Rich--house.ru

Строительный журнал Rich—house.ru
34 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Механизированная сварка: виды, ГОСТы, технология, оборудование, дефекты, область применения

Особенности механизированной сварки

Под механизированной или частично автоматизированной электросваркой понимаются операции сплавления, при которых рабочий стержень вместе с дугой перемещаются посредством специальной механической подачи.

Такая механизированная дуговая сварка осуществляется с привлечением дополнительного оборудования и обеспечивает возможность выполнения самых сложных операций. С её помощью удаётся формировать не только узловые и тавровые соединения, но и обустраивать сочленения типа «внахлёст» и «встык».

Автоматика и полуавтоматика

Полностью механизированная или автоматическая электросварка – это вариант сварки, когда дуга появляется без усилий сварщика. Таким образом, сварщик вообще не принимает непосредственного участия в работе.

Течение сварки управляется и корректируется командами, которые подают на исполнительные механизмы по специально разработанным для этих целей программам.

Функционирование систем механизированной дуговой сварки предполагает получение особым образом оформленного металлического соединения.

Под действием расплавленного дугой электрода на поверхности обрабатываемого металла образуется особый сварочный слой или ванна, в которой все компоненты присутствуют в жидком и хорошо перемешанном виде.

Такая жидкая масса формируется с помощью вспомогательных добавок (флюсов), что принципиально отличает данный класс сварки от ручного способа.

Металл под воздействием этих добавок сначала интенсивно окисляется, а затем переходит в стадию легирования.

При формировании дуги автоматом она движется вдоль свариваемых кромок металла, активируя при этом всю сварочную ванну.

После прохода автомата и остывания ванны на её месте остаётся достаточно ровный и качественный шов.

Реализация процесса

Механизация процесса сварки предполагает несколько вариантов его реализации, отличающихся по условиям сплавления, виду дуги и по способу защиты обрабатываемого металла от окисления. В предлагаемом ниже перечне приводятся лишь некоторые из них.

Низколегированные стальные заготовки с умеренным содержанием углерода обрабатываются в среде углекислого газа или его смеси с кислородом. Углекислота позволяет защищать при сварке сталь толщиной до 40 мм, в то время как смесь из двух газов способна справиться с более толстыми деталями и заготовками.

При механизированной сварке в средах углекислотного типа свойства большинства металлов изменяются в лучшую сторону (повышается их пластичность и устойчивость к агрессивным средам). При этом расход углекислоты определяется окружающими условиями, мощностью автоматической дуги и типом сварного электрода.

Часто при механизированной полуавтоматической сварке в качестве защитной среды используют аргон или гелий. Их применяют при необходимости сваривания алюминиевых, магниевых или сверхпрочных титановых изделий (включая сплавы).

С помощью специальной активирующей добавки (флюса) помимо легированных сталей также удаётся сваривать чугун, алюминий, медь и другие цветные металлы.

Среди всего многообразия методов автоматического сваривания металлов, техника механизированной сварки под флюсом занимает особое место и требует, поэтому отдельного рассмотрения.

Обработка под флюсом

Технологический процесс механизированной сварки под флюсом регламентируется требованиями ГОСТ 8713-79, определяющими также состав и порядок применения этой добавки.

Согласно госстандарту флюс представляет собой порошкообразную добавку для сварки. Это аналог непокрытого электрода при ручном процессе. Его основой является метасиликат (силикат марганца), обеспечивающий требуемые параметры текущего процесса.

Все известные флюсы для механизированной сварки подразделяются на неплавленые и получаемые путем сплавления.

К первому типу флюсов относятся так называемые «спеченные», а также керамические составы; причём вторые содержат порошковые материалы с добавлением небольшого количества жидкого стекла.

В отличие от керамических «спеченные» добавки при изготовлении сначала спекаются в термических печах, а затем дробятся до требуемого размера. Приготовление плавленых флюсов осуществляется в высокотемпературных печах, где они исходный материал расплавляется.

В процессе механизированной сварки отдельные частички флюса под воздействием тепла сначала расплавляются, а после затвердевания превращаются в характерную шлаковую корку в виде мелких шариков.

Не полностью расплавившийся флюс сварщики иногда используют повторно, но лишь после того, как он тщательно просеивается.

Все виды добавок или флюсов обеспечивают надёжное сваривание низкоуглеродистых и низколегированных сталей. Но известен ещё один вид активирующего материала, позволяющего проводить механизированную сварку даже высоколегированные стали, а также алюминий, нержавейку и изделия их меди, включая её сплавы.

Порошковая проволока

Речь идёт о так называемой «порошковой» проволоке для механизированной сварки, производимой согласно требованиям ГОСТ 26101-84 и имеющей сложную структуру. В её составе имеется специальная оболочка, частично заполненная шихтой, за счёт чего отдельные образцы проволоки в диаметре достигают 40 мм.

После расплавления этого вида активной добавки в шихту выводятся компоненты, обеспечивающие выполнение следующих задач:

  • защита обрабатываемого металла от содержащегося в азоте кислорода;
  • поддержание ровной и стабильной дуги;
  • получение качественного шва.

Также необходимо заметить, что при механизированной сварке такая проволока может применяться совместно с флюсом и углекислотой.

Оборудование

В качестве оборудования для механизированной сварки, как правило, используются высокотехнологичные устройства, разработанные специально для конкретных сфер производства или применения в быту.

Все эти агрегаты комплектуются независимыми источниками тока, обеспечивающими формирование электрической дуги. С их помощью также осуществляется регулировка всего сварочного процесса с учётом выбора скорости подачи флюса или порошковой проволоки.

Наряду с полностью автоматизированными системами при сваривании металлических заготовок активно используются полуавтоматические механические агрегаты, состоящие из двух основных модулей. В состав таких типовых устройств, применяемых в системах автоматизации сплавления заготовок, входят самоходная головка и блок управления.

Агрегаты для механизированной сварки в среде защитных газов имеют в своём составе целый набор технических средств, включая газовые редукторы особой конструкции, баллоны с кислотными составляющими, а также специальные осушители. Сушильные приспособления необходимы для удаления из рабочей среды избытков влажных образований.

Предназначение отдельных частей автоматики

В ходе работ механизированных систем самоходная головка (трактор) осуществляет подачу требуемых компонентов в зону сварки с одновременным включением цепей питающего дугу тока.

Классический автомат для сваривания посредством электродной проволоки имеет в своём составе два ролика для проволоки; причём первый из них осуществляет ведущее действие, а второй – лишь вспомогательный.

Указанные приспособления удерживают проволоку в границах агрегата для сварки и регулируют ее натяжение и подачу. Проволоку хранят в кассетах, что весьма удобно. Разматываясь, она сначала проходит через направляющие шланги, а затем уже подается у дуге, чтобы выполнять свои функции.

Помимо всего прочего, механизированное оборудование содержит в своём составе специальные системы, ответственные за удаление излишков флюса из зоны сварки. В головку, которая передвигается автоматически, встраивают горелку, выполняющую сразу две функции.

Во-первых, она обеспечивает подачу в зону работ электродной (порошковой) проволоки, а во-вторых – подводит к ней необходимые для защиты металла от кислорода газы. Одновременно с этим горелка оснащена отдельным каналом для подачи формирующего дугу сварочного тока.

В механизированных системах на горелке предусматривается специальный держатель, обеспечивающий подачу флюса из бункера с активирующим составом.

Механизированная обработка металла с привлечением всего спектра дополнительных активаторов (углекислого газа, флюсов и порошковых проволок) широко применяется при изготовлении современных конструкций.

К таким работам можно причислить возведение мостовых сооружений и постройку судов, а также обустройство специальных резервуаров, предназначенных для опасных и легко воспламеняющихся веществ.

Механизация и автоматизация сварочного производства

Механизация и автоматизация существенно различаются по своему содержанию, но в то же время имеют тесную взаимосвязь. Автоматизировать можно только высокомеханизированный процесс. Поэтому автоматизация и рассматривается как высшая степень механизации.

Механизация и автоматизация может быть частичной и комплексной. Частичная механизация и автоматизация охватывает часть производственного процесса, т.е. В этом случае речь идет об отдельных операциях. При комплексном решении весь производственный процесс выполняется с помощью машин и механизмов, установленных в порядке последовательности выполнения операций в соответствии с технологическим маршрутом. В сварочном производстве механизация и автоматизация достигаются за счет применения различных приспособлений, специальных сварочных установок, использования робототехники, создания поточных механизированных и автоматизированных линий, на которых механизированными способами осуществляются работы по заготовке, сборке, сварке и транспортировке сварных изделий, а в ряде случаев — и их отделке.

При решении вопросов механизации и автоматизации в сварочном производстве в первую очередь внимание уделяется сборочно-сварочным работам, которые во многом определяют качество изготовления изделий.

Механизация сборочных работ. Сборка под сварку включает в себя технологические операции, обеспечивающие с соблюдением установленных требований подлежащим сварке деталям необходимое взаиморасположение, заданное чертежом, с закреплением их специальными приспособлениями или прихватками. В зависимости от вида производства, особенностей конструкции и технических условий сборку можно выполнять различными способами: по разметке, по шаблонам или первому изделию, по сборочным отверстиям и в приспособлениях. Решения вопросов механизации и автоматизации сборочных работ можно достигнуть путем применения специальных сборочных приспособлений. Такие приспособления создаются комбинацией по заданной схеме отдельных элементов (базирующих, прижимов,.распорных устройств и др.) с их приводами и элементами управления на общем основании, работающих в соответствии со схемой собираемости изделий. В зависимости от конфигурации собираемых изделий и назначения сборочные приспособления можно разделить на группы.

