Rich--house.ru

Строительный журнал Rich—house.ru
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Электросварка металлов: виды, технологии, особенности

Современные и классические сварочные технологии

Сварка — одно из важнейших ремесел для человека. С помощью сварочных технологий нам удается создавать по-настоящему удивительные вещи: от простейших бытовых приборов до космических ракет. В этой статье мы расскажем, как происходит сварка, какие существуют виды сварки и их краткая характеристика.

Общая информация

Что такое сварка? Каковы основы сварки? Эти вопросы задаю многие начинающие умельцы. По сути своей, сварка — это процесс соединения разных металлов. Соединение (его также называют швом) формируется на межатомном уровне с помощью нагрева или механической деформации.

Теория сварки металлов очень обширна и невозможно в рамках одной статьи описать все нюансы. Также как невозможно описать все способы сварки металлов, поскольку на данный момент способов около сотни. Но мы постараемся кратко классифицировать методы сварки, чтобы новички не запутались.

Итак, на данный момент возможна термическая, термомеханическая и полностью механическая сварка деталей из металла или других материалов (например, пластика или стекла). При выборе способа сварки учитывается каждый нюанс: толщина деталей, их состав, условия работы и прочее. От этого зависит технология сварки металла.

Термическая сварка — это процесс соединения деталей только с помощью высоких температур. Металл плавится, образуется надежное сварное соединение. К термическим методам относится, например, дуговая и газовая сварка (о них мы поговорим позже).

Термомеханическая сварка — это процесс соединения деталей с помощью высоких температур и механического воздействия, например, давления. К такому типу принадлежит контактная сварка. Деталь нагревается не так сильно, как в случае обычной термической сварки, а для формирования шва используется механическая нагрузка, а не плавление металла как такового.

Механическая сварка — процесс соединения деталей без применения высоких температур и вообще тепловой энергии. Здесь ключевой элемент — механическое воздействие. К такому типу относится холодная сварка, ультразвуковая сварка или соединение деталей трением.

Также существует классификация способов сварки по техническим признакам. Используя такую классификацию можно довольно кратко описать все имеющиеся типы сварки. Они делятся на:

  • Сварку в защитной среде (для защиты может использоваться флюс, инертный газ, активный газ, вакуум, защита может быть комбинированной и состоять из нескольких материалов сразу).
  • Сварку прерывистую и непрерывную.
  • Сварку ручную, механизированную, полуавтоматическую, автоматическую, роботизированную.

Если вы ранее не сталкивались со сваркой и все перечисленное выше кажется чем-то запутанным и непонятным, то не беспокойтесь. Далее мы расскажем, какие самые популярные методы сварки используются в домашних и промышленных условиях.

Вам будем дана характеристика основных видов сварки и некоторые особенности, которые нужно учесть. Кстати, многим видам сварки мы посвящали отдельные статьи, которые вы можете прочесть, открыв рубрику «Виды и способы сварки» на нашем сайте.

Ручная дуговая сварка с применением неплавящихся электродов

Способ ручной дуговой сварки разных металлов с применением неплавящихся электродов — один из самых популярных методов как среди домашних умельцев, так и среди профессионалов своего дела. Ручная дуговая сварка — это вообще один из древнейших способов сварки. Благодаря большому выбору сварочных аппаратов для дуговой сварки такой метод стал доступен широкому кругу сварщиков.

Электрод — это стержень, выполняющий роль проводника тока. Он может быть изготовлен из различных материалов и иметь специальное покрытие.

Технология дуговой сварки неплавящимся электродом крайне проста: детали подгоняют друг к другу, затем электродом постукивают или чиркают о поверхность металла, зажигая сварочную дугу. В качестве основного оборудования используют сварочные инверторы.

Для сварки инвертором выбирают неплавящиеся электроды, сделанные из угля, вольфрама или графита. Во время сварки электрод нагревается до высокой температуры, плавя металл и образуя сварочную ванну, в которой как раз и формируется шов. Такой метод используют для сварки цветных металлов.

Ручная дуговая сварка с применением плавящихся электродов

Виды сварки плавлением металла не заканчиваются на применении неплавящихся стержней. Для работы также можно использовать плавящиеся электроды. Технология сварки металла с использованием плавящихся стержней такая же, что и при работе с неплавящимися материалами.

Отличие лишь в составе самого электрода: плавящиеся стержни обычно изготавливаются из легкоплавких металлов. Такие стержни также пригодны для сварки инвертором в домашних условиях. Здесь шов образуется не только за счет расплавленного металла детали, но и за счет расплавленного электрода.

Дуговая сварка с использованием защитного газа

Способ дуговой сварки разных металлов с использованием защитного газа выполняется с помощью плавящихся и неплавящихся электродов. Технология сварки такая же, как и при классической ручной дуговой сварке. Но здесь для дополнительной защиты сварочной ванны в зону сварки подается специальный защитный газ, поставляемый в баллонах.

Дело в том, что сварочная ванна легко подвержена негативному влиянию кислорода и под его воздействием шов может окислиться и получиться некачественным. Газ как раз и помогает избежать этих проблем. При его подаче в сварочную зону образуется плотное газовое облако, не дающее кислороду проникнуть в сварочную ванну.

Автоматическая и полуавтоматическая сварка с использованием флюса или газа

Автоматическая и полуавтоматическая сварка с применением флюса или газа — это уже более продвинутый способ соединения металлов. Здесь часть работ механизирована, например, подача электрода в сварочную зону. Это значит, что сварщик подает стержень не с помощью рук, а с помощью специального механизма.

Автоматическая сварка подразумевает механизированную подачу и дальнейшее движение электрода, а полуавтоматическая подразумевает только механизированную подачу. Дальнейшее движение электрода сварщик осуществляет вручную.

Здесь защита сварочной ванны от кислорода просто обязательна, поэтому используется газ (по аналогии с дуговой сваркой с применением газов) или специальный флюс. Флюс может быть жидким, пастообразным или кристаллическим. С помощью флюса можно значительно улучшить качество шва.

Прочие методы соединения металлов

Помимо традиционных способов сварки в современной промышленности применяются методы, позволяющие соединить уникальные металлы. Зачастую такие металлы обладают ярко выраженными химическими или тугоплавкими свойствами, отчего привычные способы сварки не подходят для их соединения. Конечно, такие металлы не используются в домашней сварке, но они широко применяются для создания ответственных деталей на крупном производстве.

Мы расскажем про виды сварки плавлением, когда суть сварки заключается в подаче большого количества тепла на маленький участок сварки. К таким методам относится лазерная сварка и плазменная сварка.

Лазерная сварка металлов выполняется с помощью автоматического и полуавтоматического оборудования. Такой процесс сварки может быть полностью роботизирован и не требует присутствия человека. Здесь деталь нагревается, а затем и плавится под воздействием тепла, исходящего от лазерного луча и направленного в определенную точку.

Тепло концентрируется строго в одной точке, позволяя сваривать очень мелкие детали размером менее одного миллиметра. Также с помощью призмы лазер можно расщепить и направиться в разные стороны, чтобы сварить несколько деталей сразу.

Плазменная сварка металлов выполняется с применением ионизированного газа, называемого плазмой. Газ струёй подается в сварочную зону, образовывая плазму. Она работает в связке с вольфрамовым электродом и газ нагревается за счет электрической дуги.

Сам ионизированный газ обладает свойством проводника тока, поэтому в случае плазменной сварки именно плазма является ключевым элементом в рабочем процессе. Также плазма активно защищает сварочную ванну от негативного влияния кислорода. Такой метод сварки используется при работе с металлами, толщиной до 9 миллиметров.

Технологический процесс сварки

Мало знать способы сварки, нужно еще понимать, какие необходимы документы на сварку и из каких этапов состоит сварочный процесс. Конечно, это справедливо только в отношении профессиональных сварщиков, выполняющих работу в цеху или на производстве. Вам это не нужно, если вы собираетесь варить забор на даче, но дополнительные знания тоже не помешают.

Итак, вот наше краткое описание технологического процесса сварки:

  1. Разработка чертежа
  2. Составление технологической карты
  3. Подготовка рабочего места сварщика и подготовка металла
  4. Непосредственно сварка
  5. Очистка металла
  6. Контроль качества

Сам по себе техпроцесс — это полное описание этапов сварки. Технический процесс разрабатывается после того, как будут готовы чертежи будущей металлоконструкции. Чертеж делают, опираясь на правила (ГОСТы, например), при этом во главу ставят качество будущей конструкции и разумную экономию.

Технологический процесс сварки оформляется на специально разработанных для этого бланках. Стандартный бланк для описания техпроцесса называется «технологическая карта». В технологической карте и описываются все этапы производства. Если производство серийное или крупномасштабное, то изложение может быть довольно подробным, с описанием каждого нюанса.

В технологическую карту заносят тип металла, из которого изготовлены детали, способы сварки металлов, используемые для соединения этих деталей, применяемое для этих целей сварочное или иное оборудование, типы присадочных материалов, электродов, газов или флюсов, используемых в работе. Также указывается последовательность формирования швов, их размеры и прочие характеристики.

Также в технологической карте указывают марку электродов, их диаметр, скорость их подачи, скорость сварки, количество слоев у шва, рекомендуемые настройки сварочного аппарата (параметр полярности и величины сварочного тока), указывают марку флюса. Перед самой сваркой детали тщательно подготавливают, очищая их от коррозии, загрязнений и масла. Поверхность металла обезжиривают с помощью растворителя. Если у детали есть значительные видимые дефекты (например, трещины), то она не допускается к сварке.

После сварки предстоит контроль сварочных швов. Этой теме мы посвятили отдельную статью, но здесь кратко расскажем об основных методах контроля. Прежде всего, применяется визуальный контроль, когда сварщик может сам определить наличие дефектов у сварочного соединения. Специалистами проводится дополнительный контроль с помощью специальных приборов (это может быть магнитный контроль, радиационный или ультразвуковой).

Конечно, не все дефекты считаются плохими. Для каждых сварочных работ составляется перечень с дефектами, которые допустимы и не сильно повлияют на качество готового изделия. Контролером может быть сварщик или отдельный специалист. Его имя обязательно указывается в документах, он является ответственным лицом на этапе контроля.

Вместо заключения

В этой статье мы рассказали самое основное. Конечно, мы не сможем перечислить и описать все виды сварочных работ в рамках одной этой статьи, но на нашем сайте вы можете найти материалы, где мы рассказываем все о сварке и объясняем основы сварки различных металлов.

Для любого мастера теория сварочных процессов имеет большое значения, но без практики она не работает. Так что не теряйте время и вслед за чтением статей применяйте знания на практике. Желаем удачи в работе!

