить обмотку:
- Сверху катушки наматывается лакоткань в несколько слоёв.
- Конец имеющегося провода закрепляется на обустроенной щёчке, после чего можно приступать к вращению ручку.
- Витки укладываются максимально плотно.
- После обмотки следует обрезать провод для последующего закрепления сверху щёчки возле первого.
- На имеющиеся выводы необходимо закрепить трубку изоляционную.
Сборка трансформатора увеличивающего
При необходимости узнать, как создать собственноручно трансформатор, воспользуйтесь инструкцией. Для сборки повышающего устройства важно разобрать полностью сердечник. При применении отдельно размещённых пластин, важно определиться с пакетной толщиной, рассчитать листы.
В случае если в процессе включения аппарата будет издаваться шум, то необходимо закрепить имеющийся крепёж максимально плотно. Затем следует проверить прибор на работоспособность. В этих целях он подключается к сети, после чего должно высветиться напряжение, составляющее 12В.
Немаловажно знать, что в процессе включения аппарата, важно оставить его в работающем состоянии на пару часов. При этом трансформатор должен не перегреваться.
Инструменты
Чтобы изготовить трансформатор собственноручно, следует взять инструменты, а также определённые материалы:
- Лакоткань.
- Сердечник, для которого вполне подходит телевизор бывший в использовании.
- Плотная картонная бумага.
- Доски, а также бруски из природной древесины.
- Прут из стали.
- Пила, специальный клей.
Сделать собственными руками трансформатор, как на фото, совершенно не проблематично. Если требуется изготовление трансформатора, предназначенного для лампочек галогенных, то вполне можно использовать тоже перечисленные выше инструменты.
Не забывайте, что очень важно придерживаться технологического процесса намотки. При точном соблюдении важных правил, аппарат прослужит вам ни одно десятилетие. Данных материалов, а также инструментов вам будет вполне достаточно для собственноручного создания качественного и практичного в применении трансформатора.
На основе подобной самоделки можно сформировать трансформатор для подзарядки машинного аккумулятора, либо создать повышающий прибор для источника питания лабораторного, выжигатель по древесине, либо другое устройство, которое удовлетворит нужды мастера по дому.