Сборочные стенды — приспособления с одной, чаще горизонтальной, базовой поверхностью, предназначенные для сборки крупногабаритных изделий. Они имеют неподвижное основание с размещенными на нем установочными и прижимными элементами. Для обслуживания приспособления могут оборудоваться специальными передвижными или переносными устройствами — порталами, катучими балками, перемещающимися площадками и т.п.

Сборочные стапели применяются в тех случаях, когда крупногабаритные изделия имеют сложную объемную конструкцию с расположением деталей в различных пространственных положениях. Базирующие и прижимные элементы крепятся в различных плоскостях, а основания имеют сложную конфигурацию, по форме и размерам соответствующую изделию.

Сборочные кондукторы — приспособления типа стенда или стапеля, состоящие из жесткого основания плоской или пространственной формы с размещенными на нем установочными и прижимными устройствами, обеспечивающими заданное расположение деталей изделия. При использовании таких приспособлений точность сборочных размеров в изделии обеспечивается за счет точности самого приспособления. Поэтому они отличаются повышенной точностью и жесткостью и чаще всего используются для некрупных изделий.

Переносные универсальные сборочные приспособления — стяжки, струбцины, распорные устройства и др., применяемые для сборки разнообразных по форме изделий. В основном их используют в единичном, мелкосерийном производстве, на монтаже и в строительстве.

Для механизации приспособлений их элементы (прижимы, распоры и т.п.) оснащают специальными быстродействующими приводами (гидравлическими, пневматическими, электрическими), приведение в действие которых осуществляется по командам человека или автоматическими устройствами.

Механизация сварочных работ. Оборудование для механизации сварочных работ можно разделить на две группы: оборудование для закрепления и перемещения свариваемых изделий; оборудование для установки и перемещения сварочных аппаратов относительно изделия и передвижения сварщиков.

Оборудование для закрепления и перемещения свариваемых изделий служит для закрепления и размещения изготовляемых изделий в наиболее удобных положениях для выполнения сварки. Основными разновидностями такого оснащения являются манипуляторы, позиционеры, кантователи, вращатели, роликовые стенды, поворотные столы и др.

Манипуляторы предназначены для установки изделия в удобное для сварки положение и вращения его вокруг горизонтальной или вертикальной оси со скоростью сварки при выполнении механизированной или автоматической дуговой сварки.

Позиционеры используют для поворота изделий с целью установки их в удобное для сварки положение. В отличие от манипуляторов они не имеют рабочей скорости в процессе сварки.

Кантователи предназначены для установки изделий в удобное для сварки положение путем поворота их вокруг горизонтальной оси. Во время сварки они, так же как и позиционеры, неподвижны.

Вращатели предназначены для закрепления изделия в постоянно заданном положении и вращения его со скоростью сварки при выполнении швов. Они бывают с вертикальной, горизонтальной или наклонной осью вращения.

Роликовые стенды предназначены для вращения изделий типа тел вращения при выполнении кольцевых швов, а также для. установки таких изделий при выполнении продольных швов по образующей изделия. Они состоят из унифицированных узлов — ходовых роликоопор и приводов, установленных на общем основании.

Оборудование для установки и перемещения сварочных аппаратов включает различные типы специализированных колонн и тележек. Колонны различают двух типов: для установки несамоходных и самоходных сварочных автоматов. Первые предназначены для выполнения только кольцевых и круговых швов, вторые позволяют выполнять также и прямолинейные швы. Большинство колонн являются поворотными, что дает возможность отводить сварочный аппарат в сторону и устанавливать свободно изделие каким-либо подъемным устройством.

Тележки для сварочных аппаратов применяют для выполнения как кольцевых; так и продольных швов. По всей конструкции они делятся на велосипедные, глагольные и портальные. Такие тележки могут перемещаться с установочной или скоростью сварки при выполнении прямолинейных или кольцевых швов.

К оборудованию для перемещения сварщика относительно изделия относятся различного рода подъемные и подъемно-выдвижные площадки с механизированным приводом дистанционного управления.

с частичной механизацией, при которой используется ручная и механизированная сварка, а остальные процессы производственного цикла (раскрой металла, резка, сборка и др.) выполняются вручную;

с комплексной механизацией, когда механизированы несколько операций, например применяются механизированная резка и сварка, а также и другие вспомогательные действия для их выполнения;

с частичной автоматизацией, при которой основные процессы (сварка, резка) автоматизированы, а остальные работы (заготовка, сборка и др.) выполняются с применением механизированного инструмента и приспособлений с использованием ручного труда.

Высшим типом являются поточные линии с комплексной автоматизацией. Автоматическая сборочно-сварочная линия представляет собой комплекс оборудования, выполняющего без непосредственного участия человека в определенной технологической последовательности и с определенным тактом все операции технологического маршрута. Примером автоматической линии могут служить сборочно-сварочные автоматические линии для производства сварных труб большого диаметра со спиральным швом, на которых с помощью автоматов под наблюдением небольшого количества операторов осуществляются все операции по изготовлению труб из стальной ленты.

Особое значение в автоматизации сварочного производства имеет оснащение его оборудованием с программным управлением. Например, на газорезательной машине «Кристалл» с программным управлением можно вырезать заготовки деталей из стальных листов толщиной до 100 мм. Машина управляется автоматически по заданной программе. Применение сварочного оборудования с программным управлением экономически оправдано в условиях массового и крупносерийного производства.

В сварочном производстве используют сборочно-сварочные линии с различной степенью механизации и автоматизации оборудования и применяемой оснастки с учетом вида производства для многих разновидностей сварных изделий — для сборки и сварки полотнищ крупногабаритных резервуаров, изготовления обечаек, труб, балок и др.

Промышленные роботы для сварки. Промышленный робот — это автоматическая машина, представляющая собой манипулятор с перепрограммируемым устройством управления для выполнения в производственном процессе двигательных и управляющих функций, заменяющих аналогичные функции человека при перемещении предметов производства и технологической оснастки.

Промышленный робот является универсальной технологической системой для выполнения разнообразных действий, свойственных человеку в процессе его трудовой деятельности. Под действием автоматической системы управления робота его манипуляторы совершают движения, подобные движениям рук человека в процессе работы. Работа автоматической руки похожа на работу человеческой руки со своими гибкими соединениями в локте, плече и запястье. Отличительным признаком промышленного робота от других видов роботов является его применение в производственном процессе.

Промышленный робот, обладая большими силовыми возможностями, позволяет освободить человека от монотонного, тяжелого, утомительного, а иногда и вредного или опасного труда. В итоге повышается стабильность качества изделий, возможно ускорение процесса производства. Роботы могут действовать с любой позиции и на любом уровне в пространстве. Современный промышленный робот для сварки может быть определен как манипуляционная система, оснащенная техническими средствами ведения сварочного процесса, с программным управлением координатами сварочного инструмента и изделия и параметрами сварочного режима. Сварочный робот состоит из собственно робота и пульта управления. Робот имеет подвижную руку с захватом, которые обладают свободой пространственных перемещений, в какой-то степени имитируя руку человека. В захвате закрепляется инструмент (сварочная горелка). Большинство сварочных роботов имеют 3 — 5 возможных движений в пространстве (степеней свободы). Комбинирование этих движений позволяет устанавливать сварочную горелку в любых положениях и перемещать ее в любых направлениях в пределах зоны действия робота.

При дуговой сварке в ряде случаев целесообразно разделять функции между манипулятором (роботом), служащим для перемещения сварочного инструмента, и манипулятором, служащим для перемещения свариваемого изделия. При этом оба устройства работают совместно, связанно, по единой программе. Такой прием позволяет упростить кинематическую схему и снизить число потребных степеней свободы самого робота. Программа, по которой сварочный робот выполняет свои движения, заранее вводится в его запоминающее устройство.

Одним из основных преимуществ роботов наряду с автоматизацией процесса является возможность легкой и быстрой смены программы в зависимости от смены свариваемого изделия.

В настоящее время в промышленности используют роботы первого поколения, работающие по жесткой программе. Существенным недостатком роботов первого поколения является требование высокой точности сборки свариваемых деталей и их расположения в рабочем пространстве робота. В настоящее время созданы роботы второго поколения с системами обратной связи, с помощью которых рабочая программа и манипуляции робота автоматически корректируются при изменении положения изделия или его отдельных элементов. Управление таких роботов снабжено микропроцессорной вычислительной техникой.

Наряду с совершенствованием обычных промышленных роботов создаются специальные, действующие в экстремальных (сложных, труднодоступных, опасных для человека) условиях.

8. Требования к сварке и контролю качества сварных соединений ГОСТ 31385-2008

8.1 Общие требования

8.1.1 При изготовлении и монтаже резервуаров применяют следующие электродуговые способы сварки:

— механизированную дуговую сварку плавящимся электродом в защитном газе;

— автоматическую дуговую сварку плавящимся электродом под флюсом;

— механизированную дуговую сварку самозащитной порошковой проволокой;

— механизированную дуговую сварку самозащитной порошковой проволокой в среде защитного газа;

Читать еще:  Сварочный инвертор Ресанта САИ-160 – определяемся с выбором

— ручную дуговую сварку.

8.1.2 Организации-подрядчики (изготовитель и монтажник) разрабатывают операционные технологические карты по сварке и контролю сварных соединений.

Технологические процессы заводской и монтажной сварки должны обеспечивать параметры сварных соединений в соответствии с требованиями проектов КМ и ППР и настоящего стандарта к физико-механическим характеристикам, геометрическим размерам, предельным параметрам и видам дефектов (см. 5.2.1.8, 5.2.3, 8.1.6, 8.1.7, 8.1.9.2, 8.2).