Электрическая сварка металла: описание процесса и виды

Электрическая сварка — это процесс нагрева и соединения двух частей металла с использованием мощного электрического тока. Метод был изобретён профессором Эриусом Томсоном и требует использования сварочного аппарата, который освобождает ток, используемый для электросварки.

  • Описание процесса
  • Виды электросварки
    • MIG
    • ВИГ
    • Ручная
  • Соединение труб при помощи электросварки
    • Электросварные фитинги из металла
    • Электрический фитиновый полиэтилен
    • Сцепление и электроопыление
    • Как приготовить электросварку труб
  • Электросварка в домашних условиях

В отличие от более традиционных методов, электросварка требует минимальных навыков и понимания со стороны сварщика. Использование электросварочных аппаратов автоматизировано и требует только регулярной смазки для продолжения нормальной работы. Это делает данный метод идеальным для начинающего сварщика. Любые сплавы или два идентичных металла могут быть соединены таким образом.

Описание процесса

Во время электросварки металлические части соединяются вместе с помощью медных зажимов. Электричество проходит через соединения, нагревая и соединяя их в точке, где встречаются две металлические части. Поверхность, где металлы замыкаются и соприкасаются, сначала становится горячей, а затем излучается наружу в виде шва.

Распределение тепла регулируется путём обеспечения постоянного движения тока с использованием рычага регулирования. Это гарантирует, что оба металла станут мягкими и одновременно соединятся друг с другом.

Преимущества электрической сварки включают в себя тот факт, что этот метод не тратит лишнее топливо и обеспечивает точность в соединении деталей. Тепло не выходит далеко за точку сварки. Это делает его идеальным для изолированных проводов. Концы каждого провода можно сваривать, оставляя при этом изоляцию.

Хотя сварочные аппараты в теории могут использовать ток силы до 50 000 ампер, на самом деле они существенно безопаснее и работают с другими параметрами тока. Это делает сварочный аппарат неспособным к электрическому удару или шоку человека при использовании электросварки. Сварка может занять от нескольких секунд до десятков минут. Многое зависит от объёма соединяемых металлических конструкций: чем шире площадь соприкосновения, тем больше масштаб работы.

Виды электросварки

Сварочные материалы являются эффективным способом объединения металлических конструкций без использования фитингов. Сварка МИГ, ВИГ и ручная — это три типа электросварки. Дуговая сварка — это та, которая достигается потоком дуги электричества между электродом и рабочей поверхности. Большинство методов подразумевают использование защитного газа для обеспечения гладкости и предотвращения загрязнения в точке сварки, улучшения качества шва и стабилизации дуги электричества между обрабатываемой поверхностью и электродом.

Газовая металлическая дуговая электросварка называется МИГ. Этот метод часто используется при обработке стали. Этот процесс, по существу, предполагает плавление заполнителя на рабочую поверхность. Используя этот метод, сварщики могут выполнять более длинные сварные швы без прерывания — в сравнении с обыкновенными способами сварки здесь не требуется выполнять несколько прерываний.

Наиболее распространённым защитным газом, используемым в этом типе электросварки, является аргон или смесь аргона, содержащая кислород или диоксид углерода.

Однако и здесь есть несколько потенциальных недостатков. Во-первых, может возникнуть трудность создания дуги для начала всего процесса. Во-вторых, сварные швы, полученные этим методом, имеют предрасположенность к сильному окислению.

Газовая вольфрамовая дуговая электросварка называется ВИГ — это метод сварки, который часто используется при работе с магнием, алюминием, титаном, никелем и медными сплавами. Сварка ВИГ может быть выполнена с использованием заполнения или без него. Швы здесь могут быть значительно меньше, чем швы МИГ, поскольку тепло в точках сварки ВИГ лучше определяется.

Одним из недостатков такого типа сварки по сравнению с МИГ является его большая ресурсоемкость в плане затраченного времени. Зато этот тип сварки является одним из самых чистых, так как в процессе не образуется каких-либо брызг. Аргон в сочетании с гелием или водородом часто используется в качестве защитного газа для такого типа сварки.

Ручная

Один из первых способов — экранированная дуговая электросварка металлов — также упоминается как ручная сварка. Этот метод идеально подходит для использования на мостах, металлоконструкциях, трубопроводах, тракторах. Часто применяется для наружной сварки, поскольку природные факторы, такие, как дождь, не будут нарушать целостность шва. Ручная сварка может быть сложной и рекомендуется только для опытных сварщиков.

Соединение труб при помощи электросварки

Электросварные фитинги из металла

Электросварные фитинги — это приспособления, которые помогают соединить две части заготовок. Существуют два формата: резьбовые и сварные. Концы резьбового фитинга — резьба выполнена внутри и снаружи соединительной детали. А также фитинг имеет фаску, что облегчает выполнение электросварного шва.

Многие из этих приспособлений прикрепляются к детали с помощью двух элементов: колена и приклада. В первом варианте диаметр больше, чем во втором, а второй, как правило, совпадает со свариваемой деталью.

Электрический фитиновый полиэтилен

Эти детали позволяют увеличить электрофузию соединяемых деталей. Обычно полиэтиленовые вспомогательные соединительные детали используются для полиэтиленовых водопроводных труб, которые предназначены для систем с низким давлением.

Фитинги из HDPE устанавливаются на трубах при помощи приклада или перекрытия. Элементы удерживаются специальным держателем. Устанавливают соединение и трубку, затем нагревают, вводя в фитинг.

Примечательно, что оба варианта электросварки основаны на химическом воздействии — разрушении молекулярных цепей полимеров при температуре 170 градусов Цельсия и образовании новых в процессе упрочнения пластика.

Сцепление и электроопыление

Современные электрические технологии достигли уровня, на котором легко обойтись без громоздкого, сложного в использовании и устаревшего оборудования.

Наружная оболочка и её фитинг расплавляются, а после падения температуры создаётся новая полимерная цепь. В результате гарантируется качественная электросварка полиэтиленовых труб, которую можно безопасно использовать как для домашних систем, так и для промышленных трубопроводов.

Эти фитинги характеризуются следующими преимуществами:

  • они соединяют трубы диаметром от 20 до 400 мм;
  • соединение установлено внутри и способно выдерживать работу при высоком давлении;
  • они инертны ко всем химическим веществам и, таким образом, безопасны даже для воды;
  • выдерживают любые скачки давления.

У фитингов есть большой ассортимент — от маленького до большого диаметра. Их можно использовать даже на крупных химических заводах.

Для установки арматуры вы можете использовать трансформатор.

Как приготовить электросварку труб

  1. Подготовка: сварщик, заготовка, соединительный элемент, трансформатор в полной готовности и целостности.
  2. Труба под прямым углом.
  3. С фаской кромки детали, для точной резки.
  4. Труба проходит в фитинг и фиксирует место, где ранее отмечалось.
  5. Обезжирить части.
  6. После подключения сварочного трансформатора к источнику питания сформируйте сварное соединение.
  7. Сварочный аппарат выключен, и включён режим прогрева в течение 30 минут.
  8. Важно не перемещать какое-либо соединения или держатель! После выключения ожидайте полного охлаждения.
  9. Устройство готово для использования и дальнейшего подключения!

Электросварка в домашних условиях

Электросварка — это процесс эффективного несъемного соединения металлических деталей. Сегодня он активно используется для создания сетчатой​​ сетки, всех видов рамок, резервуаров. Люди, обладающие соответствующими навыками, на собственном заднем дворе могут создавать навесы для крыш, ажурных заборов и других вещей, необходимых в повседневной жизни. Вот почему многие люди обеспокоены тем, как научиться работать с электросваркой.

Рекомендации:

  1. Хорошо очищайте поверхности для сварки. Важно, чтобы на них не было ржавчины, грязи.
  2. Вставьте электрод в специальное держательное устройство для сварки и сформируйте электрическую арку. Для этого необходимо вызвать движение тока в области сварки.
  3. При электрической дуге необходимо сделать промежуток между ним и соединительной поверхностью. Следует отметить, что размер зазора не должен изменяться от трёх до пяти миллиметров. В противном случае дуга будет периодически прерываться, соответственно, это приведёт к ухудшению качества сварного шва.
  4. Стержень должен удерживаться под углом около 70 градусов. Однако это значение можно изменить, чтобы улучшить комфортность электросварки.
  5. Соблюдайте правила безопасности.

Электросварка требует соблюдения следующих правил безопасности:

  1. Должны быть эффективно изолированы провода, которые подключены к источнику питания и дуговой сварке, а также необходимо заземление корпуса сварочного аппарата. Рекомендуется использовать корпус и дополнительное электрооборудование.
  2. Рекомендуется использовать специальные силовые выключатели в блоках питания. Они во время холостого хода разрывают сварочный контур и накладывают напряжение на 12 В на держатель.
  3. Сварочные работы должны проводиться в хороших сухих перчатках и одежде. Обратите внимание, что, если вы планируете работать в ограниченном пространстве, следует побеспокоиться о подготовке матов из резины или резиновых галошах.
  4. В случае одновременного использования нескольких сварочных аппаратов их необходимо расположить так, чтобы расстояние между ними составляло не менее 0,35 м (оптимальная ширина проходов — около 0,8 м).

Следует уделять большое внимание этим правилам. Ведь электросварка — это довольно травмоопасный процесс. Но любой беды можно избежать, если внимательно изучить вопрос и ответственно подходить к делу.

Виды сварки металлов и их краткая характеристика: термический, термомеханический и механический классы

Сварка – процесс соединения металлов при установлении межатомных связей. В зависимости от формы энергии различают следующие виды сварки.

Термический класс сварки

Термический класс сварки включает в себя разновидности сварочных работ, для которых требуется тепловая энергия. Если охарактеризовать весь процесс в нескольких словах: в результате правления на краю изделия образуется расплавленная субстанция, которая после стыковки остывает и кристаллизуется, в результате чего образуется сварочный шов.

Электродуговая

Самый популярный вид сварочных работ в наши дни осуществляется, благодаря сварочному току, возникающего при соприкосновении электрода и свариваемого изделия. В процессе работы электрод расплавляется и выходит наружу, образуя тем самым защитную пленку.

Процесс электродуговой сварки подразделяют на три группы в зависимости от того, как выполняется зажигание и манипуляции.

  1. При ручной (ГОСТ 5264-80) все действия выполняются человеком без помощи каких-либо механизмов.
  2. При полуавтоматической (ГОСТ 11533-75), или как ее еще называют, механизированной, автоматизируется подача электродной проволоки, а весь остальной процесс производится человеком.
  3. Автоматическая же полностью исключает участие людей. Все процессы полностью автоматизированы и характеризуются большой точностью до сотых миллиметра.
Читать еще:  Выбор сварочного инвертора – ценные рекомендации специалистов

Электронно-лучевая (ГОСТ Р 57550)

Скоростные электроны, излучаемые мощным источником тепла, отдают энергию атомам веществам, вследствие чего происходит плавление материала.