Руководство сварочными работами и сварку металлоконструкций резервуаров должны выполнять специалисты, аттестованные в соответствии с [16].

8.1.3 Заводскую сварку резервуарных конструкций следует выполнять в соответствии с утвержденным технологическим процессом, в котором должны быть предусмотрены:

— требования к форме и подготовке кромок свариваемых деталей;

— способы и режимы сварки, сварочные материалы, последовательность выполнения технологических операций;

— указания по подготовке и сборке деталей перед сваркой с использованием кондукторов.

8.1.4 Монтажную сварку конструкций выполняют в соответствии с указаниями ППР, в котором должны быть предусмотрены:

— наиболее эффективные способы сварки монтажных соединений;

— форма подготовки свариваемых элементов;

— технологические режимы сварки;

— необходимые технологическая оснастка и оборудование;

— указания по климатическим (температура, ветер, влажность) условиям выполнения сварочных работ.

8.1.5 Применяемые сварочные материалы, требования к условиям их хранения должны соответствовать стандартам или ТУ на поставку сварочных материалов.

Сварочные материалы и технологии сварки должны быть аттестованы по [17] — [19].

8.1.6 Способы и режимы сварки конструкций должны обеспечивать:

— уровень механических свойств и хладостойкости сварных соединений, предусмотренных проектной документацией;

— уровень дефектности, не превышающий требований настоящего стандарта (см. 8.2, 8.3).

8.1.7 Коэффициент формы наплавленного шва (прохода) должен быть в пределах от 1,3 до 2,0. Допускается выполнение прерывистых сварных швов за один проход в нерасчетных соединениях элементов резервуаров, не оказывающих влияния на их герметичность.

8.1.8 Временные технологические детали, привариваемые к резервуару при изготовлении элементов и монтаже и подлежащие удалению, должны быть удалены без ударного воздействия на элементы резервуара, а остатки сварных швов — зачищены заподлицо с основным металлом и проконтролированы.

8.1.9 Требования к механическим свойствам сварных соединений

8.1.9.1 Механические свойства (кроме твердости) металла угловых, нахлесточных и тавровых соединений определяют на образцах, вырезанных из стыковых сварных соединений-прототипов. Стыковые соединения-прототипы должны выполняться с использованием марок сталей, сварочных материалов и оборудования, предназначенных для сварки указанных выше типов соединений.

8.1.9.2 Требования к прочностным характеристикам

Металл сварных соединений должен быть равнопрочен основному металлу. Испытания следует проводить на трех образцах типа XII или XIII по ГОСТ 6996. К металлу сварного шва сопряжения стенки с днищем (уторного шва) предъявляют дополнительное требование равнопрочности с основным металлом по нормативному значению предела текучести.

8.1.9.3 Требования к ударной вязкости сварных соединений

Ударная вязкость при установленной температуре испытаний должна быть не менее значений, указанных в 5.2.3.

Температуру испытаний устанавливают в соответствии с требованиями 5.2.3.2.

Испытания на ударный изгиб (ударную вязкость) следует проводить для металла сварного шва и зоны термического влияния стыковых соединений элементов групп А и Б. При этом определяют ударную вязкость металла шва и зоны термического влияния (ЗТВ) на трех поперечных образцах (по шву — три образца; по ЗТВ — три образца) с острым надрезом типа IX (для толщины основного металла 11 мм и более) и типа X (для толщины основного металла 6-10 мм) по ГОСТ 6996.

8.1.9.4 Требования к технологическим испытаниям на изгиб сварных соединений

При испытаниях сварных соединений на статический изгиб среднеарифметическое значение угла изгиба шести поперечных образцов (тип XXVII по ГОСТ 6996) должно быть не менее 120°, а минимальное значение угла изгиба одного образца — не ниже 100°. При толщине основного металла до 12 мм включительно испытания проводят изгибом образца с корнем шва внутрь (на трех образцах) и корнем шва наружу (на трех образцах), а при толщине основного металла более 12 мм — изгибом образцов «на ребро» (на шести образцах).

8.2 Технические требования к сварным соединениям

8.2.1 Конструкция сварных соединений элементов резервуара должна соответствовать требованиям КМ и ППР.

8.2.2 По внешнему виду сварные швы должны соответствовать следующим требованиям:

— металл шва должен иметь плавное сопряжение с основным металлом;

— швы не должны иметь следующих дефектов: трещин любых видов и размеров, несплавлений, грубой чешуйчатости, наружных пор и цепочек пор, прожогов и свищей.

8.2.3 Значения подрезов основного металла не должны превышать указанных в таблице 16.

Таблица 16. Допускаемое значение подреза основного металла в стыковом шве

Наименование сварного соединенияДопускаемое значение подреза при уровне ответственности резервуара
IVIIII; II
Вертикальные поясные швы и соединение стенки с днищем5 % толщины, но не более 0,5 ммНе более 0,5 ммНе более 0,3 мм
Горизонтальные соединения стенки5 % толщины, но не более 0,8 мм5 % толщины, но не более 0,6 мм5 % толщины, но не более 0,5 мм
Прочие соединения5 % толщины, но не более 0,8 мм5 % толщины, но не более 0,6 мм5 % толщины, но не более 0,6 мм
Примечание — Длина подреза не должна превышать 10 % длины шва в пределах листа.

8.2.4 Выпуклость швов стыковых соединений элементов резервуара не должна превышать значений, указанных в таблице 17.

Таблица 17. Выпуклость стыковых сварных швов

Толщина листов, ммМаксимальное значение выпуклости, мм
Вертикальных соединений стенкиПрочих соединений
До 12 включ.1,52,0
Свыше 122,03,0

8.2.5 Для стыковых соединений деталей резервуара одной толщины допускается смещение свариваемых кромок относительно друг друга не более:

— для деталей толщиной не более 10 мм — 1,0 мм;

— для деталей толщиной более 10 мм — 10 % толщины, но не более 3 мм.

8.2.6 Максимальные катеты угловых сварных швов не должны превышать 1,2 толщины более тонкой детали в соединении.

Для деталей толщиной 4-5 мм катет углового сварного шва должен быть равен 4 мм. Для деталей большей толщины катет углового шва должен определяться расчетом или конструктивно, но быть не менее 5 мм. Данное требование не распространяется на размер шва приварки настила легкосбрасываемой крыши к верхнему кольцевому элементу стенки.

8.2.7 Выпуклость или вогнутость углового шва не должна превышать более чем на 20 % величину катета шва.

8.2.8 Допускается уменьшение катета углового шва не более чем на 1 мм. Увеличение катета углового шва допускается не более чем на:

  • 1,0 мм — для катетов до 5 мм;
  • 2,0 мм — для катетов свыше 5 мм.

8.2.9 Нахлесточное соединение, сваренное сплошным швом с одной стороны, допускается только для соединений днища и настила стационарной каркасной крыши; величина нахлеста должна быть не менее 60 мм для соединений полотнищ днища и не менее 30 мм — для соединений листов крыши и днища, но не менее пяти толщин наиболее тонкого листа в соединении.

8.3 Контроль качества сварных соединений

8.3.1 Контроль качества сварных соединений в процессе строительства резервуаров должен предусматривать:

— применение способов сварки, методов и объемов контроля сварных швов, адекватных уровню ответственности резервуара;

— применение оптимальных технологических сварочных процедур и материалов в соответствии с требованиями проектов КМ и ППР;

— осуществление технического и авторского надзора.

8.3.2 Применяют следующие виды контроля качества сварных соединений:

— визуально-измерительный контроль всех сварных соединений резервуара по [20];

— контроль герметичности (непроницаемости) сварных швов;

— капиллярный метод (цветная дефектоскопия), магнитопорошковая дефектоскопия для выявления поверхностных дефектов с малым раскрытием;

— физические методы для выявления наличия внутренних дефектов: радиография или ультразвуковая дефектоскопия;

— механические испытания сварных соединений образцов;

— гидравлические и пневматические прочностные испытания конструкции резервуара.

8.3.3 Методы контроля сварных соединений конструкций резервуаров представлены в таблице 18.

Таблица 18. Методы контроля сварных соединений металлоконструкций резервуаров

1) Допускается применение УЗК.

2) Допускается применение радиографирования.

3) Контроль пробой «мел — керосин» проводят до сварки шва с внутренней стороны.

8.3.4 Нормативы для оценки дефектности сварных швов или значения допустимых дефектов должны быть указаны в проектной документации.

8.3.5 Проводят визуально-измерительный контроль 100 % длины всех сварных соединений резервуара. Контроль проводят в соответствии с требованиями [20].

Требования к качеству, форме и размерам сварных соединений должны соответствовать 8.2 и проектной документации.

8.3.6 Контролю на герметичность подвергают сварные швы, обеспечивающие герметичность корпуса резервуара, а также плавучесть и герметичность понтона и плавающей крыши (см. таблицу 18).

Для контроля герметичности сварных соединений и конструкций применяются следующие методы контроля:

— вакуумирование (по ГОСТ 3242);

— проба «мел — керосин»;

8.3.7 Капиллярный метод — цветной (хроматический) — применяют в соответствии с ГОСТ 18442 по 4-му классу чувствительности.

Контроль капиллярным методом проводят после проведения визуально-измерительного контроля.

8.3.8 Контроль сварных швов физическими методами

8.3.8.1 Применяют следующие методы физического контроля:

— радиографический (рентгенографирование, гаммаграфирование, рентгенотелевизионный) по ГОСТ 7512;

— ультразвуковую дефектоскопию по ГОСТ 14782;

— магнитопорошковый метод по ГОСТ 21105;

— цветной (хроматический) по ГОСТ 18442.