Для этого процесса необходимо соблюсти важное условие: вакуум для достижения максимально прочного шва.

Благодаря возможности фокусировать луч до нужных размеров этот тип нашел широкое применение в производстве микродеталей.

Термитная (ГОСТ Р 57181-2016)

Представить, как происходит процесс сварки с высокотехнологичным оборудованием, достаточно просто, но как быть, если работы необходимо осуществить в полевых условиях, например, соединить рельсы?

Это метод основан на применении термита – порошкообразной смеси, в состав которой входит алюминий и оксиды металлов.

Суть процедуры заключается в том, что концам соединяемых элементов придают нужную форму за счет использования термостойких материалов, а затем нагревают их, заливая место соединения предварительно зажженной термитной смесью. В итоге раскаленное железо сваривается с металлом самих деталей, что приводит к образованию прочного, надежного и долговечного соединения, обладающего высокими техническими характеристиками.

Электрошлаковая (ГОСТ 15164-78)

Принципиально новый вид соединения металлов. Особенность состоит в подборе шлака, температура плавления которого превышает температуру основного сырья и проволоки электрода. Первая стадия ничем не отличается от дуговой сварки. Отличия становятся заметными после образования ванны, когда горение дуги останавливается и оплавление кромок осуществляется за счет проходящего тока через сплав.

Этот способ позволяет работать с конструкциями большой толщины, в результате чего обеспечивается большая производительность.

Газопламенная (ГОСТ 12.3.036-84)

Вся процедура происходит в пламени открытой горелки. Поддержание пламени происходит, благодаря постоянной подаче горючего газа в смеси с кислородом. Металл при контакте с пламенем начинает меняться в зависимости от его качеств, в результате чего образуется ванна для сплавления.

Лазерная (ГОСТ 28915-91)

LWM (сокращение в международной номенклатуре) – сварка с использованием лазерного луча. Весь процесс сварки металлов производится лазерным лучом, сгенерированным квантовым генератором.

Одними из главных преимуществ этого типа является тонкий шов, образующийся благодаря направленности луча, и быстрота процесса, из-за чего такая сварка нашла широкое применение на автозаводах.

Термомеханический класс сварки

Особенность этого класса сварки заключается в использовании тепла и давления. Весь процесс очень напоминает механический, однако, есть одно отличие: нагрев происходит извне.

Кузнечная (ГОСТ 2601 84)

Определенно, это самый древний и, можно сказать, проверенный временем способ сварки. Заключается в сплавлении нескольких заготовок, нагретых до определенной температуры при помощи ударов. Как правило, таким способом привариваются материалы, содержащие менее 0,3% углерода.

Принцип заключается в нагреве концов заготовок до температуры белого каления. Затем заготовку посыпают поваренной солью или кварцевым песком для уменьшения количества окалины. Когда металл нагреется до нужной температуры, сбивают «посыпку» и начитают наносить удары по нарастанию силы.

Сварку можно осуществить несколькими способами встык, в расщеп, вразруб, внахлест.

Контактная электрическая (ГОСТ 15878-79)

Принцип электрической сварки, или, как её еще называют, сварки сопротивлением, заключается в нагреве места сопротивления через искру, сквозь которую пропускается электрический ток.

Стоит учесть, что этот тип сварки требует механических усилий, так как после расплавления детали необходимо сдавить или «посадить» друг на друга, это объясняется химическим контактом атомов материалов.

Сварка подобного механизма нашла широкое применение в промышленности из-за удобства эксплуатирования и возможности автоматизации процесса. По результатам её подразделяют на три группы: шовную, точечную и стыковую.

Диффузионная (ГОСТ 20549-75)

При вакууме происходит диффузия атомов в поверхностных слоях контактирующих материалов. Это происходит, благодаря нагреву материалов до температуры плавления. А вакуум служит защитой от возникновения оксидной пленки, которая может прервать процесс. Чтобы увеличить площадь контакта, необходимо работать при сжимающих усилиях (10-20) МПа.

Сам процесс происходит в три этапа. Детали, которые необходимо скрепить, помещают в камеру с вакуумом и придавливают небольшим усилием. Затем нагревают при помощи тока и удерживают определенное время при нужной температуре.

Такой вид сварки используют для соединения материалов, которые плохо совмещаются друг с другом, таких, как сталь и чугун.

Механический класс сварки

Этот класс вмещает в себя сварку, для которой необходимы механическая энергия и давление. Простота оборудования и достойное качество позволили найти широкое применение в различных отраслях.

По типу сварки группу можно разделить на три подгруппы.

Сварка трением (ГОСТ Р ИСО 4063-42)

Осуществляется за счет вращения одной из деталей. Процесс состоит из следующих шагов:

  1. Из-за силы трения происходит оксид оксидных пленок.
  2. Нагреваются кромки металлов до пластичного состояния.
  3. Более пластичный металл выходит из шва.

Холодная (ГОСТ 2601-74)

Подобный тип сварки выполняют без нагрева. Методика осуществляется за счет деформации, при помощи которой разрушается окисная пленка на привариваемых поверхностях, и сдавливания до образования контакта. Прочность обуславливается усилием, с которым происходит сжатие. Чем оно сильнее, тем больше разрушается оксидная пленка.
Холодную сварку применяют для металлов, обладающих высокой пластичностью.

Сварка взрывом (ГОСТ Р ИСО 857-1-2009)

Относительной новый вид, позволяющий получать сплав неограниченных размеров. Это достигается под действием энергии, высвобождающейся при взрыве взрывчатого вещества.

Из-за большой опасности, а именно высвобождению ударной волны на большие расстояния, ее осуществляют на специализированных полигонах.

Взрыв позволяет соединить практически все виды металлов, однако, во избежание чрезмерного разрушения между деталями делают прослойку из другого металла.

Ультразвуковая (ГОСТ Р 55724-2013)

Для ультразвуковой сварки применяют высокочастотные ультразвуковые колебания, воздействующие на сплавляемые детали, прижатые вместе под небольшим давлением. Этот метод сварки наиболее часто используется для соединения термопластов и в тех случаях, когда неприменимы болтовые соединения, пайка или склеивание. Процесс полностью автоматизирован и осуществляется на специальных установках.

Разнообразие видов сварки

Сварочный процесс формирует неразъемное соединение различных частей каких-либо металлов за счет образования новых межатомных связей.

Он заключается в создании локального или повсеместного прогрева, пластической деформации, или одновременного действия обоих факторов. Современные сварочные технологии представлены почти сотней видов автоматизированной и ручной сварки.

Три основных разновидности

Имеются три разновидности или типа сварки. По методу получения энергии соединения ее делят на термическую, термомеханическую и механическую.

К термической сварке причисляют процессы с использованием электрической дуги, газа, плазмы и других источников теплового излучения. Именно благодаря ему происходит нагрев и сварка.

В термомеханических видах кроме тепловой энергии применяют давление для получения неразрывного соединения.

В механической теплоту получают за счет трения, давления, ультразвука или взрыва.

Виды сварочных работ многообразны и их классификация производится по разным критериям. Классификация идет по способу защиты сварочной ванны, по непрерывности процесса сварки, степени механизации, используемым газам. Кроме этого имеются технологические признаки, которые индивидуальны для каждого вида сварки.

Виды сварных соединений подробно описаны в ГОСТ (государственных стандартах). Кроме этого имеется большое количество ГОСТ описывающих виды сваривания, способы контроля сварных швов, меры безопасности при производстве сварочных работ.

Термическое сваривание материалов

Термические процессы основываются на плавлении соединяемых деталей за счет тепловой энергии. Выделяю несколько видов термической сварки:

  • электродуговая (в среде защитных газов, под флюсом и прочие);
  • электрошлаковая;
  • электронно-лучевая и лучевая (лазерная);
  • плазменная;
  • газовая;
  • термитная.

Самое широкое применение получила электродуговая сварка. Но и другие виды востребованы в различных современных сферах производства и в бытовых условия.

Расплавление электрической дугой

Электродуговой вид сварки работает за счет выделения энергии в дуге из-за того, что сопротивление дуги значительно больше, чем сопротивление всей электрической цепи, образующей замкнутый контур.

Поэтому практически все тепловая энергия выделяется в дуге, разогревая ее до 4,5-6 тысяч градусов и вызывая плавление любого металла. Дуга возникает в зазоре электрода и свариваемого металла, вызывая их плавление.

При остывании создается неразрывный шов, свойства которого связаны с током, составом присадки и многими другими факторами.

Дуговое сваривание производится плавящимися и неплавящимися стержнями (электродами). В оборудовании используется инверторная технология, что позволило создать компактные производительные устройства.

При сварке заготовок с помощью электрода разжигают дугу между ним и поверхностью стыка. Это создается за счет короткого замыкания при прикосновении прутка к металлу, и последующего его отрыва на расстояние 3-5 мм.

Дуга расплавляет конец электрода и кромки свариваемого изделия. В точке образования дуги создается сварочная ванна.

Для получения сварного шва требуется вести электрод вдоль стыка со скоростью достаточной для расплавления кромок и электрода, но не достаточной для прожигания деталей.

После охлаждения металла получается сварной шов по прочности сопоставимый с основой. Электрод может быть в виде отдельного стержня в обмазке или присадочной проволоки на механизме ее подачи.

При сваривании неплавящимся стержнем электродуга возникает между ним и кромками заготовок. Происходит расплавление кромок, если необходимо и присадочной проволоки в образующейся при этом сварочной ванне. Пруток может быть угольным или из вольфрама. Электродом неплавящегося вида обычно работают при сварке меди, медных сплавов (латуни, бронзы, мельхиора) и тугоплавких металлов.

Защита флюсами и газом

Сваривание металла под слоем флюса обычно выполняется автоматически или при наполовину автоматизированном процессе (полуавтоматом). В первом случае все процессы автоматизированы, во втором процесс подачи электрода производится автоматически, а движение горелки осуществляется сварщиком.

Расплав в сварочной ванне защищается расплавом шлака от воздействия атмосферного воздуха. Шлак получается за счет расплавления флюса поступающего в ванну. Вид сварки с применением флюсов весьма производителен, к тому же получается качественный сварной шов без пор и других недостатков.

Сваривание в газе обеспечивает предохранение участка сварки от вредного воздействия паров воды, атмосферного кислорода и азота.

Это обеспечивается за счет подачи струи защитного газа через сопло горелки в сварочную зону, что позволяет вытеснить атмосферный воздух. Используется при применении неплавящихся и плавящихся электродов. В итоге получается качественный шов при высокой производительности труда.