8.3.8.2 Радиографическому контролю подлежат сварные швы стенок резервуаров и стыковые швы окраек в зоне сопряжения со стенкой.

8.3.8.3 Радиографический контроль проводят после приемки сварных соединений методом визуального контроля.

8.3.8.4 При контроле пересечений швов резервуаров рентгеновские пленки размещают Т-образно или крестообразно — по две пленки на каждое пересечение швов.

8.3.8.5 Длина снимка должна быть не менее 240 мм, а ширина — согласно ГОСТ 7512. Чувствительность снимков должна соответствовать 3-му классу согласно ГОСТ 7512.

8.3.8.6 Оценка внутренних дефектов сварных швов резервуаров при радиографическом контроле — по ГОСТ 23055.

Допускаемые виды и размеры дефектов в зависимости от класса резервуаров определяют по ГОСТ 23055:

— для резервуаров IV класса опасности — по 6-му классу соединений;

— для резервуаров III класса опасности — по 5-му классу соединений;

— для резервуаров I, II класса опасности — по 4-му классу соединений.

Непровары и несплавления в швах не допускаются.

8.3.8.7 Объемы физического контроля сварных швов (в процентах длины шва) стенок резервуаров в зависимости от класса опасности резервуаров должны соответствовать требованиям таблицы 19.

8.3.8.8 Для выявления внутренних и поверхностных дефектов в сварных швах и околошовной зоне основного металла применяется ультразвуковая дефектоскопия.

8.3.8.9 Оценка качества сварных швов по результатам ультразвукового контроля должна выполняться в соответствии с [21].

Таблица 19. Объемы физического контроля сварных соединений стенок резервуаров

1. При выборе зон контроля преимущество следует отдавать местам пересечения швов.

2. Монтажные стыки резервуаров рулонной сборки объемом от 1000 м 3 и более должны контролироваться в объеме 100 % длины швов.

8.3.8.10 Результаты испытаний и контроля качества сварных соединений оформляются актами установленной формы и являются обязательным приложением к сопроводительной документации на резервуар.

Особенности и технология механизированной сварки

  1. Что это такое?
  2. Обзор видов
  3. Требования
  4. Области использования
  5. Необходимое оборудование и материалы
  6. Технология

Существует большое количество технологических процедур и мероприятий. Каждая из них имеет множество тонкостей и нюансов. Поэтому важно уточнить особенности и разобраться с технологией, к примеру, механизированной сварки — тогда многое станет понятно.

Что это такое?

Этот процесс является подвидом дуговой сварки. Плавкий электрод и дуга двигаются с использованием разнообразных механизмов либо специализированного оборудования. Механизированная сварка может включать любые виды сварочных работ, в том числе тавровые, угловые или ведущиеся с нахлёстом.

Все манипуляции проводятся по строго проработанной заранее программе. Степень автоматизации может сильно отличаться.

Обзор видов

Рассказ про способы механизированной сварки может быть достаточно долог. Широко применяется в этих целях соединение при помощи углекислого газа (в чистом виде либо в связке с кислородом). Таким методом варят чёрный металл и сталь среднего уровня легирования. Расход углекислоты определяется мощностью дуги и движением воздушных потоков. В атмосфере инертных газов сваривают алюминий, титан, магний, сплавы на их основе.

Но эти газы могут быть применены и для других работ, потому как они позволяют сваривать какие угодно металлы и их сплавы. Подавляющее большинство металлов, используемых в промышленности, можно сварить при помощи флюса. Это порошковый материал, плавлением которого в ряде случаев удобнее воспользоваться, чем традиционными электродами. При изготовлении флюса применяют главным образом силикат марганца.

В ряде ситуаций сварка низкоуглеродных, низколегированных сталей ведётся с помощью порошковой проволоки. Её сущность в том, что внутрь металлической оболочки закладывают шихту. Наиболее часто применяется проволока с трубчатым исполнением. Металлы выбирают сообразно виду свариваемых веществ. Применяются ещё и добавки, которые:

  • защищают расплав от засорения кислородом и азотом;
  • повышают плавность горения дуги;
  • улучшают характеристики создаваемых швов.

Электрическая сварка может производиться контактным и дуговым методами. В первом случае электроды плотно сближены со свариваемым объектом. Между ними подаётся импульсный разряд особо мощного тока. Напряжение при этом не превышает нескольких вольт. Стоит понимать, что контактная сварка — не синоним точечной, существует ещё ряд её более частных вариантов. Такое решение наиболее практично для соединения тонких конструкций.

Строители предпочитают, однако, пользоваться электродуговой сваркой. В пространстве, разделяющем электрод и металл (сплав), находится электрическая дуга. Она существует не в воздухе, а в среде ионизированного газа. Источником газа может быть как баллон, так и процесс горения электродной обмазки.

В промышленности широко используется аргоно-дуговая сварка TIG и полуавтоматическая с использованием проволоки — MIG-MAG.

Требования

Специального ГОСТ, описывающего именно процесс механизированной сварки, нет. Есть ряд частных нормативов, отражающих ключевые её виды. Так, свои особенные требования введены для:

  • терминов и ключевых понятий (2601-84);
  • классификации видов сварочных работ (3.1705-81);
  • сварки плавлением (11969-79);
  • дуговой сварки в газовой среде (14771-76);
  • сварки под флюсом (8713-79).

Хороший сварщик обязан безупречно владеть всеми этими ключевыми нормами. Полезно ознакомиться также с ГОСТ:

  • 12.3.003-86 – о безопасности при электросварочных работах;
  • 3242-79 – методы контроля сварных соединений;
  • 7512-82 — неразрушающий контроль;
  • 6996-66 — определение механических свойств сварных соединений;
  • 8713-79 — сварка под флюсом;
  • 14782-86 — точечные соединения при дуговой сварке;
  • 15878-79 — контактная сварка.

В каждом конкретном случае должен составляться проект производства сварочных работ; как вариант — в проект производства работ добавляют раздел, посвящённый сварке. В технологической документации прописывают, какой объём работ будет выполнен, какие типы сварных соединений будут создаваться. Сварщик обязан строго следовать технологическим картам сварных соединений. Перед началом работ производится сварка допускных образцов, строго соответствующих будущим основным изделиям. Линейные размеры и другие практические параметры обработанных деталей и блоков должны обеспечивать их применимость, гарантировать достаточную функциональность.

В местах, где ведутся механизированные сварочные работы, не должно быть горючих, легко воспламеняющихся и взрывоопасных веществ в радиусе 10 м. Все коммуникации, используемые в работе, полагается защищать от механических дефектов и высоких температур. Обязательно проводится, наряду с входным и операционным контролем, оценка соответствия выполняемых работ и создаваемых конструкций установленным нормам.

Величины изготавливаемых швов каждый раз задаются особо. Отклонение от изначально заданных параметров самовольно не допускается.

В процессе используется иногда автомат подачи проволоки. Подкачка инертных газов обычно производится через полые мундштуки заданного сечения. Нормируются:

  • электрическая мощность;
  • сварочный ток;
  • ширина обрабатываемых областей;
  • напряжения холостого хода;
  • число ступеней регулировки тока.

Области использования

Механизированная сварка применяется:

  • в производстве морских и речных судов;
  • изготовлении промышленных резервуаров;
  • получении стальных труб;
  • подготовке металлических конструкций и арматуры для строительства;
  • производстве ворот, оград и других бытовых металлоизделий;
  • процессе ремонта автомобилей, водного, железнодорожного транспорта, сельхозмашин.

Необходимое оборудование и материалы

Достаточно часто проводится механизированная сварка под флюсом. Его состав подбирают индивидуально. Что касается автоматов подачи проволоки, то они могут автоматически регулироваться либо предусматривать регулировку оператором. Размеры прихватки определяются величиной соединяемых поверхностей. Для коротких манипуляций применяется точечная прихватка, для обычной сварки — длиной от 1 до 5 см; дополнительно понадобятся электроды.

Технология

Процесс типовой, полностью или частично механизированной сварки подразумевает использование флюса. Его слой толщиной 3-6 см прикроет и защитит материал. Находящаяся в защищенном объёме дуга плавит поверхность и сварочную проволоку. После разжижения материалы объединяются. Защитный участок атмосферы оттесняет небольшое количество расплавленного материала, и начинается проваривание следующего слоя. Подающий проволоку механизм оборудуется ведущим и прижимающим роликами; темп подачи должен соответствовать скорости наплавки.

Корка из флюса затормозит охлаждение, упростит выход газов и твёрдых примесей. Таким образом можно гарантировать плотность и чистоту шва. Подготовка металла к работе в среде углекислого газа проста — нет необходимости даже зачищать кромки.

Наибольшие трудности в любом случае представляет предсварочная сборка изделий. Она требует скрупулёзной внимательности и аккуратности, «поручить» этот процесс механизмам нельзя.

О том, как происходит механизированная сварка плавящимся электродом, смотрите в следующем видео.

Механизированная сварка: виды, ГОСТы, технология, оборудование, дефекты, область применения

Механизированная сварка представляет собой дуговую сварку, в процессе которой подача электрода, преобразованного путем плавления в присадочный металл или перемещение дуги выполняются с помощью управляемых машин и механизмов. С ее помощью специалист по металлу производит стыковые, угловые, тавровые и иные швы.

Нормативные акты, используемые при проведении сварных работ

Перечень основных Государственных стандартов, посвященных механизированной сварке, включает:

  • ГОСТ 2601-84 Сварка металлов. Термины и определения основных понятий;
  • ГОСТ 14771-76 Дуговая сварка в защитном газе. Соединения сварные. Основные типы, конструктивные элементы и размеры;
  • ГОСТ 19521-74 Сварка металлов. Классификация;
  • ГОСТ 3.1705-81 Единая система технологической документации. Правила записи операций и переходов. Сварка;
  • ГОСТ 11969-79 Сварка плавлением. Основные положения и их обозначения;
  • ГОСТ 29273-92 Свариваемость. Определение;
  • ГОСТ 30430-96 Сварка дуговая конструкционных чугунов. Требования к технологическому процессу;
  • ГОСТ 2.312-72 Единая система конструкторской документации. Условные изображения и обозначения швов сварных соединений;
  • ГОСТ Р ИСО 17659-2009 Сварка. Термины многоязычные для сварных соединений;
  • ГОСТ Р ИСО 857-1-2009 Сварка и родственные процессы. Словарь. Часть 1. Процессы сварки металлов. Термины и определения;
  • ГОСТ 8713-79 Сварка под флюсом. Соединения сварные. Основные типы, конструктивные элементы и размеры.
Читать еще:  Полная характеристика инверторного сварочного аппарата «Ресанта» САИ-250

Область использования

Данный вид технологических работ широко используется при производстве:

Механизированная сварка – это вид сварочных работ, где все ключевые манипуляции, кроме погрузки и разгрузки изделий, выполняются в автоматическом режиме.

Частично механизированная – представляет собой металлообработку, где в ручном режиме осуществляется передвижение горелки и заготовки, погрузка и разгрузка изделий, а проволока поступает механически.

Технология механизированной обработки

Сначала обрабатываемые поверхности подготавливают. Проводят правку для устранения деформаций проката, наносят разметку, выполняют резку металла и обработку кромок. Края подвергают механической обработке абразивными материалами (инструментами) высокой твердости.

Далее выбирают режим сварки. Определяют силу, род и полярность тока, напряжение дуги, скорость сварки, температуру окружающей среды, число проходов, пространственное положение шва.

К электроду подводят электроэнергию, а обрабатываемое изделие заземляют для возбуждения и поддержания дуги. При соприкосновении этих объектов возникает сварочный ток. Под воздействием нагрева металл электрода и кромка изделия плавятся. Расплавленные частицы одного и другого вещества попадают в сварочную ванну, где происходит их смешивание в единую массу. При этом образуется расплавленный шлак, который поднимается на поверхность и образует защитную пленку. Затвердевание металла способствует образованию сварного шва.

На качество места соединения влияет наличие воздуха. Чтобы шов оставался прочным, локацию обрабатывают защитным газом, образующимся при сгорании углерода, или флюсом.

Технология частично механизированной сварки

Частично механизированная сварка предполагает ручное перемещение горелки и (или) заготовки и осуществление погрузки и разгрузки деталей. А вот подача присадочного металла происходит механическим способом. Возможна ручная регулировка сварочных параметров.

Существуют левый и правый способ газовой сварки. Левый способ заключается в перемещении горелки справа налево, при этом также передвигается перед пламенем присадочный пруток. В идеале движение должно носить зигзагообразный характер, перпендикулярный шву.

Правая сварка подразумевает прямолинейное перемещение горелки слева направо. Пламя расположено перед прутком и направлено в сторону расплавленной ванны. Металлический шов остывает не так быстро, как в первом случае. Из-за этого прочность соединения и производительность работ повышаются, а расход газа уменьшается.

Сварочное оборудование

Производство сварных швов реализуется с помощью автоматических и полуавтоматических аппаратов.

Автоматический прибор включает в себя:

  • газовый редуктор;
  • баллон с кислотами;
  • подогреватель;
  • осушитель.

Главным элементом автомата является сварочная головка. От того, с какой скоростью (постоянной или переменной) она подает электродную проволоку, зависит скорость плавления.

Полуавтомат обеспечивает подачу проволоки механическим способом. Перемещение дуги по направлению шва реализуется ручным управлением.

Полуавтоматическая техника включает в себя:

  • электродержатель;
  • кассеты;
  • шкаф управления;
  • сварочную горелку;
  • источник питания;
  • провод.

Примерная стоимость аппаратов для полуавтоматической сварки на Яндекс.маркет

Основным элементом механизма является электродержатель. Он сохраняет электрод в определенном положении и обеспечивает подачу тока в зону сварки. Активация дуги происходит посредством замыкания или пусковой кнопки, расположенной на рукояти держателя.

Механизированная сварка под флюсом

Флюс – это порошкообразное вещество для сварки, соответствующее ГОСТ 8713-79. Своими свойствами он напоминает электродное покрытие, а основным веществом является силикатный марганец.

Флюс бывает плавленым и неплавленым. К первым относятся вещества, прошедшие высокотемпературную обработку в печах. Ко вторым причислены флюсы керамического происхождения и порошки, спекшиеся и раздробленные до определенного размера.

Чаще всего сварка под флюсом используется при соединении высоколегированной и нержавеющей стали, алюминиевых и медных сплавов.

Примерная стоимость флюса на Яндекс.маркет

Недостатки швов

Дефекты сварочных швов возникают вследствие:

  • дифференциального нагрева металлического изделия;
  • усадки расплавленного вещества;
  • структурных изменений в химическом элементе.

Для предотвращения несовершенства сварки детали закрепляют в специальных инструментах. Этот вариант идеально годится для вязких составов, которые не вызывают образование трещин.

Некоторые сварщики используют метод обратной деформации или метод полного (частичного) устранения внутренних напряжений.

Классический случай устранения недостатков – термическая обработка посредством высокого отпуска. Изделие нагревают до 650°С и после недолгой выдержки медленно охлаждают.

Механизированное производство швов: плюсы и минусы

К преимуществам относят отличное качество готовых изделий, высокую скорость металлообработки, экономию металла (например, в сравнении с заклепочным соединением), снижение стоимости, связанную с уменьшением трудоемкости подготовительных работ. Вес сварной конструкции легче литой или клепаной.

К отрицательным качествам относится высокое энергопотребление сварочных работ и расходных материалов.

Технология механизированной сварки

Полностью или частично механизированная сварка облегчает монтаж трубопроводов, металлоконструкций, используется при производстве сварных деталей. За счет механического передвижения сварочной головки улучшается прочность шва. Данными видами оборудования выполняют тавровые, угловые соединения, сваривают заготовки встык и внахлест. Механизированный помощник помогает точно соединить детали, расположить их под требуемым углом. Автоматы и полуавтоматы помогают выполнять работы в труднодоступных местах.

Особенности

Сначала о полностью механизированной сварке, это автоматизированный процесс соединения деталей, когда оператор только настраивает оборудование и следит за его работой. Аппарат сам разжигает и поддерживает дугу, ведет ее по шву, при этом подает присадочную проволоку, флюс или защитный газ.

При частично механизированной сварке подача расходных материалов осуществляется автоматически, а за геометрию шва отвечает сварщик. Он перемещает горелку с нужной скоростью в заданном направлении. Процессы полной или частичной механизации также регулируются стандартами для сварочных технологий.

Область применения

С помощью сварочных механизированных аппаратов можно сваривать трубы, накладывать прямые, кольцевые и криволинейные швы, осуществлять соединения в труднодоступных местах. Средства механизации предназначены для тонких заготовок и средней толщины. Оборудование применяется для монтажа и ремонтных работ, выручает в аварийных ситуациях. При серийном производстве используют полную механизацию, в транспортном машиностроении чаще нужны полуавтоматы с функцией подачи флюса, газа. Хребтовые балки сваривают на поточных механизированных линиях, рамы вагонов – на кантователях. Автоматическая механизированная сварка под флюсом и в углекислом газе применяется при выпуске прямошовных и спиралешовных труб.

Виды механизированной сварки

При механизации сварочного процесса учитывают особенности сваривания различных металлов. Для соединения углеродистых и низкоуглеродистых сплавов необходим углекислый газ. Алюминий, титан, магний расплавляют под облаком инертного газа. Чугун, некоторые алюминиевые сплавы, легированные стали сваривают с использованием различных флюсов. Каждый механизированный сварочный процесс стоит рассмотреть подробней.

В среде углекислого газа

Расход CO 2 зависит от типа электрода, мощности электродуги, движущихся потоков воздуха. При сдувании струи газа ветром или сквозняком ухудшается качество шва. Механизированной дуговой сваркой соединяют заготовки с содержанием углерода:

  • до 2,14% (низкоуглеродистые сплавы);
  • от 3 до 5 % (среднеуглеродистые).

Сваривают детали толщиной до 40 мм, в смеси газов можно проварить 80-ти мм металл. Процесс регламентируется ГОСТ 14771-76. Струя поступает из сопла, обтекает сварочную дугу, предохраняет ванну расплава от окисления.

В инертных газах

При механизированной сварке в среде защитных газов металлы при нагреве не окисляются. При подаче аргона с плотностью в 1,5 раза выше, чем у воздуха, над обрабатываемыми кромками формируется устойчивое облако. Такую защиту ванны применяют при сваривании любых металлов, когда необходимо получить качественное соединение или невозможна обыкновенная электродуговая сварка, например, при монтаже проката:

  • из цветных металлов (меди, никеля, алюминия, титана);
  • жаропрочных и конструкционных сталей, склонных к окислению при нагреве;
  • некоторых видов нержавейки.

Инертные газы защищают металл от воздействия кислорода, азота, других компонентов воздуха, ухудшающих эксплуатационные характеристики сварных соединений.

Под флюсом

По ГОСТ 8713-79 в зависимости от способа изготовления флюсы разделяют на две группы:

  • плавленые представляют собой однородный конгломерат, получаемый путем спекания компонентов;
  • неплавленые бывают двух видов: керамические – это порошки с клеевой основой; спеченые сначала спекают при высоких температурах, затем измельчают до нужной фракции.