Электрошлаковая

Электрошлаковый вид сварки осуществляется благодаря сплавлению вертикальных краев изделия с электродом. Когда электрический ток проходит через лак, выделяется тепло. Дуга присутствует только на начальном этапе. В дальнейшем металл расплавляется за счет тепла выделяемого шлаком.

С двух сторон зазора устанавливаются ползуны из меди. Их охлаждают путем подачи воды. Снизу устанавливается поддон с флюсом. Между ним и электродом разжигают дугу и подают туда проволоку.

Электрическая дуга расплавляет проволоку и флюс, из них образуется сварочная ванна, над которой всплывает легкий жидкий шлак. По мере расплавления кромок и сварочной проволоки ползуны перемещаются вверх по стыку. В итоге получается качественный шов. Благодаря такому процессу можно варить металлы большой толщины за один проход.

Лучевая

В промышленности, особенно приборостроении и электронике требуется сваривать очень мелкие детали, имеющие особые требования к процессу сварки. Выбор способа сварки в этом случае невелик. С ними могут справиться только мощный световой луч, поток электронов или плазмы.

Чтобы получить шов отличного качества, требуется высокоэнергетический источник. Это может быть лазер или другой подобный источник энергии способный сконцентрировать огромную тепловую энергию на маленьком участке и на малое время. Электронно-лучевая сварка использует энергию разогнанных до большой скорости электронов. В случае с лазером разогрев осуществляется за счет энергии фотонов.

Плазма, газ, термическая реакция

Сущность вида сварки с применением плазмы заключается в формировании струи ионизированного газа, которая является проводником тока.

Температура плазмы достигает 30000 °C, что позволяет плавить любые металлы в кратчайшие сроки. Энергия плазмы зависит от величины сварочного тока, рабочего напряжения, расхода газа. Сварочные швы получаются высокого качества, тонкие, без внутренних напряжений.

Газовое сваривание осуществляется за счет сжигания горючего газа в кислороде и выделения большого количества теплоты. Это один из старейших видов сварки.

Температура газового пламени составляет три тысячи градусов. Благодаря этому расплавляются стыки свариваемого изделия. Процесс расплавления происходит долго, что вызывает нагрев больших участков поверхности соединяемых изделий. При охлаждении вызывает большие напряжения в шве и самой детали.

При термитном сваривании используется тепло выделяемое при сжигании смеси из алюминия и оксидов железа.

Термомеханическое сваривание материалов

К термомеханическому свариванию относится кузнечная, контактная и подобные им виды. Эти способы сваривания металла используют одномоментно тепловую и механическую энергию. К этому виду относят такие технологии:

  • кузнечная;
  • контактная;
  • диффузионная;

Кузнечной сваркой называется способ, в котором свариваемые изделия сначала нагреваются до необходимой температуры в горне, а потом молотом соединяют друг с другом. Если вместо молота используется пресс, то такой способ называется прессовый.

Контактный вид имеет такое название благодаря тому, что сваривание осуществляется в месте контакта соединяемых деталей. Их сильно прижимают друг к другу с помощью специальных электродов, а затем через точку сдавливания пропускают мощный ток.

В месте контакта получается наибольшее сопротивление, что вызывает выделение основного тепла именно в этой точке. Соответственно, это приводит к расплавлению металла в точке контакта. С помощью контактной получают точечную или шовную сварку.

Контактная сварка получила широкое распространение в машиностроении, особенно в автомобилестроении. Это связано с высокой производительностью и экономичностью данного вида сварки. Она проще всего автоматизируется и широко используется в роботизированных комплексах.

Нельзя не упомянуть диффузионный вид сварки. Его сущность в предварительном нагреве заготовок и последующем их соединении с помощью деформации, которая возникает от механического давления. В таком процессе происходит диффузия атомов из одной соединяемой части в другую и получается неразрывное соединение.

Механическое сваривание материалов

При механическом способе сварки неразрывное соединение получают без внешнего источника тепла. Процесс соединения происходит под действием давления, трения, взрыва или чего-нибудь подобного, что образует межатомные связи между свариваемыми изделиями.

Сварка трением происходит в результате быстрого вращений. Она деталь так плотно прижата к другой, что при вращении происходит сильное трение и разогрев до расплавления. Это обеспечивает надежное соединение заготовок.

Если взять две металлические пластины, очистить от загрязнений и сильно прижать, то при давлениях в несколько десятков тысяч атмосфер происходит пластическая деформация, приводящая к образованию межатомных связей двух частей. В итоге получается неразрывное соединение. Такой способ называется холодной сваркой.

Чтобы возникли силы атомного взаимодействия, между двумя деталями иногда используется взрыв. В этот момент свариваемые детали сближаются так, что возникают атомные связи, которые обеспечивают надежное соединение изделий.

Еще один вид сварки – ультразвуковой. Высокочастотные волны вызывают колебания атомов в металле, и те становятся такими значительными, что вызывает атомные взаимодействия. Итог – надежное соединение.

Сварка. Основные виды сварки. Сварка различных металлов с сплавов.

1. Физические основы сварки

Сварка — это технологический процесс получения неразъёмного соединения материалов за счёт образования атомной связи. Процесс создания сварного соединения протекает в две стадии.

На первой стадии необходимо сблизить поверхности свариваемых материалов на расстояние действия сил межатомного взаимодействия (около 3 А). Обычные металлы при комнатной температуре не соединяются при сжатии даже значительными усилиями. Соединению материалов мешает их твердость, при их сближении действительный контакт происходит лишь в немногих точках, как бы тщательно они не были обработаны. На процесс соединения сильно влияют загрязнения поверхности — окислы, жировые пленки и пр., а также слои абсорбированных примесных атомов. Ввиду указанных причин выполнить условие хорошего контакта в обычных условиях невозможно. Поэтому образование физического контакта между соединяемыми кромками по всей поверхности достигается либо за счёт расплавления материала, либо в результате пластических деформаций, возникающих в результате прикладываемого давления. На второй стадии осуществляется электронное взаимодействие между атомами соединяемых поверхностей. В результате поверхность раздела между деталями исчезает и образуется либо атомная металлическая связи (свариваются металлы), либо ковалентная или ионная связи (при сварке диэлектриков или полупроводников). Исходя из физической сущности процесса образования сварного соединения различают три класса сварки: сварка плавлением, сварка давлением и термомеханическая сварка (рис. 1.25).

Рис. 1.25. Классификация видов сварки

К сварке плавлением относятся виды сварки, осуществляемой плавлением без приложенного давления. Основными источниками теплоты при сварке плавлением являются сварочная дуга, газовое пламя, лучевые источники энергии и «джоулево тепло». В этом случае расплавы соединяемых металлов объединяются в общую сварочную ванну, а при охлаждении происходит кристаллизация расплава в литой сварочный шов.

При термомеханической сварке используется тепловая энергия и давление. Объединение соединяемых частей в монолитное целое осуществляется за счет приложения механических нагрузок, а подогрев заготовок обеспечивает нужную пластичность материала.

К сварке давлением относятся операции, осуществляемые при приложении механической энергии в виде давления. В результате металл деформируется и начинает течь, подобно жидкости. Металл перемещается вдоль поверхности раздела, унося с собой загрязненный слой. Таким образом, в непосредственное соприкосновение вступают свежие слои материала, которые и вступают в химическое взаимодействие.

2. Основные виды сварки

Ручная электродуговая сварка. Электрическая дуговая сварка в настоящее время является важнейшим видом сварки металлов. Источником тепла в данном случае служит электрическая дуга между двумя электродами, одним из которых является свариваемые заготовки. Электрическая дуга является мощным разрядом в газовой среде.

Процесс зажигания дуги состоит из трех стадий: короткое замыкание электрода на заготовку, отвод электрода на 3-5 мм и возникновение устойчивого дугового разряда. Короткое замыкание производится с целью разогрева электрода (катода) до температуры интенсивной экзо- эмиссии электронов.

На второй стадии эмитированные электродом электроны ускоряются в электрическом поле и вызывают ионизацию газового промежутка «катод-анод», что приводит к возникновению устойчивого дугового разряда. Электрическая дуга является концентрированным источником тепла с температурой до 6000 оС. Сварочные токи достигают 2-3 кА при напряжении дуги (10-50) В. Наиболее часто применяется дуговая сварка покрытым электродом. Это ручная дуговая сварка электродом, покрытым соответствующим составом, имеющим следующее назначение:

1. Газовая и шлаковая защита расплава от окружающей атмосферы.

2. Легирование материала шва необходимыми элементами.

В состав покрытий входят вещества: шлакообразующие — для защиты расплава оболочкой (окислы, полевые шпаты, мрамор, мел); образующие газы СО2, СН4, ССl4; легирующие — для улучшения свойств шва (феррованадий, феррохром, ферротитан, алюминий и др.); раскислители — для устранения окислов железа (Ti, Mn, Al, Si и др.) Пример реакции раскисления : Fe2O3+Al = Al2O3+Fe.

Рис. 1.26. Ручная сварка покрытым электродом: 1 — свариваемые детали, 2 — сварной шов, 3 — флюсовая корочка, 4 — газовая защита, 5 — электрод, 6 — покрытие электрода, 7 — сварная ванна

Рис. 1.26 иллюстрирует сварку покрытым электродом. По указанной выше схеме между деталями (1) и электродом (6) зажигается сварочная дуга. Обмазка (5) при расплавлении защищает сварочный шов от окисления, улучшает его свойства путем легирования. Под действием температуры дуги электрод и материал заготовки плавятся, образуя сварную ванну (7), которая в дальнейшем кристаллизуется в сварной шов (2), сверху последний покрывается флюсовой корочкой (3), предназначенной для защиты шва. Для получения качественного шва сварщик располагает электрод под углом (15-20)0 и перемещает его по мере расплавления вниз для сохранения постоянной длины дуги (3-5) мм и вдоль оси шва для заполнения разделки шва металлом. При этом обычно концом электрода совершают поперечные колебательные движения для получения валиков требуемой ширины.

Автоматическая сварка под флюсом.

Широко применяют автоматическую сварку плавящимся электродом под слоем флюса. Флюс насыпается на изделие слоем толщиной (50-60) мм, в результате чего дуга горит не в воздухе, а в газовом пузыре, находящемся под расплавленном при сварке флюсом и изолированным от непосредственного контакта с воздухом. Этого достаточно для устранения разбрызгивания жидкого металла и нарушения формы шва даже при больших токах. При сварке под слоем флюса обычно применяют силу тока до (1000-1200) А, что при открытой дуге невозможно. Таким образом, пари сварке под слоем флюса можно повысить сварочный ток в 4-8 раз по сравнению со сваркой открытой дугой, сохранив при этом хорошее качество сварки при высокой производительности. При сварке под флюсом металл шва образуется за счет расплавления основного металла (около2/3) и лишь примерно 1/3 за счет электродного металла. Дуга под слоем флюса более устойчива, чем при открытой дуге. Сварка под слоем флюса производится голой электродной проволокой, которая с катушки подается в зону горения дуги сварочной головкой автомата, перемещаемой вдоль шва. Впереди головки по трубе в разделку шва поступает зернистый флюс, который, расплавляясь в процессе сварки, равномерно покрывает шов, образуя твердую корочку шлака.