Смеси и порошки на основе силиката марганца наносят перед механизированной сваркой под флюсом. В процессе нагрева дугой защитный состав образует шлаковую корку. Оставшиеся частицы собирают для повторного применения.

Порошковыми проволоками

Сварщики выбирают любой расходный материал под тип обрабатываемого металла, порошковые проволоки – не исключение. Это стержень, заполненный шихтой, выполняющей сразу несколько функций:

  • защищает металл от воздействия азота, кислорода, водорода;
  • раскисляет и легирует расплавленный металл;
  • поддерживает стабильное горение дуги;
  • формирует ровный шов.

Для механизированного сварочного процесса применяют несколько типов порошковой проволоки:

  • сочетаемые с флюсами;
  • содержащие флюсовые компоненты в составе шихты;
  • самозащитные для сваривания металла в углекислом газе.

Производители выпускают расходники с замкнутым трубчатым сечением, с захлестом кромок и сложной формы с загибами одной или обеих кромок внутрь.

Применяемое оборудование

Для работы применяют автоматы и полуавтоматы, тип сварочного механизированного оборудования зависит от необходимой степени участия человека в сварочном процессе. Механизированный автоматический аппарат осуществляет:

  • розжиг дуги;
  • механизированную подачу присадки, флюса или газа;
  • контроль токовых параметров;
  • движение дуги относительно кромок по заданной траектории.

Оператор только следит за работой автоматов, состоящих из трактора (самоходной сварочной головки) и блока управления (процессора).

Механизированные устройства тракторного типа осуществляют подачу проволоки за счет прижимного и подающего роликов. Перемещение дуги по направлению шва осуществляется вручную сварщиком. Основным элементом полуавтоматической механизации является электродержатель. Через это устройство обеспечивается подача электротока в зону сварки. Дуга разжигается при замыкании цепи с помощью пусковой кнопки, расположенной на рукояти держателя.

Для подачи и уборки оставшегося флюса монтируются бункеры с регуляторами (дозаторами). У механизированных полуавтоматов для сварки в защитных газах имеется специальная газоэлектрическая горелка, из которой одновременно подается газ и токопроводящая присадочная проволока.

Технология механизированной сварки

Самоходная головка (трактор) одновременно с замыканием цепи осуществляет подачу требуемых компонентов. Вместе с током, питающим дугу, в зону сварки поступает расплавляемая присадка, защитные флюсы или газы.

Классические механизированные аппараты регулируют скорость подачи проволоки и плотность дуги в зависимости от физико-механических свойств свариваемых металлов. Проволока устанавливается в кассетах фабричной намотки с фиксированным натяжением. Разматываясь, присадка сначала проходит через направляющие ролики и шланги, затем поступает на подающие.

Специальные системы, ответственные за подачу газа, флюса, настраиваются собственно токовым параметрам. Скорость движения горелки регулируется автоматизировано или сварщиком.

При помощи механизированного трактора подается электродная проволока, а ток проводится к сварочному месту.

Производители предлагают механизированное оборудование для сварки с разной степенью механизации. По сути, технология автоматизированной сварки с точки зрения физико-термических процессов идентична ручной. Отличается технологичностью, скоростью формирования шва, качеством соединений.

Технология механизированной сварки

Механизация облегчает труд сварщика, особенно, когда работы ведутся на конструкциях больших размеров с протяженными сварными швами. Главное достоинство механизации: минимизируется человеческий фактор, повышается повторяемость формы и качества сварных швов, повышается производительность и экономическая выгода проведения сварочных работ.

Особенности

Механизированная сварка плавящимся электродом (чаще такой вид называют полуавтоматическим) осуществляется не покрытыми штучными электродами, а проволокой, которая подается с катушки. Проволока подается с катушки специальным приводом, состоящим из электродвигателя, редуктора, подающих и прижимных роликов и регулирующей аппаратуры (платы управления). Сюда же, в зону сварки, подается защитный газ, который обеспечивает изоляцию сварочного шва от воздействия атмосферных газов. Это справедливо при сварке плавящимся электродом в среде защитных газов.

Такое устройство не сильно изменяет условия труда сварщика. Его главным преимуществом можно считать увеличение производительности труда. Кроме того, существенно улучшается качество шва. Однако, это один из самых простых механизмов. В настоящее время механизированная сварка достигла высокой степени механизации.

Область применения

Трудно найти отрасль, в которой не применяются сварочные полуавтоматы. Это и производственные цеха машиностроения, и открытые строительные площадки. Мелкие предприятия и даже частные приусадебные хозяйства и гаражные кооперативы. Способ этот универсален, как по списку свариваемых материалов (малоуглеродистые конструкционные и высоколегированные стали, алюминий и другие цветные металлы и сплавы), так и по ассортименту соединяемых деталей (трубы, прокат). Лучший аргумент в пользу этого вида – доля сварочных работ, производимых таким способом. К началу 21 века эта доля дошла до 80%.

Способ имеет одно слабое место, но недостаток этот легко устраним. Зона сваривания нуждается в защите от ветра. Такую защиту легко организовывать переносными ширмами, палатками, либо любым подручным листовым материалом. Заодно и обеспечивается защита персонала, работающего рядом с местом проведения сварочных работ, от вредного воздействия электрической дуги.

Виды механизированной сварки

Виды механизированной сварки различаются в зависимости от того, каким способом осуществляется защита сварного шва от влияния атмосферы:

  • в среде углекислого газа;
  • в среде газовой смеси на основе аргона;
  • в среде чистого 100% аргона;
  • порошковыми газозащитными и самозащитными проволоками.

В среде углекислого газа

Химическая сущность процесса сваривания деталей в среде углекислого газа состоит в следующем: под действием высоких сварочных температур углекислый газ распадается на угарный газ и кислород. Эти газы активно реагируют с железом и углеродом свариваемых деталей.

Для нейтрализации этого вредного явления, в сварочную проволоку вводят кремний и марганец. Являясь более активными металлами, они вытесняют (замещают) из реакций окисления железо и углерод. Для уточнения необходимо отметить, что такой вид называется сваркой в среде активного защитного газа.

Низкая стоимость и универсальность процесса сделали этот вид сварки самым распространенным при ремонте кузовов легковых автомобилей. Необходимо учитывать, что стандартного баллона хватает на 16 – 20 часов непрерывного процесса. Интересно, что качество шва напрямую зависит от расхода углекислого газа. Чем больше газа, тем лучше шов. Задача сварщика найти компромисс в этом вопросе.

В инертных газах и смесях

В качестве инертных газов чаще всего используют смеси на основе аргона. Применяется также чистый аргон для некоторых металлов и сплавов. Состав оборудования и технология механизированной сварки в инертных газах очень похожи на сварку в среде углекислого газа. Сваривание деталей в среде инертного газа можно проводить плавящимся электродом, который по составу максимально соответствует свариваемым деталям. Преимущества сварки в среде защитного газа на основе аргона – это, прежде всего, высокая стабильность электрической дуги, сниженное разбрызгивание электродного металла и меньшее тепловложение в свариваемые детали по сравнению со сваркой в углекислом газе.

Очень перспективны последние изобретения в этой технологии. На крупносерийных производствах с целью повышения производительности труда и уменьшения себестоимости изделий применяют современные защитные смеси на основе аргона с добавлением гелия, кислорода, углекислого газа с различным процентным содержанием компонентов.

Средства автоматизации и механизации процесса

Механизированная сварка плавящимся электродом в среде защитного газа может осуществляться на механизмах с различной степенью автоматизации. Степень автоматизации определяется тем, как перемещают сварочную горелку: сварочная горелка закреплена неподвижно (перемещается свариваемое изделие) или перемещается специальным устройством – кареткой, позиционером, роботом и другими устройствами. В обоих случаях происходит существенный рост производительности за счет увеличения скорости перемещения сварочной горелки, отсутствия человеческого фактора, высокой повторяемости.

При применении автоматизации процесса требуется особо качественная подготовка кромок к сварке, грамотный выбор сварочной проволоки, режимов работы в зависимости от марки металла соединяемых деталей, конфигурации соединения, положения сварки.

Порошковые проволоки

Очень распространенный вид сварки низколегированных, углеродистых сталей и различных сплавов. Для таких работ чаще всего используют смесь аргона с углекислым газом или только углекислый газ. Процесс соединения металлов таким способом аналогичен работе с другими видами проволоки.

Порошковая проволока – специально изготавливаемая проволока, заполненная специальным флюсом или металлическим порошком. Такая проволока изготавливается по особой технологии с разными наполнителями для сварки различных марок стали. Проволока, наполненная металлически порошком, применяется для существенного увеличения коэффициента наплавленного металла. Ограничение по применению – только нижнее пространственное положение.

Применяемое оборудование

Используемое для этих целей оборудование организуется в сварочные посты. Они могут несколько отличаться по составу, но основная комплектация содержит:

  • источник сварочного тока;
  • механизм подачи проволоки;
  • комплект соединительных шлангов, управляющего и силовых кабелей;
  • сварочную горелку;
  • газобаллонную аппаратуру: баллоны с защитным газом или магистраль, редуктор, газовый коллектор, соединительные шланги.

Технология механизированной сварки

Описание технологического процесса включает в себя подготовку кромок перед началом работ. В технологии подробнейшим образом должны быть перечислены все материалы с указанием ГОСТов. Процесс планируется с учетом типа шва. В зависимости от материала и толщины свариваемых деталей выбирается режим работы и вид защитного газа. Полуавтоматическая сварка в среде защитного газа – сложный процесс и учесть все его тонкости могут только квалифицированные технологи.