Читать еще:  МОЖНО ЛИ ПРИВАРИТЬ НЕРЖАВЕЙКУ К ЧЕРНОМУ МЕТАЛЛУ

Таким образом, автоматическая сварка под слоем флюса отличается от ручной сварки по следующим показателям: стабильное качество шва, производительность в (4-8) раз больше, чем при ручной сварке, толщина слоя флюса — (50-60) мм, сила тока — (1000-1200) А, оптимальная длина дуги поддерживается автоматически, шов состоит на 2/3 из основного металла и на 1/3 дуга горит в газовом пузыре, что обеспечивает отличное качество сварки.

Электрошлаковая сварка.

Электрошлаковая сварка является принципиально новым видом процесса соединения металлов, изобретенном и разработанным в ИЭС им. Патона. Свариваемые детали покрываются шлаком, нагреваемом до температуры, превышающей температуру плавления основного металла и электродной проволоки.

На первой стадии процесс идет так же, как и при дуговой сварке под флюсом. После образования ванны из жидкого шлака горение дуги прекращается и оплавление кромок изделия происходит за счет тепла, выделяющегося при прохождении тока через расплав. Электрошлаковая сварка позволяет сваривать большие толщи металла за один проход, обеспечивает большую производительность, высокое качество шва.

Рис. 1.27. Схема шлаковой сварки:

1 — свариваемые детали, 2 — сварной шов, 3 — расплавленный шлак, 4 — ползуны, 5 — электрод

Схема электрошлаковой сварки показана на рис. 1.27. Сварку ведут при вертикальном расположении деталей (1), кромки которых так же вертикальны или имеют наклон не более 30 o к вертикали. Между свариваемыми деталями устанавливают небольшой зазор, куда насыпают порошок шлака. В начальный момент зажигается дуга между электродом (5) и металлической планкой, устанавливаемой снизу. Дуга расплавляет флюс, который заполняет пространство между кромками свариваемых деталей и медными формующими ползунами (4), охлаждаемыми водой. Таким образом, из расплавленного флюса возникает шлаковая ванна (3), после чего дуга шунтируется расплавленным шлаком и гаснет. В этот момент электродуговая плавка переходит в электрошлаковый процесс. При прохождении тока через расплавленный шлак выделяется джоулево тепло. Шлаковая ванна нагревается до температур (1600-1700) 0С, превышающих температуру плавления основного и электродного металлов. Шлак расплавляет кромки свариваемых деталей и погруженный в шлаковую ванну электрод. Расплавленный металл стекает на дно шлаковой ванны, где и образует сварочную ванну. Шлаковая ванна надежно защищает сварочную ванну от окружающей атмосферы. После удаления источника тепла, металл сварочной ванны кристаллизуется. Сформированный шов покрыт шлаковой коркой, толщина которой достигает 2 мм.

Повышению качества шва при электрошлаковой сварке способствует ряд процессов. В заключение отметим основные преимущества электрошлаковой сварки.

— Газовые пузыри, шлак и легкие примеси удаляются из зоны сварки по причине вертикального расположения сварного устройства.

— Большая плотность сварного шва.

— Сварной шов менее подвержен трещинообразованию.

— Производительность электрошлаковой сварки при больших толщинах материалов почти в 20 раз превышает аналогичный показатель автоматической сварки под флюсом.

— Можно получать швы сложной конфигурации.

— Этот вид сварки наиболее эффективен при соединении крупногабаритных деталей типа корпусов кораблей, мостов, прокатных станов и пр.

Электронно-лучевая сварка.

Источником тепла является мощный пучок электронов с энергией в десятки килоэлектронвольт. Быстрые электроны, внедряясь в заготовку, передают свою энергию электронам и атомам вещества, вызывая интенсивный разогрев свариваемого материала до температуры плавления. Процесс сварки осуществляется в вакууме, что обеспечивает высокое качество шва. Ввиду того что электронный луч можно сфокусировать до очень малых размеров (менее микрона в диаметре), данная технология является монопольной при сварке микродеталей.

Плазменная сварка.

При плазменной сварке источником энергии для нагрева материала служит плазма — ионизованный газ. Наличие электрически заряженных частиц делает плазму чувствительной к воздействию электрических полей. В электрическом поле электроны и ионы ускоряются, то есть увеличивают свою энергию, а это эквивалентно нагреванию плазмы вплоть до 20-30 тыс. градусов. Для сварки используются дуговые и высокочастотные плазмотроны (см. рис. 1.17 — 1.19). Для сварки металлов, как правило используют плазмотроны прямого действия, а для сварки диэлектриков и полупроводников применяются плазмотроны косвенного действия. Высокочастотные плазмотроны (рис. 1.19) так же применяются для сварки. В камере плазмотрона газ разогревается вихревыми токами, создаваемыми высокочастотными токами индуктора. Здесь нет электродов, поэтому плазма отличается высокой чистотой. Факел такой плазмы может эффективно использоваться в сварочном производстве.

Диффузионная сварка.

Способ основан на взаимной диффузии атомов в поверхностных слоях контактирующих материалов при высоком вакууме. Высокая диффузионная способность атомов обеспечивается нагревом материала до температуры, близкой к температуре плавления. Отсутствие воздуха в камере предотвращает образование оксидной пленки, которая смогла бы препятствовать диффузии. Надежный контакт между свариваемыми поверхностями обеспечивается механической обработкой до высокого класса чистоты. Сжимающее усилие, необходимое для увеличения площади действительного контакта, составляет (10-20) МПа.

Технология диффузионной сварки состоит в следующем. Свариваемые заготовки помещают в вакуумную камеру и сдавливают небольшим усилием. Затем заготовки нагревают током и выдерживают некоторое время при заданной температуре. Диффузионную сварку применяют для соединения плохо совместимых материалов: сталь с чугуном, титаном, вольфрамом, керамикой и др.

Контактная электрическая сварка.

При электрической контактной сварке, или сварке сопротивлением, нагрев осуществляется пропусканием электрического тока достаточной иглы через место сварки. Детали, нагретые электрическим током до плавления или пластического состояния, механически сдавливают или осаживают, что обеспечивает химическое взаимодействие атомов металла. Таким образом, контактная сварка относится к группе сварки давлением. Контактная сварка является одним из высокопроизводительных способов сварки, она легко поддается автоматизации и механизации, вследствие чего широко применяется в машиностроении и строительстве. По форме выполняемых соединений различают три вида контактной сварки: стыковую, роликовую (шовную) и точечную.

Стыковая контактная сварка.

Это вид контактной сварки, при которой соединение свариваемых частей происходит по поверхности стыкуемых торцов. Детали зажимают в электродах-губках, затем прижимают друг к другу соединяемыми поверхностями и пропускают сварочный ток. Стыковой сваркой соединяют проволоку, стержни, трубы, полосы, рельсы, цепи и др. детали по всей площади их торцов. Существует два способа стыковой сварки:

— Сопротивлением: в стыке происходит пластическая деформация и соединение образуется без расплавления металла (температура стыков 0,8-0,9 от температуры плавления).

— Оплавлением: детали соприкасаются в начале по отдельным небольшим контактным точкам, через которые проходит ток высокой плотности, вызывающий оплавление деталей. В результате оплавления на торце образуется слой жидкого металла, который при осадке вместе с загрязнениями и окисными плёнками выдавливается из стыка.

Параметры машин для стыковой сварки

Технология сварки и особенности работы с металлами

Для получения качественного соединения металлических деталей высокого качества необходимо строго соблюдать технологию сварки, испытанную на практике многими поколениями сварщиков. А начинается она с предварительной подготовки свариваемых заготовок.

Металл будущей конструкции должен быть тщательно очищен именно до сварки. Особое внимание уделяют чистке контактного места – ржавчина или влага, масляное пятно или загрязнение иного рода могут негативно сказаться на качестве сварного шва. Отдельно просматривают зазор между свариваемыми кромками.

Очистку проводят ручными или механическими щётками, с использованием кислотных растворов и щелочей, а также гидропескоструйным или дробометным способом, иглофрезерами.

В случаях попадания загрязнений в зазоры при сварочных работах избавляются от них прожиганием горелкой или продувом сжатым воздухом.

Основы сварки

Ручное дуговое сваривание является основой сварки в широком смысле и до сих пор остаётся идеальным вариантом для многих работ. По качественным показателям в некоторых случаях оно не хуже механизированных и автоматизированных способов.

Процесс ручной дуговой сварки начинается с поджигания сварочной дуги. Итак, сварщик приступает к непосредственной работе: кончиком электрода он прикасается к поверхности обрабатываемого металла и быстро приподнимает его на 2 мм. В результате короткого замыкания возникает дуга, которую нужно постоянно поддерживать, опуская уменьшающийся электрод по мере его расплавления. Зажигают дугу ещё быстрым чирканьем электродом по поверхности металла.

Дугу необходимо держать короткой – чтобы металлических капель было меньше, электрод плавился и обеспечивал равномерную искру. К тому же при такой технике металл плавится максимально.

Под воздействием дуги нагреваются и расплавляются металл и электрод на месте сварки. В образующейся сварной ванночке они перемешиваются друг с другом и после отключения дуги образуют сварной шов.

Необходимое проплавление соединяемых деталей и желанное качество шва полностью зависят от стабильности горения дуги, а также от правильного равномерного перемещения.

Технология сварки металла

Особенности технологии сварки металла диктуются типами соединения свариваемых поверхностей.
При стыковой сварке по краям заготовок делаются скосы:

  • V-образный скос выполняется на кромках металлических листов толщиной 5-15 мм. В результате получается углубление для сварочного шва;
  • X-образный скос применяют при подготовке кромок деталей с 15 и более миллиметровой толщиной для сварки с обеих сторон.

В зависимости от толщины заготовки, угловое и тавровое соединение может выполняться как со скосом, так и без него. Особенностью данных видов является то, что они позволяют варить конструкции из материалов различной толщины. Но в таких случаях необходимо соблюдать одну тонкость: электрод относительно толстой детали сварщик обязан держать вертикально.

Технология ручной дуговой сварки

Электрод и дугу вкупе со сварной ванночкой по технологии ручной дуговой сварки необходимо плавно перемещать по линии соединения деталей. Его скорость зависит от типа материала. При сварке изделия из тонкого металлического листа перемещение должно быть быстрым, а при работе с толстыми массивными деталями – замедленным. Ориентиром для сварщика служат скорость расплавления, а также изменение цвета металла.

По форме данное перемещение бывает прямым, зигзагообразным, петлеобразным – оно выбирается, исходя из ширины шва и глубины проплавления. Так, прямолинейно перемещают электрод, когда ширина сварки незначительная. Когда необходимо проварить соединения глубже и шире – применяют зигзаг или петлю.

Остывший сварной шов имеет выпуклость, зависящую от положения электрода во время сварки. Вертикальное положение позволяет получить глубокое проплавление заготовок и ровный шов. При большем наклоне электрода уменьшается глубина проплавления, а шов имеет выпуклую поверхность. Здесь важно соблюдать меру – при слишком наклоненном электроде дуга в направлении шва сделает процесс сварки плохо управляемым.

Качественно соединить металлические детали можно при расплавленной сварочной ванне с тонкими краями, когда она достаточно жидкая и легко передвигается за электродом.

Для сварщика сигналом к дальнейшему продвижению электрода становится момент появления в жидком расплаве оранжевого цвета, который хорошо виден через тёмное стекло защитной маски.

На месте окончания соединения размер сварной ванны следует увеличить, удержав на этой точке электрод немного дольше обычного.

При сквозном проплавлении деталей, уменьшают величину тока и берут электрод меньшего диаметра. После того, как прожжённые дыры остывают, сварщик устраняет образовавшийся шлак, и заваривает заготовки.

Закончив сварку, следует простучать шов молотком. Это позволит удалить окалину, и параллельно проверить качество соединения, чтобы оно было сплошным и хорошо проваренным.

Куда перемещать электрод?

При ручной дуговой сварке важно знать, куда перемещать электрод в том или ином случае. Возможных направлений здесь три:

  • по оси электрода. Такое продвижение позволяет добиться постоянной по длине сварочной дуги. Электрод продвигается со скоростью его плавления;
  • вдоль оси валика, создающего шов. В данном случае движение происходит со скоростью, зависящей от силы тока, диаметра используемого электрода, скорости нагревания и плавления, вида сварного шва и прочего. Когда не делаются поперечные перемещения, шов получается достаточно узким, с шириной примерно полтора диаметра электрода. Такое соединение нужно для создания первого слоя при многослойном сварном шве, когда варят тонкие листы;
  • чтобы получить нужную ширину и глубину проплавления электрод двигают поперёк шва. Такую технику используют только опытные сварщики, да и то, когда позволяют это сделать расположение сварного шва, размеры, форма кромок, свойства металла и иные параметры.

Сварочные технологии, современный и классический подход к сварке

Посмотрите на красоту и многообразие технических решений современного мира. Причудливые силуэты и утонченные формы, где кажется нет предела буйству фантазии конструкторов и дизайнеров. От величественной архитектуры Бурш Халифе в металле, стекле и бетоне, до современных авиалайнеров, где все больше правят бал композитные материалы.

Элементы футуризма практически во всем. То, что раньше украшало сюжеты только фантастических романов, сегодня явь в многочисленных проявлениях, в том числе и в быту. Ее величество сварка. От революционных идей Патона, когда этот метод соединения материалов (металлов) твердо «стал на ноги», до суперсовременных способов с использованием лазера и магнитных полей.

И это далеко не полный список решений, где общим знаменателем является всего одно слово-сварка. Метод соединения материалов, благодаря которому во многом, все вышеописанное и стало реальностью.

А теперь немного подробнее об основных видах и способах сварки, от классических до инновационных, о которых вы возможно даже никогда не слышали. Уже интересно?? Тогда вперед!

Сегодня рассмотрим такие виды сварки:

  1. Ручная дуговая сварка неплавящихся и плавящихся электродов;
  2. Дуговая сварка с газом;
  3. Автоматическая и полуавтоматическая сварка с использованием флюса или газа;
  4. Другие методы соединения металлов.

Прежде чем начнем рассматривать всё вышеизложенное по списку, коснемся в первом приближении к самому понятию сварка. Что же это за процесс и как происходит. Самое основное что необходимо знать. Просто обратимся к Википедии.

«Сварка — процесс получения неразъёмных соединений посредством установления межатомных связей между свариваемыми частями при их местном или общем нагреве, пластическом деформировании или совместном действии того и другого». А теперь к теме.

Ручная дуговая сварка неплавящимися и плавящимися электродов

Вариант с плавящимися электродами

Вероятно, самый доступный вариант не только для производства, но и в быту. Благодаря компактности и сравнительно невысокой стоимости сварочный аппарат с применением технологии плавящихся электродом доступен практически каждому, и способен помочь при решении самых разнообразных задач. От ремонта кузовов автомобилей, до изготовления самых различных металлических конструкций прямо у себя во дворе.

Если коротко описать процесс, то это электрод — свариваемая поверхность и электрическая дуга между ними. Под действием высоких температур дуги происходит плавление электрода с одной стороны и обрабатываемого участка металла соответственно.

В результате чего металлы электрода и основной смешиваются. При остывании образуется характерный шов и некоторое количество шлака, который легко счищающегося щеткой для металла. В целом очень удачное решение, которое, впрочем, имеет и свои недостатки.

  1. Производительность;
  2. Простота;
  3. Локальный нагрев обрабатываемой поверхности;
  4. Возможность обеспечить процесс не только механическими средствами, но и автоматизировать.

Недостатки (их не так и много):

  1. Потребность в применении специального оборудования (трансформаторы, инверторы);
  2. «Привязанность к розетке»;
  3. Необходимость в подготовке поверхности (чистка ржавчины и прочее);
  4. Однако преимущества практически на нет сводят все недостатки данного вида сварки, что и делает его самым популярным.

С неплавящимися электродами

Основным условием для процесса сварки с неплавящимися электродами является наличие защитного «облака» инертного газа. Данный вид сварки считается одним из самых высокопродуктивных и обеспечивает получение высокопрочных швов. Для некоторых видов металлов необходимы и «некоторые» условия, которые делают возможной сварку последних в принципе.

Магний, алюминий, их сплавы, никель, медь, нержавеющая сталь и другие металлы с неферромагнитными качествами. Металлические конструкции именно из этих металлов чаще всего и обрабатывают данным видом сварки.

Существует три вида неплавящихся электродов:

  1. Угольные;
  2. Вольфрамовые;
  3. Графитовые.

Название «неплавкие» получили благодаря своей способности выдерживать большие температуры и токи. В основном данная технология сварки используется на производстве. В частном секторе практически не используется.

Дуговая сварка с защитным газом

Не путать с газовой сваркой, где плавление поверхностей осуществляется за счет струи раскаленного газа.

Свой самый первый и главный толчок к развитию данное направление получило во время второй мировой войны. В особенности при производстве боевых самолетов, к качеству конструкций которых предъявлялись повышенные требования.

Но и не только к качеству, но и к скорости движения по конвейеру отдельных частей и механизмов. Следовательно, нужны были такие методы сварки, которые обеспечивали бы не только высокое качество шва, но и были бы высокопроизводительны.

«Камнем преткновения» стала не что иное, как наша атмосфера. А точнее отдельные газы, такие как азот и кислород. Присутствуя в ванне при застывании как раз и не давали возможности получить сварной шов с необходимыми свойствами.

Требовалась «особая» технология, нивелирующая действие этих газов. И она появилась. В двух словах весь процесс происходит при нагнетании защитных газов электрод-деталь при обработке, с проникновением в полости и трещины. Что и не дает кислороду с азотом повлиять на качество ни малейшего шанса.

Основным и главным можно считать надежную защиту металла в зоне плавления от атмосферных газов при которой исключается процесс окисления.

Недостатки (куда же без них):

В основном это сложности работы на открытом воздухе, особенно при ветреной погоде, когда отвод газов струей воздуха малоэффективен. А также большие выделения вредных газов вокруг места сварщика.

От гелия (He) до двуокиси углерода (Co2) при начале исследований. До аргона, водорода, оксида азота в современных реалиях. На каком бы высоком уровне не была бы данная технология сегодня, исследования продолжаются в поисках еще более совершенных связок (дуговая сварка-защитный газ)

Автоматическая и полуавтоматическая сварка с использованием флюса или газа

Перед рассмотрением этих двух видов сварки обратим внимание на еще один не рассмотренный метод сварки «под защитой» А именно обработка материалов под флюсом. В отличие от упомянутого способа с газами данный метод заключается в следующем.

Вместо защитного газа используется зернистый флюс, укрывающий дугу вместе с ванной расплавленных металлов. При данном способе сварки электрическая дуга не видна. Задача такая же, как и при использовании газов — защита плавящихся металлов от окисления атмосферой. Являясь высокопроизводительным методом, в основном используется в ароматизированных системах.

Автоматическая сварка

Название говорит само за себя. Сварочный автомат — это комплекс элементов и настроек для автоматизации процесса. Техника сделает все сама, лишь бы была правильно настроена. Сложная техника, которая тем не менее способна сохранять стабильность при правильных настройках, даже под значительными нагрузками.

Как и любое автоматическое устройство способно выполнять несколько задач одновременно. Поджигать дугу, вести шов, защищать место сварки от окисления подавая газ или флюс, добавлять проволоку для сваривания.

Все преимущества автомата налицо. И самое главное-отсутствие человеческого фактора. Вряд ли какой человек сможет похвастаться стабильной работой в течение суток напролет. Да в этом и нет необходимости. Это сделает за вас сварочный автомат. Кроме всего прочего сведена к нулю и опасность для здоровья сварщика, так как он не принимает участия в самом процессе.

Полуавтоматическая сварка

В чем же отличие от автоматической? Различия очевидны хоть и названия подобны, и способ сваривания аналогичен. Мы уже упоминали о том, что в случае с автоматическим вариантом оператору достаточно только настроить аппарат, и тот сделает все сам без участия человека.

С полуавтоматом ситуация немного другая, хоть так же будет подаваться и проволока и газ или флюс. Но вместе с тем, человеком будет выполняться работа в полном объеме, а не только настройка параметров аппаратуры для старта. Он и шов будет формировать и вести горелку. Автоматически будут подаваться только вспомогательные материалы и средства — газ(флюс) и проволока.

Благодаря вот такому симбиозу человека с технологиями и появилось название — полуавтоматическая сварка.

Достоинства и недостатки?

Определенно стоимость таких сварочных аппаратов. Она просто несоразмерна с ценой автоматических аналогов. И конечно же мобильность. Обычно не составляет труда перевезти сварочный аппарат вместе с баллонами к месту работ, или погрузить в кузов автомобиля для перемещения даже на большие расстояния.

Пожалуй один. Оператору приходится работать в потенциально опасной среде, хоть и предусмотрены способы защиты в виде обдува места работы воздухом. В целом если рассматривать оба этих вида приспособлений(автомат, полу автомат) для сварки, то между ними существенной разницы в процессе работы нет. Везде, как в первом, так и во втором случае используют присадочные материалы, флюс или порошковую проволоку, горелку и защитный газ.

Другие методы соединения металлов

Основным и самым распространенным альтернативным методом соединения металлов есть пайка. Имея за плечами тысячелетнюю историю — Египет, Греция, Рим, Китай. Везде по всей планете в культурных «очагах» того времени повсеместно использовалась пайка при изготовлении украшений, кухонной утвари, для украшения оружия и т д.

Читать еще:  Какое может учереждение присваивать клеймо сварщику

Метод актуален и по сей день. Активно используется не только на производстве, но и в быту. Паяльник практически есть у каждого и зачастую просто не заменим в быту. В отсутствии последнего банально оторвавшийся проводок может стать целой проблемой.

Подробнее о методе пайки металлов в видеообзоре

Процессы пайки и сварки различны, но общий знаменатель для обоих — это объединение металлов в одно целое. Данный метод, если сравнивать его со сваркой, можно сопоставить только со сваркой плавлением. Но в отличие от сварки, где нужный эффект получается вследствие смешивания расплавленных металлов электрода и основного с последующим охлаждением, в пайке все иначе.

Соединение производится с помощью припоя, который не расплавляет, а «смачивает» рабочую поверхность легкоплавким металлом. При этом температура плавления ниже, чем соединяемых металлических поверхностей.

Так же как перечень соединяемых металлов может быть очень многообразным, таким же изобилием отличаются и припои. Но в основном это припои на основе олова, меди и серебра.

Пайка и по сей день является самым распространенным способом соединения металлов. Но вследствие недостаточной производительности и небольшой надежности соединений, а также сложности самого техпроцесса при выполнении объемных задач и других недостатков находит малое применение сегодня. И используется практически только в быту.

Итоги сварочных технологий

От болтов и заклепок в былые времена до совершенного оборудования чем является ручная сварка сегодня. Где только не увидишь «сварочник» сегодня. Ручная сварка на балконе, в гараже, в других укромных местах. А все почему??

Правильно. Компактно, дешево и сердито!

Да, верно, все идет к компактности, энергоэффективности и прочим прелестям в мире современных технологий. Но в некоторых случаях, когда необходимо применить особые методы сварки без «мастодонтов» коими, являются некоторые агрегаты, для которых описывали некоторые техники сварки выше не обойтись.

По всему миру созданы не только лаборатории, но даже целые институты по исследованию и внедрению все новых методик и способов соединения материалов. И не только металлов. Если сейчас некоторые технологии по сварке граничат с фантастикой, причем созданы они в весьма сжатые строки, то чего ожидать в будущем? Боюсь даже представить! В хорошем смысле этого слова.

Виды и особенности сварки цветных металлов и сплавов

При самостоятельной сварке цветных металлов необходимо знать особенности сплавов. Сложно сделать качественный шов на бытовом оборудовании, необходимо использовать тугоплавкие электроды, защитную атмосферу.

Особенности сварки цветных металлов

В процессе фазового перехода легкие компоненты улетучиваются, выгорают, это пагубно сказывается на состоянии шва. Он растрескивается. Тугоплавкие окислы – еще одна проблема. Иногда необходимо увеличить рабочий ток, чтобы пробить оксид. При сварке цветных металлов и сплавов нередко расплав становится слишком текучим, необходимо изолировать ванну расплава. Для некоторых сплавов необходимо ограничить не только контакт с кислородом, но и другими компонентами воздуха. Азот в качестве защитной атмосферы для некоторых сплавов не годится.

Технология сварки цветных металлов

Подготовительный этап заключается в удалении жирных пятен, очищении деталей от грязи. Окислы зачищают до блеска, свариваемые поверхности протравливают перед работой. На толстых деталях формируют кромки. Сварку цветных металлов и их сплавов проводят в нижнем положении, некоторые расплавы по текучести напоминают ртуть. Выбор электродов, режима работы зависит от химического состава сплава. При выборе сварочного аппарата необходимо правильно оценивать свариваемость сплава, учитывать температуру плавления, толщину заготовки.

Алюминиевые сплавы

Дюрали, силумин, авмель и другие сплавы на основе алюминия сильно различаются по свариваемости. Электродугой алюминий сваривают плавящимися и неплавящимися электродами, используют оборудование, генерирующее постоянный ток. Контакты подключают в обратной полярности. Рекомендуется предварительный прогрев заготовок:

  • толщиной до 8 мм – до 200°С;
  • свыше 8 мм – до 400°С.

Сваривают алюминий на токах до 200 А при толщине листа до 4 мм без предварительной разделки кромок. У заготовок свыше 4 мм края стачивают под углом, варят на токах, в 35-40 раз больше толщины заготовки (до 160 А). Газовую среду используют высококлассную, чтобы облако не смещалось с рабочей зоны в процессе образования и застывания шва. Расстояние между прихватками делают с учетом толщины заготовки:

Толщина заготовки, мм

Интервал между прихватками, мм

Тугоплавкий или угольный электрод, разжигающий электродугу, держат под прямым углом к присадке, чтобы исключить непровары корня шва.

Медь и ее сплавы

Медные сплавы, латуни, бронзы сваривают несколькими способами:

  • электродуговой сваркой в атмосфере азота;
  • ручной, полуавтоматической, автоматической аргоновой;
  • электронно-лучевой, создающей высокую температуру в ограниченной зоне.

При сварке цветных металлов толщиной до 2 мм нужен постоянный ток обратной полярности. В качестве присадки используют наплавочную проволоку с большим содержанием раскислителей. Толщину подбирают под размер свариваемых заготовок. Минимальный диаметр присадки – 1,5 мм, максимальный – 8 мм. Сварку меди и цветных сплавов с высоким ее содержанием, проводят:

  • ручным электродуговым методом током прямой полярности, варят металл короткой дугой, длиной от 35 до 40 мм, чтобы сократить разбрызгивание металла (рекомендуется избегать поперечных движений электродом);
  • в атмосфере аргона током обратной полярности; если сплав плавится до 400°С, бронзовая проволока укладывается в стык с большой скоростью, чтобы не перегревались заготовки.

В качестве флюса используют буру или смесь буры с борной кислотой, поваренной солью, метилборатом.

Никелевые сплавы

Цветные сплавы на основе никеля отличаются высокой вязкостью, пластичностью. Детали из никеля плавятся при 700–1000°С, процесс сопровождается насыщением сплавов газами, шов становится пористым, непрочным. Хотя никель устойчив к коррозии. При аргонодуговой сварке подбирают электроды с ниобием, кремнием, алюминием. В расплаве также желательно присутствие марганца, магния. Свариваемость металла повышается, образуется прочное соединение.

Для работы с никелевыми сплавами нужны сварочные аппараты, выдающие постоянный рабочий ток. Сварка никелевых цветных заготовок производится на токе обратной полярности, чтобы защитный газ ионизировался, электродуга становится стабильнее. При обратной полярности заготовка нагревается меньше, чем электрод. Это особенно актуально для заготовок небольшой толщины. Регулируя потенциал тока, можно уменьшить температуру заготовки.

Обработка титана

Титан в расплавленном состоянии бурно реагирует с тремя компонентами воздуха: кислородом, водородом, азотом. Необходимо снизить их содержание в защитной атмосфере до минимума. Газ должен быть качественным, если нужен надежный шов. Он должен остывать в защитной атмосфере, чтобы не образовывались трещины. Для сварки титана в промышленных объемах используются герметичные камеры. При ручной сварке необходимо экранировать рабочую зону, чтобы облако инертного газа не смещалось со шва, аргон или гелий, смеси должны быть первого или высшего сорта. Защитный газ за счет высокой плотности вытеснит воздух. Используется сварочное оборудование, генерирующее постоянный ток. Сварка цветного металла проводится током прямой полярности. Основная термическая нагрузка концентрируется на поверхности заготовки, корень шва углубляется, дуга поддерживается стабильно, металл меньше разбрызгивается.

Работы с магнием

У магниевых деталей проваривают полностью всю кромку. Для работы с заготовками толще 10 мм, необходимо мощное сварочное оборудование, работающее от трехфазной сети мощностью 380 В, генерирующее переменный высокочастотный ток. В периоды обратной полярности дуга пробивает оксидную пленку, она расплавляется. При работе рекомендуется использовать подкладки с низкой теплопроводностью.

Сварка магния и цветных металлов на его основе производится под атмосферной защитой гелия или аргона, он предохраняет расплав от насыщения азотом, шов не пузырится, на нем не образуется окалина. Подачу газа в рабочую зону начинают до розжига дуги, прекращают через 20 секунд после затухания, когда верхняя часть шва схватится.

Сплавы из свинца

Разница между температурой плавления оксидов и самого свинца более 500°С, свинец становится жидким при 327°С, оксиды нужно прогревать до 888°С. Учитывая повышенную текучесть свинца, приходится экранировать зону расплава сварочной ванночкой. Сверху горячий цветной сплав оберегают флюсы, в состав которых входит стеарин, канифоль. Этими же флюсами смазывают стенки сварочной ванночки, чтобы исключить прилипание к ней свинца.

Сварка разнородных цветных металлов

Сложность процесса заключается в ограниченной взаимной растворимости. При сварке цветных металлов и сплавов между собой используют несколько технологий, обеспечивающих надежность соединения:

  • шов формируют, воздействуя на детали импульсным электронным лучом, скорость прогревания заготовок увеличивается, при высокой температуре происходит схватывание деталей;
  • при сварке давлением цветной металл разогревается за счет энергии, выделяющейся при пластической деформации структурной решетки, концентрированная тепловая энергия скапливается в зоне контакта, детали не нужно дополнительно прогревать;
  • для сварки цветных разнородных цветных металлов используют промежуточный слой, сцепляющийся с заготовками, риск охрупчивания швов снижается;
  • в среде аргона проводят автоматическую, ручную и полуавтоматическую сварку разнородных цветных металлов, электрод держат перпендикулярно деталям, чтобы шов был качественным.

Защитный газ снижает степень окисления, насыщения цветного металла азотом и водородом. Высокотемпературные технологии внутреннего воздействия увеличивают скорость сварки. За счет текучести цветных металлов заполняются пустоты, стык проваривается насквозь. При подборе буферного слоя учитывают компонентный состав заготовок, температуру плавления сплавов.

Имея аппарат для аргоновой сварки, можно заниматься ремонтом деталей из цветных металлов самостоятельно. В промышленных условиях применяют передовые технологии, не позволяющие расплавленному металлу реагировать с воздухом.

Какие существуют новые и классические способы сварки, их особенности и использование

Сварка металла — очень полезный промысел человеческой жизни.

При помощи способов варки можно добиться разработки уникальных продуктов: от элементарных вещей для дома до ракет для космоса.

Поговорим, что бывает во время сварки, ее виды и их производственные свойства.

  • Введение
  • Основные методы
  • Ручная пайка с дугой и неплавящегося проводника электрического тока
  • Ручная сварка с применением дуги и плавящегося проводника тока
  • Сварка с использованием дуги и защитного газа
  • Автоматизированная и полуавтоматизированная сварка с применением газа
  • Другие способы присоединения элементов
  • Упорядоченная последовательность действий во время сварки
  • Технологическая карта
  • Вывод

Введение

Для чего нужна сварка? На чем она основывается? Такие вопросы посещают многих новичков этого дела. В основном, пайка — это метод присоединения металлических деталей.

Присоединение (именуемое также швом) получается на уровне атомов при повышении температуры деталей, а также внешних изменений.

Построение соединения металлических деталей широкое и в одну статью вся информация не поместится, включая дополнительные тонкости.

В одну статью также не поместится вся информация о видах варки, потому что их больше ста. Но мы будем стараться сокращенно расписывать свойства и разновидности варки, чтобы не запутать неопытных мастеров.

В современности применяют термическую, механическую, с повышением температуры и полностью механичную варка металлических деталей или других элементов (пластиковых и стеклянных).

Подбирая метод варки, учитывайте все тонкости: дородность металла, их содержание, пути применения и другое. Это влияет на метод, который используют при варке.

Варка с повышением температуры — это процедура присоединения элементов с использованием повышенных градусов температуры. Получается плавление материала и плотная сцепка.

К пайке с повышением температуры относят сварку с электрическим разрядом большой мощности и газа (обсудим это позже).

Механическое соединение с повышением температуры — это процедура присоединения элементов с помощью высокой температуры и технических приемов, к примеру, натиск. Сюда включают соединительную сварку.

Элемент не особо прогревается, как при соединении с температурой, а для соединения применяется натиск, а не расплавление элемента.

Основные методы

Пайка путем механического воздействия — метод присоединения элементов без использования нагрева и излучения тепла.

Главный механизм работы — применение физической силы. Этот вид можно отнести к варке холодного типа, ультразвуком или присоединение элементов путем трения.

Еще есть распределение классифицирования методов варки по отличию технических данных. Применяя такое классифицирование, можно коротко рассказать обо всех видах варки. Их делят на:

  1. Соединение с областью защиты (могут применяться неактивный газ, активный, состояние разреженного газа, защиту можно комбинировать и применять несколько элементов одновременно).
  2. Пайку с остановкой и без.
  3. Соединение, которое проводят вручную; выполняемое с применением механизмов, управляемых человеком; комбинированное, где работает машина и человек; где все процессы контролирует прибор; где работу выполняет и настраивает оборудование.

Если вы раньше не работали со сварочным аппаратом и эта информация вас путает и сбивает с толку, не переживайте. Вспомним о самых часто используемых способах варки, которые применяют для работы дома и на производстве.

Мы дадим описание часто используемых способов варки и тонкости их выполнения, на которые надо обратить внимание.

Помните, многие способы сваривания мы описывали в прошлых публикациях, которые можно найти, зайдя в раздел «Виды и способы сварки» на сайте.

Ручная пайка с дугой и неплавящегося проводника электрического тока

Метод пайки с дугой и неплавящегося проводника электрического тока различных материалов — часто используют способ мастера, работающие дома, но также и опытные сварщики.

Сварка с дугой, при работе руками — это самый давний вид электросварки. Широкий ассортимент сварочных инверторов с дугой доступный большинству мастеров.

Проводник электрического тока — это основа для подачи тока. Его изготавливают из разнообразных материалов и могут быть покрыты спецпокрытием.

Особенность пайки с дугой и неплавящегося проводника тока простая: элементы присоединяют друг к другу, потом проводником тока стучат по металлической поверхности, зажигая дугу для сварки. Инверторы для сваривания выступают основным оборудованием.

Для работы сварочным аппаратом применяют неплавящиеся проводники электрического тока, которые производятся из угля или графита.

В процессе работы проводник электрического тока прогревается до предельной температуры, расплавливая элемент и создавая сварочный резервуар, где и происходит соединение. Это применимо для работ с цветными металлами.

Ручная сварка с применением дуги и плавящегося проводника тока

Способы пайки заканчиваются не только на работе с плавящимися электродами. При работе также применимы и плавящиеся проводники электрического тока.

Способ варки элементов с применением плавящегося электрода состоит в том же, в чем и работа с неплавящимися элементами.

Различаются они только составом самого проводника тока: плавящиеся электроды изготавливают из материалов, способных легко расплавляться.

Такие электроды также применимы для сварочных аппаратов в работе дома. В таком случае, соединение происходит не только по причине расплавления металлического элемента, а также по причине расплавления проводника тока.

Сварка с использованием дуги и защитного газа

Метод сварки с дугой для различных металлов, с применением защитного газа, получается при помощи проводников тока, способных плавиться и неспособных.

Специфика работы такая же, как и при работе стандартной сваркой с применением дуги. Тут для вспомогательного предохранения сварочной емкости в область сварки поступает баллонный газ для защиты.

Это все по причине того, что сварочная емкость легко подвергается плохому воздействию воздуха и под его влиянием металл может окислиться и соединение будет плохим.

Благодаря газу, можно не допустить возникновения этих неприятностей. Когда он подается в зону сварки, появляется облако из газа, которое предотвращает проникновение кислорода в сварочную емкость.

Автоматизированная и полуавтоматизированная сварка с применением газа

Автоматизированная и полуавтоматизированная сварка с применением газа — это более современный метод присоединения элементов.

Тут некоторые работы выполняются при помощи вспомогательных механизмов, к примеру, поступление проводника тока в зону сварки. Это означает, что мастер прикладывает стержень не при помощи руки, а используя определенное устройство.

Автоматизированная сварка нацелена на механическую подачу и последующее продвижение проводника тока, а полуавтоматизированная нацелена только на механическую подачу. Последующее продвижение проводника тока мастер производит самостоятельно.

Тут пригодится сварочная емкость, по этой причине применяют газ (также, как и при варке с дугой) или определенный минерал. Минерал бывает жидкого состояния, в виде пасты и кристаллов. С его применением, можно намного лучше произвести соединение.

Другие способы присоединения элементов

Кроме привычных методов в производстве используют такие, которые позволяют присоединить редкие металлы. В основном такие металлы имеют заметные химические и тугоплавкие качества, поэтому известные методы варки не применяют для их присоединения.

Естественно, эти металлы не применяют для работы в варке доме, но их часто используют для варки важных элементов на масштабном изготовлении.

Мы опишем все виды сварки с применением плавки, когда принцип работы заключается в поступлении большого количества тепла на небольшую зону варки. В таком случае применяют варку лазером или плазмой.

Варка элементов лазером происходит при помощи автоматичного и полуавтоматичного прибора. Этот способ бывает полностью контролируемым специальным оборудованием и не нуждается в контроле человека.

Тут элемент подогревается, а потом плавится от действия направленного тепла, которое исходит от луча лазера и направляется в определенную зону.

Тепло скапливается точно в одном месте, что позволяет сварить маленькие элементы, размер которых достигает миллиметра.

При использовании призмы, лазер может расщепиться и направиться в разные стороны, что позволяет варить несколько элементов одновременно.

Сварки металла плазмой происходит при использовании газа с ионами, которые именуют плазмой. Газ поступает потоком с зону сварки, создавая плазму. Ее работа происходит в комплексе с вольфрамовым проводником тока и электрическая дуга нагревает газ.

Сам газ с ионами является электродом, по этой причине сварка с плазмой сама плазма выступает главным составляющим в работе.

При этом плазма оберегает емкость в зоне варки от неблагоприятного воздействия воздуха. Этот способ варки применяют в работе с металлами, толщиной 7-8 мм.

Упорядоченная последовательность действий во время сварки

Не хватает просто понимать методы варки, также надо понимать, что из документов на оборудование надо и из чего состоит процесс сварки.

Естественно, это относится к работе мастеров с опытом, которые работают в массовой промышленности. Эти данные вам не нужны, если вы будете работать дома, но лишним эти знания тоже не будут.

Начнем с нашего краткого описания упорядоченной последовательности действий при варке:

  1. Создание схемы.
  2. Создание технологической карты.
  3. Обустройство места для работы и обработка металла.
  4. Сама сварочный процесс.
  5. Очищение элементов.
  6. Проверка качества.

Сам процесс варки — это все перечисленные пункты. Процесс расписывается после создания схем, описывающих готовый продукт. Схема формируют, основываясь на стандарты, где самым главным будет качество готового продукта и экономия в процессе изготовления.

Технологическая карта

Само изготовление продукта фиксируют на определенных бланках. Классический бланк для описи изготовления называют «технологической картой».

В ней и расписывается процесс работы. Если изготавливается целая серия продукта или массовое производство, то расписывать придется достаточно подробно, описывая все тонкости работы.

В рабочую карту вносят материал, который используют для изготовления изделия, методы варки, применяемый для присоединения элементов, инвертор, которым варят, материалы для присадки, проводников тока, газа или минералов, применяемых при варке.

Также фиксируют поочередность соединений, их величина и другие данные.

В этом бланке фиксируют марку проводников электрического того, их размер, скорость подачи, быстроту варки, слоистость соединения, преимущественные настройки инвертора, происхождение минерала.

Детали проходят подготовку перед работой, их очищают от ржавчины, грязи и жира. Для избавления от жира на поверхности используют растворители. При наличии явных дефектов в виде трещин у элемента, его не применяют в работе.

После работы производят контроль соединения сварки. На эту тему есть другая статья, но мы опишем главные способы контроля.

Во-первых, мастер может увидеть присутствие неровностей шва. Мастера применяют вспомогательный контроль, применяя дополнительные устройства (магнит, радиация или ультразвук).

Естественно, не каждую неровность относят к непригодным. Для определенных работ создается список с допустимыми неровностями, если это не повлияет на окончательный результат изделия.

Контролем может занимать мастер или отдельный человек, который разбирается в этом процессе. Его данные вносят в бланки, он отвечает за контроль процесса и исходный результат.

Вывод

Мы описали основные моменты. Все виды сварочных работ в одной статье охватить невозможно, но у нас есть много других статей, где описываются другие виды сварки разнообразные элементов.

Для сварщика теоретическая часть по вопросу сварок нужна, но не нарабатывая ее на практике, они бесполезны.

Поэтому, прочитав статьи, приступайте к работе и пробуйте методы, подбирая удобный для себя, тогда и результат станет лучше. Успеха в начинаниях!

Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector
×
×