Современные и классические сварочные технологии

Сварка — одно из важнейших ремесел для человека. С помощью сварочных технологий нам удается создавать по-настоящему удивительные вещи: от простейших бытовых приборов до космических ракет. В этой статье мы расскажем, как происходит сварка, какие существуют виды сварки и их краткая характеристика.

Общая информация

Что такое сварка? Каковы основы сварки? Эти вопросы задаю многие начинающие умельцы. По сути своей, сварка — это процесс соединения разных металлов. Соединение (его также называют швом) формируется на межатомном уровне с помощью нагрева или механической деформации.

Читать еще:  Оборудование сварочного поста для ручной дуговой сварки

Теория сварки металлов очень обширна и невозможно в рамках одной статьи описать все нюансы. Также как невозможно описать все способы сварки металлов, поскольку на данный момент способов около сотни. Но мы постараемся кратко классифицировать методы сварки, чтобы новички не запутались.

Итак, на данный момент возможна термическая, термомеханическая и полностью механическая сварка деталей из металла или других материалов (например, пластика или стекла). При выборе способа сварки учитывается каждый нюанс: толщина деталей, их состав, условия работы и прочее. От этого зависит технология сварки металла.

Термическая сварка — это процесс соединения деталей только с помощью высоких температур. Металл плавится, образуется надежное сварное соединение. К термическим методам относится, например, дуговая и газовая сварка (о них мы поговорим позже).

Термомеханическая сварка — это процесс соединения деталей с помощью высоких температур и механического воздействия, например, давления. К такому типу принадлежит контактная сварка. Деталь нагревается не так сильно, как в случае обычной термической сварки, а для формирования шва используется механическая нагрузка, а не плавление металла как такового.

Механическая сварка — процесс соединения деталей без применения высоких температур и вообще тепловой энергии. Здесь ключевой элемент — механическое воздействие. К такому типу относится холодная сварка, ультразвуковая сварка или соединение деталей трением.

Также существует классификация способов сварки по техническим признакам. Используя такую классификацию можно довольно кратко описать все имеющиеся типы сварки. Они делятся на:

  • Сварку в защитной среде (для защиты может использоваться флюс, инертный газ, активный газ, вакуум, защита может быть комбинированной и состоять из нескольких материалов сразу).
  • Сварку прерывистую и непрерывную.
  • Сварку ручную, механизированную, полуавтоматическую, автоматическую, роботизированную.

Если вы ранее не сталкивались со сваркой и все перечисленное выше кажется чем-то запутанным и непонятным, то не беспокойтесь. Далее мы расскажем, какие самые популярные методы сварки используются в домашних и промышленных условиях.

Вам будем дана характеристика основных видов сварки и некоторые особенности, которые нужно учесть. Кстати, многим видам сварки мы посвящали отдельные статьи, которые вы можете прочесть, открыв рубрику «Виды и способы сварки» на нашем сайте.

Ручная дуговая сварка с применением неплавящихся электродов

Способ ручной дуговой сварки разных металлов с применением неплавящихся электродов — один из самых популярных методов как среди домашних умельцев, так и среди профессионалов своего дела. Ручная дуговая сварка — это вообще один из древнейших способов сварки. Благодаря большому выбору сварочных аппаратов для дуговой сварки такой метод стал доступен широкому кругу сварщиков.

Электрод — это стержень, выполняющий роль проводника тока. Он может быть изготовлен из различных материалов и иметь специальное покрытие.

Технология дуговой сварки неплавящимся электродом крайне проста: детали подгоняют друг к другу, затем электродом постукивают или чиркают о поверхность металла, зажигая сварочную дугу. В качестве основного оборудования используют сварочные инверторы.

Для сварки инвертором выбирают неплавящиеся электроды, сделанные из угля, вольфрама или графита. Во время сварки электрод нагревается до высокой температуры, плавя металл и образуя сварочную ванну, в которой как раз и формируется шов. Такой метод используют для сварки цветных металлов.

Ручная дуговая сварка с применением плавящихся электродов

Виды сварки плавлением металла не заканчиваются на применении неплавящихся стержней. Для работы также можно использовать плавящиеся электроды. Технология сварки металла с использованием плавящихся стержней такая же, что и при работе с неплавящимися материалами.

Отличие лишь в составе самого электрода: плавящиеся стержни обычно изготавливаются из легкоплавких металлов. Такие стержни также пригодны для сварки инвертором в домашних условиях. Здесь шов образуется не только за счет расплавленного металла детали, но и за счет расплавленного электрода.

Дуговая сварка с использованием защитного газа

Способ дуговой сварки разных металлов с использованием защитного газа выполняется с помощью плавящихся и неплавящихся электродов. Технология сварки такая же, как и при классической ручной дуговой сварке. Но здесь для дополнительной защиты сварочной ванны в зону сварки подается специальный защитный газ, поставляемый в баллонах.

Дело в том, что сварочная ванна легко подвержена негативному влиянию кислорода и под его воздействием шов может окислиться и получиться некачественным. Газ как раз и помогает избежать этих проблем. При его подаче в сварочную зону образуется плотное газовое облако, не дающее кислороду проникнуть в сварочную ванну.

Автоматическая и полуавтоматическая сварка с использованием флюса или газа

Автоматическая и полуавтоматическая сварка с применением флюса или газа — это уже более продвинутый способ соединения металлов. Здесь часть работ механизирована, например, подача электрода в сварочную зону. Это значит, что сварщик подает стержень не с помощью рук, а с помощью специального механизма.

Автоматическая сварка подразумевает механизированную подачу и дальнейшее движение электрода, а полуавтоматическая подразумевает только механизированную подачу. Дальнейшее движение электрода сварщик осуществляет вручную.

Здесь защита сварочной ванны от кислорода просто обязательна, поэтому используется газ (по аналогии с дуговой сваркой с применением газов) или специальный флюс. Флюс может быть жидким, пастообразным или кристаллическим. С помощью флюса можно значительно улучшить качество шва.

Прочие методы соединения металлов

Помимо традиционных способов сварки в современной промышленности применяются методы, позволяющие соединить уникальные металлы. Зачастую такие металлы обладают ярко выраженными химическими или тугоплавкими свойствами, отчего привычные способы сварки не подходят для их соединения. Конечно, такие металлы не используются в домашней сварке, но они широко применяются для создания ответственных деталей на крупном производстве.

Мы расскажем про виды сварки плавлением, когда суть сварки заключается в подаче большого количества тепла на маленький участок сварки. К таким методам относится лазерная сварка и плазменная сварка.

Лазерная сварка металлов выполняется с помощью автоматического и полуавтоматического оборудования. Такой процесс сварки может быть полностью роботизирован и не требует присутствия человека. Здесь деталь нагревается, а затем и плавится под воздействием тепла, исходящего от лазерного луча и направленного в определенную точку.

Тепло концентрируется строго в одной точке, позволяя сваривать очень мелкие детали размером менее одного миллиметра. Также с помощью призмы лазер можно расщепить и направиться в разные стороны, чтобы сварить несколько деталей сразу.

Плазменная сварка металлов выполняется с применением ионизированного газа, называемого плазмой. Газ струёй подается в сварочную зону, образовывая плазму. Она работает в связке с вольфрамовым электродом и газ нагревается за счет электрической дуги.

Сам ионизированный газ обладает свойством проводника тока, поэтому в случае плазменной сварки именно плазма является ключевым элементом в рабочем процессе. Также плазма активно защищает сварочную ванну от негативного влияния кислорода. Такой метод сварки используется при работе с металлами, толщиной до 9 миллиметров.

Технологический процесс сварки

Мало знать способы сварки, нужно еще понимать, какие необходимы документы на сварку и из каких этапов состоит сварочный процесс. Конечно, это справедливо только в отношении профессиональных сварщиков, выполняющих работу в цеху или на производстве. Вам это не нужно, если вы собираетесь варить забор на даче, но дополнительные знания тоже не помешают.

Итак, вот наше краткое описание технологического процесса сварки:

  1. Разработка чертежа
  2. Составление технологической карты
  3. Подготовка рабочего места сварщика и подготовка металла
  4. Непосредственно сварка
  5. Очистка металла
  6. Контроль качества

Сам по себе техпроцесс — это полное описание этапов сварки. Технический процесс разрабатывается после того, как будут готовы чертежи будущей металлоконструкции. Чертеж делают, опираясь на правила (ГОСТы, например), при этом во главу ставят качество будущей конструкции и разумную экономию.

Технологический процесс сварки оформляется на специально разработанных для этого бланках. Стандартный бланк для описания техпроцесса называется «технологическая карта». В технологической карте и описываются все этапы производства. Если производство серийное или крупномасштабное, то изложение может быть довольно подробным, с описанием каждого нюанса.

В технологическую карту заносят тип металла, из которого изготовлены детали, способы сварки металлов, используемые для соединения этих деталей, применяемое для этих целей сварочное или иное оборудование, типы присадочных материалов, электродов, газов или флюсов, используемых в работе. Также указывается последовательность формирования швов, их размеры и прочие характеристики.

Также в технологической карте указывают марку электродов, их диаметр, скорость их подачи, скорость сварки, количество слоев у шва, рекомендуемые настройки сварочного аппарата (параметр полярности и величины сварочного тока), указывают марку флюса. Перед самой сваркой детали тщательно подготавливают, очищая их от коррозии, загрязнений и масла. Поверхность металла обезжиривают с помощью растворителя. Если у детали есть значительные видимые дефекты (например, трещины), то она не допускается к сварке.

После сварки предстоит контроль сварочных швов. Этой теме мы посвятили отдельную статью, но здесь кратко расскажем об основных методах контроля. Прежде всего, применяется визуальный контроль, когда сварщик может сам определить наличие дефектов у сварочного соединения. Специалистами проводится дополнительный контроль с помощью специальных приборов (это может быть магнитный контроль, радиационный или ультразвуковой).

Конечно, не все дефекты считаются плохими. Для каждых сварочных работ составляется перечень с дефектами, которые допустимы и не сильно повлияют на качество готового изделия. Контролером может быть сварщик или отдельный специалист. Его имя обязательно указывается в документах, он является ответственным лицом на этапе контроля.

Вместо заключения

В этой статье мы рассказали самое основное. Конечно, мы не сможем перечислить и описать все виды сварочных работ в рамках одной этой статьи, но на нашем сайте вы можете найти материалы, где мы рассказываем все о сварке и объясняем основы сварки различных металлов.

Для любого мастера теория сварочных процессов имеет большое значения, но без практики она не работает. Так что не теряйте время и вслед за чтением статей применяйте знания на практике. Желаем удачи в работе!

Механизированная сварка

Механизированная дуговая сварка

Без сварочного производства не обходится ни одно направление технического производства. Сварка металлических деталей или сборочных единиц обеспечивает быстроту соединения и прочность.

Если работы имеют не циклический характер, тогда применяется электродуговая ручная сварка, если же производство циклическое – сварка между собой одинаковых деталей, или крупного диаметра труб, тогда имеет смысл применить специальные механизмы. При механизированной сварке улучшается качество шва, режимы сварки и скорость перемещения сварочного электрода поддерживается механизмом, от оператора необходимо только отслеживание процесса.

Автоматическая и механизированная сварка в среде углекислого газа

[content-egg module=GdeSlon template=list limit=3 offset=1]

Сварка в среде углекислого газа относится к разновидности дуговой сварки. В отличие от ручной покрытыми электродами, дуга горит меду стальной проволокой и заготовкой. Проволока подается в зону дуги автоматом подачи. Режим подачи устанавливается от диаметра проволоки и токовой составляющей установленного режима. Защита места дуги от активного кислорода атмосферы осуществляется углекислым газом (CO2), который подается в зону горения через каналы полого муштука. Схема горелки приведена на рисунке 1. Полярность электродуги обратной направленности с плюсом нанаконечнике.

Рис. 1. Устройство MAG горелки. 1 -стальная проволока; 2- наконечник токоведущий; 3- сопло выходное; 4- защитный газ; 5 – дуга сварочная; 6 – ванна расплава; 7- шов сварочный.

Разновидности сварки

Различают две разновидности работы сварки в углекислом газе – полуавтоматическая и автоматическая или механизированная сварка . При полуавтоматической подаче мундштук зоне горения дуги ведется по сварочному шву с помощью руки сварщика. Автомат осуществляет сварку автоматически по – заданному режиму. Для производства работы с механизированной сварки применяется оборудование: полуавтоматы марок ПДГ-516, ПДГ-508, ПДГ-415, ПДГ-252. В качестве источника электротока используются выпрямители с жесткой характеристикой (поддержка постоянного тока независимо от положения дуги относительно детали). Также могут использоваться выпрямителя ВДУ – 504, ВДУ-506.

Полуавтомат ПДГ 315 “Буран”

[content-egg module=GdeSlon template=item limit=1 offset=0]

Аппарат для полуавтоматической сварки и частично механизированная сварка плавлением углеродистых и легированных сталей, алюминия с автоматической подчей проволоки в среде защитного газа (двуокись углерода СО2 и его смесей) от 0,8 – 1,6 мм. Алюминий варится в среде аргона. Модель примечательна своими характеристиками: аппарат без проблем выдает 300А. Имеет два режима и 6 ступеней регулировки величины мощности, в общей сложности 12 регулировок. Есть переключатель на короткие и длинные швы (блокировка кнопки подачи на держателе). Оборудован цифровым дисплеем, для контроля тока. На лицевой панели находится многопозиционный потенциометр регулировки подачи проволоки. Индикаторы подачи газа и проволоки.

Рис.2. Полуавтомат ПДГ-315 “Буран” с подсоединенным кабелем горелки.

Аппарат находится на колёсиках, что очень удобно для транспортировки. Вес 120 кг. Прибор поставляется с кабелем мощностью 300А, вилка для кабеля, катушка проволочная на 15 кг, горелка со сменным наконечником. Горелка имеет подвижный составное соединение в месте подсоединение кабеля, что значительно облегчает работу сварщика. Аппарат оснащен 4 роликовым механизмом подачи, который предназначен для проталкивания проволоки в зону горения.

  • Номинальное напряжение сети: 3ф x 380В, 50 Гц,
  • Мощность электрическая: max,12,9 кВт
  • Сварочный ток при ПН 40%-300А, ПН 60% – 270А, ПН 100%, 200А;
  • Напряжение холостого хода 45В;
  • Число ступеней регулировки тока 2 x 6;

Диапазон регулирования напряжения 20 -34В.

Знакомство с горелками

[content-egg module=GdeSlon template=list limit=3 offset=4]

Сварочную горелку MIG (metal inert gas), во втором – MAG (metal active gas) можно смело назвать одной из важных составляющей технологии частично механизированной сварки (полуавтомат). От качества исполнения данного устройства зависит удобство работы сварщика, а значит качество и производительность. технология частично механизированной сварки

Рис.3 Устройство MAG горелки с оборудованием: шланг и разъем.

Разъемы горелки

Существует единый стандарт наконечника для подсоединения шланга к аппарату, который с 1970 г является стандартным. Единый коннекторный разъем позволяет комплектовать аппараты с кабелями разных производителей.

Рис.4. Стандартный «евро» разъем MAG горелок.

Назначение горелок

Устройство MAG горелок различается по мощности подачи тока, которые сортируются по номерам: №15, №24 – № 36, диаметру сопла и диаметра подачи проволоки, предназначенные для сварки в диапазоне максимальных токов от 150 до 300 А соответственно, и имеют воздушное охлаждение.

[content-egg module=GdeSlon template=list limit=3 offset=4]

Для более мощных устройств с большими токами, предусмотрено водяное охлаждение. Данный вид применяется на аппаратах вместе с охлаждающими станциями. Давление воды в них составляет 2 -4 бар, (при циркуляции жидкости 1,6 л/ мин.)
(Внимание! Использование горелок с водяным охлаждением без воды категорически запрещено.

Устройство горелки

Устройство позволяют работать сварщику с разными толщинами проволоки от 0,6 до 1,6 мм. Стандарт рассчитан на 60% рабочий цикл от 120А до 500А.
Основными частями горелки ( см рис 3 ) является:

  • гусак, внутри которого расположен канал для протяжки проволоки и отверстие для подачи газа;
    наконечник, выполненный из особого сплава меди;
  • сопло, через которое происходит подача газа в зону горения дуги;
  • кабель – шланг внутри которого расположена трубка подачи газа, проволочный канал. Для горелок с водяным охлаждением в кабель – шланг дополнительно помещены каналы для циркуляции воды.

Расходники

Для держаков сварки расходным материалом является: наконечники, сопла, каналы.
Срок замены наконечников и сопел зависит от профессионализма сварщика и интенсивности работы оборудования. Наконечники меняются гораздо чаще остальных деталей. Для того, чтобы продлить срок службы расходных материалов производители рекомендуют использовать антипригарный спрей – аэрозоль, который препятствует налипанию окалины.

Рис. 6 . Каналы для подачи проволоки. Каждый цвет соответствует определенному диаметру.

Каналы подачи проволки

Трубки подачи проволоки в зону сварки могут быть разными. Так для стальной используется металлический – витой. К алюминиевой подойдет пластиковый с тефлоновым покрытием. Скользкие стенки тефлона позволяют сделать подачу расходного материала плавной и предсказуемой. Выбирается проволочная трубка не только по материалу из которого сделана, но по диаметру проволоки:

  • Для стальной проволоки диаметром 0,6 – 0,8 мм предназначен голубой цвет;
  • Для диаметра 1 – 1,2 мм. – красный;
  • Для 1,2 – 1,6 мм.- жёлтый.

Тефлоновые:

  • Диаметром 0,6 – 0,9 мм. – голубой;
  • Для 1 – 1,2 мм. – красный;
  • Для 1,2 – 1,6мм – жёлтый.

Длина кабеля горелки может быть 3, 4, 5 м. Для получения прочности и огнеупорности наконечники могут отличаться по исполнению: они изготавливаются из сплавов меди с добавлением циркония или хрома.

Дефекты сварочных швов

В процессе сварки возможны некачественные швы, которые возникают от неправильного выбранного режима. К дефектам формы и размеров относятся:

  • не полномерность;
  • неравномерность ширины и высоты;
  • бугристость и наплывы;
  • седловины и перетяжки.

Ниже приведены часто встречающиеся швы, которые возникли по причине неправильного выбранного режима механизированной сварки.

Рис.7. Виды некачественных швов при неправильном режиме сварки.

Кроме неправильного режима выбора сварки в сварных соединениях возможны дефекты шва. Дефекты могут быть наружные и внутренние. В зависимости от причин возникновения дефектов они могут быть отнесены на две группы:

  1. Дефекты, связанные с процессом расплава металлов и его кристаллизацией с последующим застыванием. К таким дефектам относятся: трещины в металле шва и околошовной зоне, шлаковые включения, пористость, термические изменения свойств металла в зоне шва с образованием неравномерного натяжения шва.
  2. Дефекты, возникающие при формировании шва. Такие дефекты, возникают по причине неправильного выбранного режима сварки, неправильной подготовке деталей или некачественной подготовки конструкций.
0 0 голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты