Rich--house.ru

Строительный журнал Rich—house.ru
72 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Интегральный стабилизатор напряжения LM317. Описание и применение

LM317 и LM317T схемы включения, datasheet

Микросхема уже не одно десятилетие является хитом среди начинающих радиолюбителей благодаря своей простоте и надежности. На основе этой микросхемы можно собрать регулируемый блок питания на LM317, стабилизатор тока, светодиодный драйвер и другие БП. Для этого потребуется несколько внешних радиодеталей, для LM317 схема включения работает сразу, настройки не требуется.

Микросхемы ЛМ317 и LM317T datasheet полностью одинаковые, отличаются только корпусом. Никаких отличий или разницы нет, совсем нет.

Так же написал обзоры и datasheet других популярных ИМС TL431, LM358 LM358N, LM494. C хорошими иллюстрациями, понятными и простыми схемами.

  • 1. Характеристики
  • 2. Аналоги
  • 3. Типовые схемы включения
  • 4. Калькуляторы
  • 5. Схемы включения
  • 6. Радиоконструкторы
  • 7. Datasheet, даташит

Характеристики

Основное назначение это стабилизация положительного напряжения. Регулировка происходит линейным способом, в отличие от импульсных преобразователей.

Так же популярна LM317T, с ней не встречался, поэтому пришлось долго искать правильный даташит на неё. Оказалось, что они полностью идентичны по параметрам, букв «T» в конце маркировки обозначает корпус TO-220 на 1,5 Ампер.

Характеристики

LM317LM338LM350
Входное Вольт1,2 – 37В1,2 – 37В1,2 – 37В
Напряжение на выходедо 36Вдо 36Вдо 36В
Сила тока1,5А
Нагревдо 125°
Защитаот перегрева
от замыкания
Нестабильность на выходе0,1%

Даже при наличии интегрированных систем защиты не следует эксплуатировать на пределе возможностей. Если выйдет из строя, неизвестно сколько Вольт будет на выходе, можно будет спалить дорогостоящую нагрузку.

Приведу основные электрические характеристики из LM317 datasheet на русском . Не все знают технические термины на английском.

В даташите указана огромная сфера применения, проще написать где она не используется.

Аналоги

КР142ЕН12

Микросхем которые имеют практически такой же функционал много, отечественных и зарубежных. Добавлю в список более мощные аналоги, чтобы избежать включения нескольких параллельно. Самый известный LM317 аналог, это отечественная КР142ЕН12.

  1. LM117 LM217 – расширенный диапазон рабочих температур от -55° до +150°;
  2. LM338, LM138, LM350 — аналоги на 5А, 5А и 3А соответственно;
  3. LM317HV, LM117HV — напряжение на выходе до 60V, если вам не достаточно стандартных 40V.

Полные аналоги:

  • GL317;
  • SG317;
  • UPC317;
  • ECG1900.

Типовые схемы включения

Преобразователь с пониженными пульсациями LM317T

Регулируемый источник тока

Схема с предварительным стабилизатором

Регулятор 1,25 — 20 Вольт с регулируемым током

Параллельное подключение с одним регулятором

Схема для зарядки аккумуляторов на LM317T

Схема зарядки аккумулятора на 50мА

Схема плавного включения питания

Регулирование двумя LM317T синусоиды переменного тока

Зарядное устройство на 6V с ограничением Ампер

Параллельное подключение для увеличения мощности

Блок питания с большим током LM317T

Калькуляторы

Для максимального облегчения расчётов на основе LM317T разработано множество программ LM317 калькуляторов и онлайн калькуляторов. Указав исходные параметры сразу можно просчитать несколько вариантов и увидеть характеристики требуемых радиодеталей.

Программа для расчета источников напряжения и тока с учётом LM317 характеристик LM317T . Расчёт схем включения мощных преобразователей с использованием транзисторов, TL431, M5237. Так же ИМС 7805, 7809, 7812.

Схемы включения

Стабилизатор LM317 зарекомендовал себя универсальной микросхемой способной стабилизировать напряжение и Амперы. За десятки лет разработаны сотни схем включения LM317T различного применения. Основное назначение, это стабилизатор напряжения в блоках питания. Для увеличения силы количества Ампер на выходе есть несколько вариантов:

  1. подключение параллельно;
  2. установка на выходе силовых транзисторов, получим до 20А;
  3. замена на мощные аналоги LM338 до 5A или LM350 до 3А.

Для построения двухполярного блока питания применяются стабилизаторы отрицательного напряжение LM337.

Считаю, что параллельное подключение не самый лучший вариант из-за разницы в характеристиках стабилизаторов. Невозможно настроить несколько штук точно на одинаковые параметры, чтобы распределить нагрузку равномерно. Благодаря разбросу, на один нагрузка всегда будет больше чем на другие. Вероятность выхода из строя нагруженного элемента выше, если он сгорит, то резко возрастёт нагрузка на другие, которые могут не выдержать её.

Чтобы не подключать параллельно, лучше использовать для силовой части DC-DC преобразователя напряжения транзисторы на выходе. Они рассчитаны на большой ток и отвод тепла у них лучше из-за больших размеров.

Современные импульсные микросхемы уступают по популярности, её простоту трудно превзойти. Стабилизатор тока на lm317 для светодиодов прост в настройке и расчётах, в настоящее время до сих пор применяется на небольших производствах электронных блоков.

Светодиодный драйвер

Светодиодный драйвер до 5А

Зарядное для аккумуляторов

Регулируемый двухполярный блок питания от 0 до 36В

Двухполярный БП LM317 и LM337, для получения положительного и отрицательного напряжения.

Радиоконструкторы

Для начинающих радиолюбителей могу порекомендовать радиоконструкторы от китайцев на Aliexpress. Такой конструктор оптимальный способ собрать устройство по схеме включения, не надо изготавливать плату и подбирать детали. Любой конструктор можно доработать по своему усмотрению, главное чтобы плата была. Стоимость конструктора от 100 руб с доставкой, готовый модуль в сборе от 50 руб.

Datasheet, даташит

Микросхема очень популярная, выпускает множеством производителей, включая китайских. Мои коллегам попадались ЛМ317 с плохими параметрами, которые не тянут заявленный ток. Покупали у китайцев, которые любят всё подделывать и копировать, при этом ухудшая характеристики.

Здравствуйте объясните пожалуйста как включать лм317 параллельно и регулировать ток?

Параллельно лучше не подключать, лучше купите аналогичный регулятор напряжения на 3-5 ампер.

почму в лаболаторном блоке питания на лм317 5а. от5 до 50вольт при влюченииблока происходит большой скачек напряжения что с нагрузкой что без сколько бьюсь все без результатно кто в силах подскажте в чем причина

Обычно они до 37 вольт на выходе. В усилителях звука чтобы избежать скачков при включении усилителя ставят реле, которое подключает вход через 2-3 секунды после включения.

Здравствуйте. В чем различие lm7812 и lm317? В сети пишут один стабилизирует напряжение, а второй ток и нет разницы какой ставить. Что все таки ставить? например для авто

Один с постоянным напряжением стабилизации, второй с переменным.

Где,должна быть больше емкость, на входе стабилизатора,или на выходе? И почему?

Кондер стабилизирует или убирает ВЧ помехи.

Стабилизаторы тока на lm317, lm338, lm350 и их применение для светодиодов

В последнее время интерес к схемам стабилизаторов тока значительно вырос. И в первую очередь это связано с выходом на лидирующие позиции источников искусственного освещения на основе светодиодов, для которых жизненно важным моментом является именно стабильное питание по току. Наиболее простой, дешевый, но в то же время мощный и надежный токовый стабилизатор можно построить на базе одной из интегральных микросхем (ИМ): lm317, lm338 или lm350.

  • Datasheet по lm317, lm350, lm338
  • Схемы и расчеты
  • Онлайн калькулятор lm317, lm350 и lm338

Datasheet по lm317, lm350, lm338

Прежде чем перейти непосредственно к схемам, рассмотрим особенности и технические характеристики вышеприведенных линейных интегральных стабилизаторов (ЛИС).

* – зависит от производителя ИМ.

Во всех трех микросхемах присутствует встроенная защита от перегрева, перегрузки и возможного короткого замыкания.

Lm317, самая распространенная ИМ, имеет полный отечественный аналог — КР142ЕН12А.

Выпускаются интегральные стабилизаторы (ИС) в монолитном корпусе нескольких вариантов, самым распространенным является TO-220. Микросхема имеет три вывода:

  1. ADJUST. Вывод для задания (регулировки) выходного напряжения. В режиме стабилизации тока соединяется с плюсом выходного контакта.
  2. OUTPUT. Вывод с низким внутренним сопротивлением для формирования выходного напряжения.
  3. INPUT. Вывод для подачи напряжения питания.

Схемы и расчеты

Наибольшее применение ИС нашли в источниках питания светодиодов. Рассмотрим простейшую схему стабилизатора тока (драйвера), состоящую всего из двух компонентов: микросхемы и резистора. На вход ИМ подается напряжение источника питания, управляющий контакт соединяется с выходным через резистор (R), а выходной контакт микросхемы подключается к аноду светодиода.

Если рассматривать самую популярную ИМ, Lm317t, то сопротивление резистора рассчитывают по формуле: R=1,25/I (1), где I – выходной ток стабилизатора, значение которого регламентируется паспортными данными на LM317 и должно быть в диапазоне 0,01-1,5 А. Отсюда следует, что сопротивление резистора может быть в диапазоне 0,8-120 Ом. Мощность, рассеиваемая на резисторе, рассчитывается по формуле: PR=I 2 ×R (2). Включение и расчеты ИМ lm350, lm338 полностью аналогичны.

Полученные расчетные данные для резистора округляют в большую сторону, согласно номинальному ряду.

Постоянные резисторы производятся с небольшим разбросом значения сопротивления, поэтому получить нужное значение выходного тока не всегда возможно. Для этой цели в схему устанавливается дополнительный подстроечный резистор соответствующей мощности. Это немного увеличивает цену сборки стабилизатора, но гарантирует получение необходимого тока для питания светодиода. При стабилизации выходного тока более 20% от максимального значения, на микросхеме выделяется много тепла, поэтому ее необходимо снабдить радиатором.

Онлайн калькулятор lm317, lm350 и lm338

Допустим, необходимо подключить мощный светодиод с током потребления 700 миллиампер. Согласно формуле (1) R=1,25/0,7= 1.786 Ом (ближайшее значение из ряда E2—1,8 Ом). Рассеиваемая мощность по формуле (2) будет составлять: 0.7×0.7×1.8 = 0,882 Ватт (ближайшее стандартное значение 1 Ватт).

На практике, для предотвращения нагрева, мощность рассеивания резистора лучше увеличить примерно на 30%, а в корпусе с низкой конвекцией на 50%.

Кроме множества плюсов, стабилизаторы для светодиодов на основе lm317, lm350 и lm338 имеют несколько значительных недостатков – это низкий КПД и необходимость отвода тепла от ИМ при стабилизации тока более 20% от максимального допустимого значения. Избежать этого недостатка поможет применение импульсного стабилизатора, например, на основе ИМ PT4115.

lm317 — регулируемый стабилизатор напряжения и тока

Стабилизатор тока для светодиодов применяется во многих светильниках. Как и всем диодам, LED присуще нелинейная вольт-амперная зависимость. Что это значит? При повышении напряжения, сила тока медленно начинает набирать мощь. И только при достижении порогового значения, яркость светодиода становится насыщенной. Однако если ток не перестанет расти, то лампа может сгореть.

Правильная работа LED может быть обеспечена только благодаря стабилизатору. Эта защита необходима еще и по причине разброса пороговых значений напряжения светодиода. При подключении по параллельной схеме лампочки могут просто на просто сгореть, так как им приходится пропускать недопустимую для них величину тока.

Виды стабилизирующих устройств

По способу ограничения силы тока выделяются устройства линейного и импульсного типа.

Так как напряжение на светодиоде – неизменная величина, то стабилизаторы тока часто считают стабилизаторами мощности LED. Фактически последняя прямо пропорциональна изменению напряжения, что характерно для линейной зависимости.

Линейный стабилизатор нагревается тем больше, чем больше прилагается к нему напряжения. Это его главный недочёт. Преимущества данной конструкции обусловлены:

  • отсутствием электромагнитных помех;
  • простотой;
  • низкой стоимостью.

Более экономичными устройствами являются стабилизаторы на основе импульсного преобразователя. В этом случае мощность прокачивается порционно – по мере необходимости для потребителя.

Схемы линейных устройств

Самая простейшая схема стабилизатора – это схема, построенная на основе LM317 для светодиода. Последний являются аналогом стабилитрона с определенным рабочим током, который он может пропускать. Учитывая малую силу тока можно собрать простой аппарат самостоятельно. Наиболее простой драйвер светодиодных ламп и лент собирают именно таким способом.

Микросхема LM317 уже не одно десятилетие является хитом среди начинающих радиолюбителей благодаря своей простоте и надежности. На её основе можно собрать регулируемый блок питания, светодиодный драйвер и другие БП. Для этого потребуется несколько внешних радиодеталей, модуль работает сразу, настройки не требуется.

Интегральный стабилизатор LM317 как никакой другой подходит для создания несложных регулируемых блоков питания, для электронных устройств с разными характеристиками, как с регулируемым выходным напряжением, так и с заданными параметрами нагрузки.

Основное назначение это стабилизация заданных параметров. Регулировка происходит линейным способом, в отличие от импульсных преобразователей.

Выпускаются LM317 в монолитных корпусах, исполненных в нескольких вариациях. Самая распространённая модель TO-220 с маркировкой LM317Т.

Каждый вывод микросхемы имеет свое предназначение:

  • ADJUST. Ввод для регулирования выходного напряжения.
  • OUTPUT. Ввод для формирования выходного напряжения.
  • INPUT. Ввод для подачи питающего напряжения.

Технические показатели стабилизатора:

  • Напряжение на выходе в пределах 1,2–37 В.
  • Защита от перегрузки и КЗ.
  • Погрешность выходного напряжения 0,1%.
  • Схема включения с регулируемым выходным напряжением.

Мощность рассеяния и входное напряжение устройства

Максимальная «планка» входного напряжения должна быть не более заданной, а минимальная – выше желаемой выходной на 2 В.

Микросхема рассчитана на стабильную работу при максимальном токе до 1,5 А. Это значение будет ниже, если не применять качественный теплоотвод. Максимально допустимое рассеивание мощности без последнего равно примерно 1,5 Вт при температуре окружающей среды не более 30 0 С.

При установке микросхемы требуется изоляция корпуса от радиатора, к примеру, с помощью слюдяной прокладки. Также эффективный отвод тепла достигается путём применения теплопроводной пасты.

Краткое описание

Коротко описать достоинства радиоэлектронного модуля LM317, применяемого в стабилизаторах тока, можно так:

  • яркость светового потока обеспечивается диапазоном выходного напряжения 1, – 37 В;
  • выходные показатели модуля не зависят от частоты вращения вала электродвигателя;
  • поддерживание выходного тока до 1,5 А позволяет подключать несколько электроприёмников;
  • погрешность колебаний выходных параметров равна 0,1% от номинального значения, что является гарантией высокой стабильности;
  • имеется функция защиты по ограничению тока и каскадного отключения при перегреве;
  • корпус микросхемы заменяет землю, поэтому при внешнем креплении уменьшается количество монтажных кабелей.

Схемы включения

Безусловно, наипростейшим способом токового ограничения для светодиодных ламп станет последовательное включение добавочного резистора. Но данное средство подходит лишь только для маломощных LED.

Простейший стабилизированный блок питания

Чтобы сделать стабилизатор тока потребуется:

  • микросхемка LM317;
  • резистор;
  • монтажные средства.

Собираем модель по нижеприведенной схеме:

Модуль можно применять в схемах разных зарядных устройств либо регулируемых ИБ.

Блок питания на интегральном стабилизаторе

Этот вариант более практичный. LM317 ограничивает потребляемый ток, который задается резистором R.

Помните, что максимально допустимое значение тока, которое нужно для управления LM317, составляет 1,5 А с хорошим радиатором.

Схема стабилизатора с регулируемым блоком питания

Ниже изображена схема с регулируемым выходным напряжением 1.2–30 В/1,5 А.

Переменный ток преобразуется в постоянный с помощью моста-выпрямителя (BR1). Конденсатор С1 фильтрует пульсирующий ток, С3 улучшает переходную характеристику. Это означает, что стабилизатор напряжения может отлично работать при постоянном токе на низких частотах. Выходное напряжение регулируется ползунком Р1 от 1.2 вольта до 30 В. Выходной ток составляет около 1,5 А.

Читать еще:  Продажа инструментов — редуктор шуруповерта

Подбор резисторов по номиналу для стабилизатора должен осуществляться по точному расчету с допустимым отклонением (небольшим). Однако разрешается произвольное размещение резисторов на монтажном плате, но желательно для лучшей стабильности размещать их подальше от радиатора LM317.

Область применения

Микросхема LM317 является отличным вариантом для использования в режиме стабилизации основных технических показателей. Она отличается простотой в исполнении, недорогой стоимостью и отличными эксплуатационными характеристиками. Единственный недостаток – пороговое значение напряжения составляет лишь 3 В. Корпус в стиле ТО220 – это одна из самых доступных моделей, которая позволяет рассеивать тепло довольно хорошо.

Микросхема применима в устройствах:

  • стабилизатор тока для LED (в том числе для LED-лент);
  • Регулируемый стабилизатор напряжения для бытового назначения.

Стабилизирующая схема, построенная на основе LM317 простая, дешёвая, и в то же время надежная.

Характеристики, включение МС lm317, схема, стабилизатор тока

Качественный блок питания с регулируемым выходным напряжением – мечта каждого начинающего радиолюбителя. В быту такие устройства применяются повсеместно. К примеру, взять любое зарядное устройство для телефона или ноутбука, блок питания детской игрушки, игровой приставки, стационарного телефона, многих других бытовых приборов.

Что касается схемной реализации, конструкция источников может быть разной:

  • с силовыми трансформаторами, полноценным диодным мостом;
  • импульсные преобразователи сетевого напряжения с выходным регулируемым напряжением.

Но чтобы источник был надежным, долговечным, для него лучше выбирать надежную элементную базу. Здесь то начинают возникать трудности. Например, выбирая в качестве регулирующих, стабилизирующих компонентов отечественного производства, порог нижнего напряжения ограничивается 5 В. А что делать, если требуется 1,5 В? В таком случае лучше воспользоваться импортными аналогами. Тем более они более стабильны и практически не греются при работе. Одним из самых широко употребляемых является интегральный стабилизатор lm317t.

Основные характеристики, топология микросхемы

Микросхема lm317 является универсальной. Она может быть использована как стабилизатор с постоянно установленным выходным напряжением и как регулируемый стабилизатор с высоким КПД. МС обладает высокими практическими характеристиками, делающими возможным его использование в различных схемах зарядных устройств или лабораторных блоков питания. При этом вам даже не придется волноваться за надежность работы при критических нагрузках, потому что микросхема оснащена внутренней защитой от короткого замыкания.

Это весьма хорошее дополнение, потому что максимальный выходной ток стабилизатора на lm317 составляет не более 1,5 А. Но наличие защиты не даст вам ее непреднамеренно спалить. Для повышения тока стабилизации необходимо использование дополнительных транзисторов. Таким образом, можно регулировать токи до 10 и более А при использовании соответствующих компонентов. Но об этом поговорим позже, а в таблице ниже представим основные характеристики компонента.

ПараметрЗначение
Uоп.1,25 В
Макс разница между Uвых. и Uвх.Не более 40 В
Мин разница между Uвых. и Uвх.Не менее 1,3 В
Макс. Uвых.37 В
Мин. Uвых.1,25 В
Iвых. макс.1,5 А
IрегДо 100 мкА
ПульсацииНе более 65 дБ
Тип корпусаТО-220
Предел рабочих температурОт 0 до +125 градусов

Цоколевка микросхемы

Изготовлена интегральная микросхема в стандартном корпусе ТО-220 с теплоотводом, устанавливаемым на радиатор. Что касается нумерации выводов, они расположены по ГОСТу слева направо и имеют следующее значение:

Номер выводаНазвание выводаЗначение
1AdjРегулировка
2OutВыход
3InВход

Вывод 2 соединен с теплоотводом без изолятора, поэтому в устройствах, если радиатор контактирует с корпусом, необходимо использовать изоляторы из слюды или любого другого теплопроводящего материала. Это важный момент, потому что можно случайно закоротить выводы, а на выходе микросхемы просто ничего не будет.

Аналоги lm317

Иногда найти конкретно требуемую микросхему на рынке не удается возможным, тогда можно воспользоваться подобными ей. Среди отечественных компонентов на lm317 аналог есть достаточно мощный и производительный. Им является микросхема КР142ЕН12А. Но при ее использовании стоит учесть тот факт, что она неспособна обеспечить напряжение меньше 5 В на выходе, поэтому если это важно, придется опять-таки использовать дополнительный транзистор или же найти именно требуемый компонент.

Что касается форм-фактора, то у КР есть столько же выводов, сколько их имеет lm317. Поэтому вам даже не придется переделывать схему готового устройства с целью подгонки параметров регулятора напряжения или неизменяемого стабилизатора. При выполнении монтажа интегральной схемы ее рекомендуется устанавливать на радиатор с хорошим теплоотводом и системой охлаждения. Что довольно часто наблюдается при изготовлении мощного светильника на светодиодах. Но при номинальной нагрузке устройство выделяет немного тепла.

Кроме отечественной интегральной схемы КР142ЕН12, выпускаются более мощные импортные аналоги, выходные токи которых в 2-3 раза больше. К таким микросхемам относятся:

  • lm350at, lm350t — 3 А;
  • lm350k — 3 А, 30 Вт в другом корпусе;
  • lm338t, lm338k — 5 А.

Производители этих компонентов гарантируют более высокую стабильность выходного напряжения, низкий ток регулирования, повышенную мощность с тем же минимальным выходным напряжением не более 1,3 В.

Особенности подключения

На lm317t схема включения довольно проста, состоит из минимального количества компонентов. При этом их число зависит от назначения устройства. Если изготавливается стабилизатор напряжения, для него потребуются следующие детали:

Rs – шунтирующее сопротивление, выполняющее также роль балласта. Выбирается значением около 0,2 Ом, если требуется обеспечить максимальный выходной ток до 1,5 А.

Резистивный делить с R1, R2, подключенный к выходу и корпусу, а со средней точки поступает регулирующее напряжение, образуя глубокую обратную связь. Благодаря чему достигается минимальный коэффициент пульсаций и высокая стабильность выходного напряжения. Их сопротивление выбирается исходя из соотношения 1:10: R1=240 Ом, R2=2,4 кОм. Это типовая схема стабилизатора напряжения с выходным напряжением 12 В.

Если требуется сконструировать стабилизатор тока, для этого понадобится еще меньше компонентов:

R1, являющееся шунтом. Им задается выходной ток, который не должен превышать 1,5 А.

Чтобы правильно рассчитать схему того или другого устройства, всегда можно использовать калькулятор lm317. Что касается расчета Rs, то его можно определить по обычной формуле: Iвых. = Uоп/R1. На lm317 стабилизатор тока светодиода получается достаточно качественный, который может быть изготовлен нескольких типов в зависимости от мощности LED:

  • для подключения одноватного светодиода с током потребления 350мА необходимо использовать Rs = 3,6 Ом. Его мощность выбирается не менее 0,5 Вт;
  • для питания трехватных светодиодов потребуется резистор сопротивлением 1,2 Ом, ток составит 1 А, а мощность рассеивания не менее 1,2 Вт.

На lm317 стабилизатор тока светодиода получается достаточно надежный, но важно правильно рассчитать сопротивление шунта и выбрать его мощность. А поможет в этом деле калькулятор. Также на светодиодах и на основе этой МС изготавливают различные мощные светильники и самодельные прожекторы.

Построение мощных регулируемых блоков питания

Внутренний транзистор lm317 недостаточно мощный, для его увеличения придется использовать внешние дополнительные транзисторы. В данном случае выбираются компоненты без ограничений, потому что управление ими требует намного меньших величин токов, которые микросхема вполне способна предоставить.

Регулируемый блок питания lm317 с внешним транзистором не сильно отличается от обычного включения. Вместо постоянного R2 устанавливается переменный резистор, а база транзистора подключается на вход микросхемы через дополнительный ограничивающий резистор, запирающий транзистор. В качестве управляемого используется биполярный ключ с проводимостью p-n-p. В таком исполнении микросхема оперирует токами порядка 10 мА.

При проектировании двухполярных источников питания потребуется использовать комплементарную пару этой микросхемы, которой является lm337. А для увеличения выходного тока применяется транзистор с проводимостью n-p-n. В обратном плече стабилизатора компоненты подключаются таким же образом, как и в верхнем. В качестве первичной цепи выступает трансформатор или импульсный блок, что зависит от качества работы схемы и ее эффективности.

Некоторые особенности работы с микросхемой lm317

При проектировании блоков питания с небольшим выходным напряжением, при котором разница между входным и выходным значением не превышает 7 В, лучше использовать другие, более чувствительные микросхемы с выходным током до 100 мА — LP2950 и LP2951. При низком падении lm317 не способна обеспечить необходимый коэффициент стабилизации, что может приводить к нежелательным пульсациям при работе.

Другие практические схемы на lm317

Кроме обычных стабилизаторов и регуляторов напряжения на основе этой микросхемы также можно изготовить цифровой регулятор напряжения. Для этого потребуется сама микросхема, набор транзисторов и несколько резисторов. Посредством включения транзисторов и по приходу цифрового кода с ПК или иного устройства изменяется сопротивления R2, что приводит и к изменению тока цепи в пределах напряжения от 1,25 до 1,3 В.

Lm317 Характеристики Схема Подключения

Исходя из формулы видно, что величина Vout зависит от значения резистора R2. Стабилизаторы тока бывают линейные и импульсные, в этой статье речь пойдёт о самом простом ограничителе тока на LM


Ограничение на минимальный ток нагрузки свидетельствует о плохой схемотехнике LM и явно ограничивает варианты ее использования.

И как-то специально его разряжать нет необходимости.
Стабилизатор тока на LM 317

Так как напряжение на светодиоде — неизменная величина, то стабилизаторы тока часто считают стабилизаторами мощности LED. Но при ее использовании стоит учесть тот факт, что она неспособна обеспечить напряжение меньше 5 В на выходе, поэтому если это важно, придется опять-таки использовать дополнительный транзистор или же найти именно требуемый компонент.

Регулировка происходит линейным способом, в отличие от импульсных преобразователей. Чем это плохо?

С помощью Rs можно настроить ограничение тока, а R1 и R2 определяют ограничение напряжения.

Отключил резисторы, напряжение осталось прежним- 12,54 вольта. В этом случае мощность прокачивается порционно — по мере необходимости для потребителя.

Опорное напряжение это то напряжение которое микросхема стабилизатора стремиться поддерживать на резисторе R1.

LM 7812 Паралельно 10 штук что будет .

Сообщить об опечатке

О схемах, обещающих получить на выходе LM регулируемое напряжение от ноля Вольт. В процессе подбора сопротивлений допускается небольшое отклонение 8…10 мА. С помощью Rs можно настроить ограничение тока, а R1 и R2 определяют ограничение напряжения.

Значит, надо следить не только за максимальным током нагрузки, но и за минимальным тоже?

Схема стабилизатора тока на lm Плюс данного стабилизатора в том, что он является линейным и не вносит высокочастотные помехи, например как некоторые импульсные стабилизаторы.

При увеличении или уменьшении напряжения ток остается стабильным.

Я часто покупаю детали в Китае и пришел к такому выводу: Покупать можно, но нужно выбирать поставщиков, которые продают радиодетали, изготовленные на заводах, а не в цехах какого- нибудь не понятного ИП. В ниже приведенной схеме, LM ограничивает Iпотр.

Микросхема LM в корпусе ТО способна стабильно работать при максимальном токе нагрузки до 1,5 ампер.

Эта микросхема очень универсальна, на ней можно строить как всевозможные , так и ограничители тока, зарядные устройства … Но остановимся на ограничители тока.
Регулятор напряжения на кр142ен12а

Цоколевка микросхемы

А поможет в этом деле калькулятор.

Я не прошу детального ответа. Это важный момент, потому что можно случайно закоротить выводы, а на выходе микросхемы просто ничего не будет.

Собрал стабилизатор на и , умощнил их транзисторами tip35 и tip Предлагаем подробно рассмотреть, как собрать стабилизатор тока на lm своими руками.

Что касается форм-фактора, то у КР есть столько же выводов, сколько их имеет lm Для этого надо изменить сопротивление R1, подключенного к регулируемому выводу Adj. И не удивительно в связи с этим, что в цепи Adj рекомендуется ставить конденсатор С2. Даже студенты знают, что конденсатор на входе стабилизатора существенно, мягко говоря, эффективнее, чем на выходе.

Пример : для LED с Iпотр. Это значение будет ниже, если не применять качественный теплоотвод. Проверим на железе… Для проверки собрал схему на макетной плате. Номера контактов разных типов корпусов микросхемы.

Техническая документация к электронным компонентам на русском языке.


А вот схемы включения подходят от LM Что касается расчета Rs, то его можно определить по обычной формуле: Iвых. В Datasheets LM приведен неверный параметр на ток по входу Adj. Вот только одно маленькое НО … Внутренняя часть LM содержит стабилизатор тока, в котором использован стабилитрон на напряжение 6,3 В.

В обратном плече стабилизатора компоненты подключаются таким же образом, как и в верхнем. Например, мне необходимо ограничить ток потребления светодиодов равный мА. Так как сопротивление R1 равно Ом, а выходное напряжение равно 5 В, то R2 согласно формуле будет равно Ом. Минимальная величина напряжения на выходе LM составляет 1,25 В. С помощью данного резистора можно выставить ток стабилизации, например мА, тогда даже при коротком замыкании на выходе схемы будет протекать ток, равный мА.

Описание и применение Допустим используя эту схему надо получить 5 В нагрузке. При повышении напряжения, сила тока медленно начинает набирать мощь.
Регулятор напряжения на LM317T dc-dc step-down.

Основные характеристики, топология микросхемы

Как проверить lm мультиметром?

На входе стабилизатора при этом должно быть минимум 15В!

Кроме отечественной интегральной схемы КРЕН12, выпускаются более мощные импортные аналоги, выходные токи которых в раза больше. На основе стабилизатора легко сделать зарядное устройство для 12 В аккумуляторов, вот что нам предлагает datasheet. Отличная защита интегрального стабилизатора от возможного перегрева.

Однако если ток не перестанет расти, то лампа может сгореть. Заранее благодарен Вам за ответ.

Стабилизатор тока для светодиодов — описание

Затем подключают в схему со светодиодом. Но уже при напряжении между выходом и контактом Adj менее 1,25 В сработает схема защиты от КЗ. Но опять, же повторюсь, данный способ стабилизации годится только для маломощных светодиодов. В LM реализован ущербный принцип регулирования выходного напряжения,- по цепи Положительной обратной связи.

Это позволит досконально изучить процесс функционирования и впоследствии создать более усложненную конструкцию. А для увеличения выходного тока применяется транзистор с проводимостью n-p-n. Но это — нереальная ситуация. Каждый любитель современных электронных приборов должен научиться самостоятельно собирать преобразователи. Ограничение на минимальный ток нагрузки свидетельствует о плохой схемотехнике LM и явно ограничивает варианты ее использования.

Читать еще:  Дорновый трубогиб: что это и в чем его особенности

Мощность рассеяния и входное напряжение стабилизатора LM317

Характеристики Стабилизатор напряжения lm, основанный на работе микросхемы данной модификации, имеет такие характеристики: Изделие дает возможность самостоятельно настраивать уровень выходного напряжения в пределах 1,В. Рабочий блок питания Очень важно, чтобы области спаивания имели литую форму.

А схемы и данные в его datasheet все те же … Итак, недостатки LM, как микросхемы и ошибки в рекомендациях по ее использованию. Регулируемый Adj — это вывод, который позволяет регулировать выходное напряжение через подстрочный резистор. Стабилизатор тока для светодиодов — описание Конечно же, самым простым способ ограничить Iпотр. На выход стабилизатора нужно прицепить резисторы нужной мощности и номинала , настроить выходные напряжения и лишь после этого подключать питаемую схему.
Блок питания на LM338T part 1

Регулируемые стабилизаторы LM317 и LM337. Особенности применения

Опубликовано: 18 августа, 2012 • Рубрика: Блоки питания

В радиолюбительской практике широкое применение находят микросхемы регулируемых стабилизаторов LM317 и LM337. Свою популярность они заслужили благодаря низкой стоимости, доступности, удобного для монтажа исполнению, хорошим параметрам. При минимальном наборе дополнительных деталей эти микросхемы позволяют построить стабилизированный блок питания с регулируемым выходным напряжением от 1,2 до 37 В при максимальном токе нагрузки до 1,5А.

Но! Часто бывает, при неграмотном или неумелом подходе радиолюбителям не удаётся добиться качественной работы микросхем, получить заявленные производителем параметры. Некоторые умудряются вогнать микросхемы в генерацию.

Как получить от этих микросхем максимум и избежать типовых ошибок?

Об этом по-порядку:

Микросхема LM317 является регулируемым стабилизатором ПОЛОЖИТЕЛЬНОГО напряжения, а микросхема LM337 — регулируемым стабилизатором ОТРИЦАТЕЛЬНОГО напряжения.

Обращаю особое внимание, что цоколёвки у этих микросхем различные!

Даташит производителя: datasheet LM317 (pdf-формат 1041 кб), datasheet lm337 (pdf-формат 43кб).

Цоколёвка LM317 и LM337:

Типовая схема включения LM317:

Увеличение по клику

Выходное напряжение схемы зависит от номинала резистора R1 и рассчитывается по формуле:

Uвых=1,25*(1+R1/R2)+Iadj*R1

где Iadj ток управляющего вывода. По даташиту составляет 100мкА, как показывает практика реальное значение 500 мкА.

Для микросхемы LM337 нужно изменить полярность выпрямителя, конденсаторов и выходного разъёма.

Но скудное даташитовское описание не раскрывает всех тонкостей применения данных микросхем.

Итак, что нужно знать радиолюбителю, чтобы получить от этих микросхем МАКСИМУМ!
1. Чтобы получить максимальное подавление пульсаций входного напряжения необходимо:

  • Увеличить (в разумных пределах, но минимум до 1000 мкФ) емкость входного конденсатора C1. Максимально подавив пульсации на входе, мы получим минимум пульсаций на выходе.
  • Зашунтировать управляющий вывод микросхемы конденсатором на 10мкФ . Это увеличивает подавление пульсаций на 15-20дБ. Установка емкости больше указанного значения ощутимого эффекта не даёт.

Увеличение по клику

увеличение по клику

Важно: для микросхем LM337 полярность включения диодов следует поменять!

3. Для защиты от высокочастотных помех электролитические конденсаторы в схеме необходимо зашунтировать плёночными конденсаторами небольшой ёмкости.

Получаем итоговый вариант схемы:

Увеличение по клику

4. Если посмотреть внутреннюю структуру микросхем, можно увидеть, что внутри в некоторых узлах применены стабилитроны на 6,3В. Так что нормальная работа микросхемы возможна при входном напряжении не ниже 8В!

Хотя в даташите и написано, что разница между входным и выходным напряжениями должна составлять минимум 2,5-3 В, как происходит стабилизация при входном напряжении менее 8В, остаётся только догадываться.

5. Особое внимание следует уделить монтажу микросхемы. Ниже приведена схема с учётом разводки проводников:

Увеличение по клику

Пояснения к схеме:

  1. длинна проводников (проводов) от входного конденсатора C1 до входа микросхемы (А-В) не должна превышать 5-7 см. Если по каким-то причинам конденсатор удалён от платы стабилизатора, в непосредственной близости от микросхемы рекомендуется установить конденсатор на 100 мкФ.
  2. для снижения влияния выходного тока на выходное напряжение (повышение стабильности по току) резистор R2 (точка D) необходимо подсоединять непосредственно к выходному выводу микросхемы или отдельной дорожкой/проводником ( участок C-D). Подсоединение резистора R2 (точка D) к нагрузке (точка Е) снижает стабильность выходного напряжения.
  3. проводники до выходного конденсатора (С-E) также не следует делать слишком длинными. Если нагрузка удалена от стабилизатора, то на стороне нагрузки необходимо подключить байпасный конденсатор (электролит на 100-200 мкФ).
  4. так же с целью снижения влияния тока нагрузки на стабильность выходного напряжения «земляной» (общий) провод необходимо развести «звездой» от общего вывода входного конденсатора (точка F).

Выполнив эти нехитрые рекомендации, Вы получите стабильно работающее устройство, с теми параметрами, которые ожидались.

Похожие статьи:

  • Стабилизатор с малым падением напряжения (Low-Drop)
  • Немного о блоках питания (часть III)
  • Сколько вешать в граммах? Или снова о LM317
  • Стабилизатор напряжения без обратной связи
  • Всё, что вы хотели знать о защите акустических систем, но боялись спросить (часть первая)

Следите за новостями портала:

14 комментариев к “Регулируемые стабилизаторы LM317 и LM337. Особенности применения”

Отечественные аналоги микросхем:

Микросхема 142ЕН12 выпускалась с разными вариантами цоколёвки, так что будьте внимательны при их использовании!

В связи с широкой доступностью и низкой стоимостью оригинальных микросхем

лучше не тратить время, деньги и нервы.

Используйте LM317 и LM337.

Здравствуйте, уважаемый Главный Редактор! Я у Вас зарегистрирован и мне тоже очень хочется прочесть всю статью, изучить Ваши рекомендации по применению LM317. Но, к сожалению, что-то не могу просмотреть всю статью. Что мне необходимо сделать? Порадуйте меня, пожалуйста, полной статьей.

С уважением Сергей Храбан

Я Вам очень благодарен, спасибо большое! Всех благ!

Уважаемый главный редактор! Собрал двух полярник на lm317 и lm337. Все прекрасно работает за исключением разности напряжений в плечах. Разница не велика, но осадок имеется. Не могли бы Вы подсказать, как добиться равных напряжений, а главное причина подобного перекоса в чем. Заранее благодарен Вам за ответ. С пожеланием творческих успехов Олег.

Уважаемый Олег, разница напряжений в плечах обусловлена:

1. разницей опорных напряжений микросхем. То что в паспорте указано 1,25В — это идеальный случай (или усреднённое значение). Подробнее здесь: radiopages.ru/accurate_lm317.html

2. отклонение значений задающих резисторов. Следует помнить, что резисторы имеют допуски 1%, 5%, 10% и даже 20%. То есть, если на резисторе написано 2кОм, его реально сопротивление может быть в районе 1800—2200 Ом (при допуске 10%)

Даже если Вы поставите многооборотные резисторы в цепи управления и с их помощью точно выставите необходимые значения, то. при изменении температуры окружающей среды напряжения всё равно уплывут. Так как резисторы не факт что прогреются (остынут) одинаково или изменяться на одинаковую величину.

Решить Вашу проблему можно, используя схемы с операционными усилителями, которые отслеживают сигнал ошибки (разницу выходных напряжений) и производят необходимую корректировку.

Рассмотрение таких схем выходит за рамки данной статьи. Гугл в помощь.

Уважаемый редактор!Благодарю Вас за подробный ответ, который вызвал уточнения- насколько критично для унч, предварительных каскадов, питание с разностью в плечах в 0,5- 1 вольт? С уважением Олег

Разность напряжений в плечах чревата в первую очередь несимметричным ограничением сигнала (на больших уровнях) и появлением на выходе постоянной составляющей и др.

Если тракт не имеет разделительных конденсаторов, то даже незначительное постоянное напряжение, появившееся на выходе первых каскадов, будет многократно усилено последующими каскадами и на выходе станет существенной величиной.

Для усилителей мощности с питанием (обычно) 33-55В разница напряжений в плечах может быть 0,5-1В, для предварительных усилителей лучше уложиться в 0,2В.

Уважаемый редактор! Благодарю вас за подробные, обстоятельные ответы. И, если позволите, еще вопрос: Без нагрузки разность напряжений в плечах составляет 0,02- 0,06 вольт. При подключении нагрузки положительное плечо +12 вольт, отрицательное -10,5 вольт. С чем связан такой перекос? Можно ли подстроить равенство выходных напряжений не на холостом ходу, а под нагрузкой. С уважением Олег

Если делать всё правильно, то стабилизаторы надо настраивать под нагрузкой. МИНИМАЛЬНЫЙ ток нагрузки указан в даташите. Хотя, как показывает практика, получается и на холостом ходу.

А вот то, что отрицательное плечо проседает аж на 2В, это неправильно. Нагрузка одинаковая?

Тут либо ошибки в монтаже, либо левая (китайская) микросхема, либо что-то ещё. Ни один доктор не будет ставить диагноз по телефону или переписке. Я тоже на расстоянии лечить не умею!

А Вы обратили внимание что у LM317 и LM337 разное расположение выводов! Может в этом проблема?

Благодарю Вас за ответ и терпение. Я не прошу детального ответа. Речь идет о возможных причинах, не более. Стабилизаторы нужно настраивать под нагрузкой: то есть, условно, я подключаю к стабилизатору схему, которая будет от него запитываться и выставляю в плечах равенство напряжений. Я правильно понимаю процесс настройки стабилизатора? С уважением Олег

Олег, не очень! Так можно схему спалить. На выход стабилизатора нужно прицепить резисторы (нужной мощности и номинала), настроить выходные напряжения и лишь после этого подключать питаемую схему.

По даташиту у LM317 минимальный выходной ток 10мА. Тогда при выходном напряжении 12В на выход надо повесить резистор на 1кОм и отрегулировать напряжение. На входе стабилизатора при этом должно быть минимум 15В!

Кстати, как запитаны стабилизаторы? От одного трансформатора/обмотки или разных? При подключении нагрузки минус проседает на 2В -а как дела на входе этого плеча?

Доброго здоровья, уважаемый редактор! Транс мотал сам, одновременно две обмотки двумя проводами. На выходе на обоих обмотках по 15,2 вольта. На конденсаторах фильтра по 19,8 вольт. Сегодня, завтра проведу эксперимент и отпишусь.

Кстати у меня был казус. Собрал стабилизатор на 7812 и 7912, умощнил их транзисторами tip35 и tip36. В результате до 10 вольт регулировка напряжения в обоих плечах шла плавно, равенство напряжений было идеальным. Но выше. это было что- то. Напряжение регулировалось скачками. Причем поднимаясь в одном плече, во втором шло вниз. Причина оказалась в tip36, которые заказывал в Китае. Заменил транзистор на другой, стабилизатор стал идеально работать. Я часто покупаю детали в Китае и пришел к такому выводу: Покупать можно, но нужно выбирать поставщиков, которые продают радиодетали, изготовленные на заводах, а не в цехах какого- нибудь не понятного ИП. Выходит чуть дороже, но и качество соответствующее. С уважением Олег.

Доброго вечера, уважаемый редактор! Только сегодня появилось время. Транс со средней точкой, напряжение на обмотках 17,7 вольт. На выход стабилизатора повесил резисторы по 1 ком 2 ватта. Напряжение в обоих плечах выставил 12,54 вольта. Отключил резисторы, напряжение осталось прежним- 12,54 вольта. Подключил нагрузку (10 штук ne5532)стабилизатор работает прекрасно.

Благодарю Вас за консультации. С уважением Олег.

Добавить комментарий

Спамеры, не тратьте своё время — все комментарии модерируются.
All comments are moderated!

Вы должны авторизоваться, чтобы оставить комментарий.

Регулируемый стабилизатор тока на LM317 для светодиодов

Спрос на системы, стабилизирующие напряжение, значительно вырос за последние годы. Особенный интерес проявляется к приборам, работающим с искусственными источниками освещения и в частности со светодиодами. Стабилизатор тока на lm317 – это простое, недорогое, но надежное устройство, которое можно приобрести или собрать самостоятельно. В последнем случае необходимо знать основные правила приборостроения, требования безопасности при работе с электричеством и подготовить стандартный набор элементов.

Для чего необходима стабилизация тока и напряжения

Количество электрических устройств в домах постоянно растет. За последние годы число электроприборов увеличилось в несколько раз. Как результат – возросла потребность в уровне напряжения в электрических сетях. При этом большая часть зданий (жилых и производственных) и электростанций построена более 30-40 лет назад.

Некоторые современные приборы производят со встроенными стабилизаторами – небольшими схемами для предотвращения поломок от скачков напряжения. Но большая часть не содержит дополнительных устройств и даже малый перепад в сети грозит перегоранием. В группе повышенного риска крупная бытовая техника (не цифровая). В частности бойлеры и стиральные машины.

Чтобы избежать повреждений и обеспечить стабильное напряжение в сети, устанавливают стабилизаторы. В каждом доме это делать необязательно. Если в здании постоянная подача тока без серьезных перепадов (в пределах 220 Вольт с максимальной погрешностью 10%), в дополнительных устройства нет смысла. Но когда скачки постоянны, установка стабилизатора позволит сберечь технику и обеспечит электричеством.

Виды стабилизирующих устройств

Перед покупкой прибора следует ознакомиться с основными типами и особенностями. Каждый имеет преимущества и недостатки, предназначены для разного уровня напряжения и количества приборов. Отличаются и принципы работы.

Релейные

Оптимальный вариант для частных и дачных домов, квартир. На трансформаторе установлено несколько магнитных обмоток. В момент перепада напряжения между ними происходит переключение, что позволяет сохранить поток напряжения в прежнем режиме. К недостаткам относят:

  • изменение потока энергии в ступенчатом режиме (резко, прерывисто);
  • искривление синусоиды потока напряжения;
  • небольшая мощность на моменте отдачи.

Стоимость подобных устройств значительно ниже других моделей стабилизаторов. Отзывы владельцев хорошие, прибора оказывается достаточно для домашних сетей.

Электронные

Различают два типа стабилизаторов электронного «наполнения» – симисторные и тиристорные. В первых переключение между обмотками в автоматическом режиме осуществляет небольшой механизм – симистор. КПД прибора высокое, срабатывает быстро. Существенный плюс для бытового использования – бесшумность работы. Второй вид не так эффективен, обычно используется для стабилизации домашних сетей без большого напряжения. Наиболее заметный недостаток – стоимость.

Электромеханические

Другие названия – сервомоторные, сервоприводные. Принцип работы – с помощью электропривода угольный электрод перемещается по обмоткам, создавая бесперебойное напряжение. Часто покупается для бытовых нужд и небольших помещений (дом, дача, офис). Плюсы – цена, компактность, плавное переключение. Минусы – шум, малая скорость переключения.

Феррорезонансные

В последние годы редко используется из-за появления более современных устройств. Эффект феррорезонанса возникает в системе взаимодействия трансформатора и конденсатора. Устройства крупногабаритные, шумные, не работают при резких и значительных перегрузках. Преимущества – длительный срок эксплуатации, возможность использования в помещениях с высокой влажностью.

Читать еще:  Как сделать металлоискатель своими руками, помощь новичкам

Инверторные

Устройства данного типа являются мощными и дорогостоящими. Используются в быту и крупных производственных помещениях. Основное отличие – кварцевый генератор и контроллер, которые преобразуют напряжение на входе в постоянный ток, а на выходе – в переменный. Одновременное двойное формирование позволяет работать с различным уровнем тока – от 115 до 300 Вольт. Преимущества – отсутствие шума, малый размер, быстрое переключение и регулирование, другие дополнительные возможности (например, защита бытовой техники от чрезмерного напряжения).

Схемы линейных устройств

Стабилизатор тока на lm317 – это прибор, работающий по линейной схеме переключения напряжения. Подобные микросхемы используются для сетей, где не требуется высокий КПД и чрезмерная мощность. В частности – для поддержки работы светодиодов. Преимущества:

  • защита от резких скачков, чрезмерного уровня электроэнергии;
  • переполюсовка тока на входном элементе;
  • отсутствие дополнительных деталей и устройств.

К недостаткам относят меньший КПД – напряжение, полученное сверх необходимого, перерабатывается в нагревание, поэтому дополнительное охлаждение обязательно.

Для стабильной работы требуется плюсовая разница токов на входе и выходе – линейные стабилизаторы перестают функционировать при падении в 0,4В (даже при 0,5В). Поэтому схема бп на lm317 с регулировкой тока и напряжения не применяется для крупногабаритных устройств и «тяжелых» сетей.

Основные характеристики

Стабилизатор напряжения на lm317 работает в определенном диапазоне подачи электроэнергии. Пределы – минимум 1,25В, максимум 37В. На выходе мощность напряжения не превышает 1,5 Ампер, погрешность при нестабильном подключении составляет до 0,1%.

Регулятор напряжения на микросхеме lm317 имеет системы дополнительной внутренней защиты: от коротких сетевых замыканий, от теплового перенапряжения, от чрезмерного рассеивания «лишнего» напряжения.

Тепловое ограничение обеспечивают специальные микродатчики, которые гарантируют защиту техники от превышения рассеиваемой мощности – если подобное произойдет, устройство просто отключится и не пострадает.

Мощность и входное напряжение

Для работы регулятора тока на схеме lm317 напряжение на входной части не должно быть выше 40 Вольт. При этом минимальная разница тока на входах и выходах должна превышать 2 Вольта.

Чтобы работал регулятор напряжения на lm317, схема не должна получать нагрузку больше 1,5А. Если не будет дополнительного охлаждения, уровень снизится. Примерную мощность вычисляют, умножая два показателя – мощность электроэнергии на выходе и разница потенциалов входа и выхода.

При температуре окружающей среды до 30° по Цельсию допускается рассеивание мощности до 1,5Вт (если нет теплоотвода). При нормальном уровне теплоотведения допускается рассеивание до 20Вт.

Конструкция устройства

Схема блока питания стабилизатора на lm317 с регулировкой тока и напряжения при минимальном обустройстве имеет два резистора, разница в сопротивлении которых регулирует напряжение на выходе и конденсаторах. Среднее значение тока на опорных элементах составляет 1,25 В. Сопротивление не должно превышать 240 Ом.

Корпус стабилизатора на схеме lm317 изготавливается из пластмассы. Возможные варианты: ТО 220 и 220FP, SOT23 и D2PAK. Системы внутренней защиты позволяют устройству работать в случае отключения входа регулировки.

Импульсные драйверы

Драйверы с импульсной системой – это те же стабилизаторы напряжения. Напряжение переменного типа позволяет регулировать работу устройства. Если уровень составляет меньше 2-3 Ампер, не требуется дополнительное теплоотведение.

Импульсные приборы «нарезают» входящий ток, чтобы на выходе получить нужный уровень напряжения. Может работать с сетями высоких нагрузок. Минусы – необходим отдельный источник питания, стоимость, внешнее «лишнее» электромагнитное поле. Сложно собрать в домашних условиях.

Схемы включения

Схема включения блока питания на lm317 с регулировкой тока и напряжения позволяет использовать стабилизатор в сетях с нестандартным напряжением. Чтобы устройство работало, необходимо минимум два резистора. Наиболее важные показатели – напряжение опорного пункта, уровень тока на выходе.

Простейший стабилизированный блок питания

Стабилизаторы напряжения необходимы не только для защиты бытовой и производственной техники. В лабораторных условиях устройства помогают избежать чрезмерных потоков электроэнергии и перегорания сетей. Поэтому начинающие и профессиональные техники стремятся использовать хотя бы простые стабилизирующие блоки.

  • несложная сборка;
  • надежная работа;
  • недорогие и доступные детали.

К недостаткам относят низкий выходящий КПД, использование радиаторов крупных размеров, крупногабаритность устройства.

Для стандартного прибора потребуется несколько элементов:

  • схема lm317;
  • транзистор с пластиковым корпусом;
  • диод;
  • два резистора;
  • два конденсатора;
  • диодный мост.

Показатели элементов не имеют критического значения. Например, резисторы на R1 могут иметь значения от 30 до 50 Ом, а диод не устанавливать.

Блок питания на интегральном стабилизаторе

Устройства с интегральной системой работы используют в стабилизаторах напряжения, аудиосистемах, усилителях, блоках питания и других. Все детали конструкции соединены посредством кремниевого кристалла так, чтобы их последовательность составляла стабилизатор. В электротехнике используют два типа:

  • с использованием полупроводника;
  • с применением пленочных элементов (гибридный).

Стандартная схема включает несколько типичных деталей: опорного источника, усилителя, регулирующего элемента, защитный механизм для отключения и предотвращения замыканий.

Микросхемы интегрального типа являются устройствами с завершенным функциональным циклом. Каждая имеет пути входа, выхода и заземления.

Использовать подобные схемы можно только с определенными показателями напряжения. Допустимые пределы – от 5 до 24В, для тока – меньше 1А.

Интегральные схемы имеют ограничитель напряжения на выходе. Также устанавливается дополнительная защита от перегрева.

Схема стабилизатора с регулируемым блоком питания

Мост-выпрямитель в подобных устройствах позволяет преобразовать переменный поток тока в постоянный. Один из конденсаторов фильтрует энергию с пульсирующими характеристиками, другой – делает переход напряжения более плавным. Такой тип дает возможность стабилизатору работать на уровне низких частот постоянного тока.

Выбор резистора осуществляется по значению номинала, допустимого для стабилизатора. Погрешность должна быть минимальной. Оптимальный вариант – точный расчет.

Область применения

Стабилизаторы на основе микросхемы LM317 используются, чтобы стабилизировать основные показатели технических приборов. Такое устройство легко собрать самостоятельно, а прибор заводского изготовления стоит недорого. Для данного класса имеет отличные эксплуатационные данные и срок эксплуатации, если не будет чрезмерно сильных перепадов электроэнергии.

Недостатком является предел напряжения – не больше 3В. Стабилизатор на основе корпуса ТО 220 – самая доступная модель, которую используют в нескольких областях:

  • бытовые (домашние) сети;
  • лабораторные условия;
  • LED-освещение (светодиоды).

Системы стабилизации напряжения на базе микросхемы LM317 – это надежные, простые и удобные устройства. Стоимость небольшая, но характеристики положительные. Подобные стабилизаторы часто используют для светодиодов в автомобилях.

Регулируемый стабилизатор напряжения LM317

Регулируемый стабилизатор напряжения LM317 выпускается в монолитных корпусах TO-220, TO-220FP, TO-3, D 2 PAK. Микросхема рассчитана на выходной ток 1.5 А, с регулируемым выходным напряжением в диапазоне от 1.2 до 37 В. Номинальное выходное напряжение выбирается с помощью резистивного делителя.

Основные характеристики LM317

  • Максимальное входное напряжение 40V
  • Диапазон выходного напряжения 1.2 to 37V
  • Выходной ток 1.5 А
  • Нестабильность по нагрузке 0.1%
  • Ограничение тока
  • Тепловое отключение
  • Температура эксплуатации 0 to 125 o C
  • Температура хранения -65 to 150 o C

Аналог LM317

Отечественным аналогом LM317 является микросхема KP142EH12A.

Конфигурация выводов

Типовая схема включения LM317

Схема регулируемого блока питания на LM317 будет выглядеть так:

Мощность трансформатора 40-50 Вт, напряжение вторичной обмотки 20-25 вольт. Диодный мост 2-3 A, конденсаторы на 50 вольт. C4 – танталовый, если такого нет, можно использовать электролит на 25 мкФ. Переменный резистор R2 позволяет регулировать выходное напряжение от 1,3 вольта, верхний предел выходного напряжения будет зависеть от напряжения вторичной обмотки трансформатора. На входе стабилизатора LM317 должно быть не больше 40 вольт, максимальное напряжение на выходе будет на 3 вольта меньше чем на входе. Диоды VD1 и VD2 служат для защиты LM317 в некоторых ситуациях.

Если требуется блок питания с фиксированным напряжением, то переменный резистор R2 нужно заменить на постоянный, номинал которого можно посчитать с помощью калькулятора LM317 или по формуле из datasheet LM317.

Стабилизатор тока на LM317

На микросхеме LM317 можно собрать стабилизатор тока, номинал и мощность резистора R1 считается с помощью калькулятора LM317. Эту схему используют в качестве источника питания для мощных светодиодов.

Зарядное устройство на LM317 (схема из datasheet)

Данная схема зарядного устройства предназначена для 6 вольтовых аккумуляторов, но подбором R2 можно выставить нужное выходное напряжение для других аккумуляторов. При номинале R3 равном 1 Om ограничение зарядного тока будет на уровне 0,6 A.

Как собрать стабилизатор тока на lm317 самостоятельно

В наше время, когда технологические процессы разработки электроприборов стремительно совершенствуются, достаточно сложно обойтись без специального оборудования для подключения техники в домашних условиях. В стабилизации подачи электротока важную роль играет блок питания. Каждый любитель современных электронных приборов должен научиться самостоятельно собирать преобразователи.

Предлагаем подробно рассмотреть, как собрать стабилизатор тока на lm317 своими руками. Устройство имеет обширный ряд применения, в первую очередь, со светодиодами, поэтому предварительно перед процессом разработки следует изучить его особенности и принцип работы.

  1. Технические особенности
  2. Принцип действия
  3. Сфера применения
  4. Характеристики
  5. Подготовительные работы
  6. Сбор аппарата

Технические особенности

Преобразователь для регулятора lm 317 выступает в качестве важного элемента для корректной работы любого технического оборудования. Процесс функционирования заключается в следующем: устройство преобразовывает подачу электроэнергии, поступающей от централизованной сети, в нужное для пользователя напряжение, позволяющее подключить тот или иной электроприбор. При всем этом, преобразовательный аппарат дополнительно выполняет защитную функцию от вероятности образования короткого замыкания.

Блоки питания подразделяются на 2 вида:

  • регулируемый стабилизатор тока на lm317;
  • импульсный.

Помимо всего, схематические данные, применяющиеся для создания данного агрегата, могут иметь существенные различия, от самых элементарных схем до сложных.

При наличии минимального опыта и знаний, следует начать с изготовления стабилизатора напряжения на lm317 по простым чертежам. Это позволит досконально изучить процесс функционирования и впоследствии создать более усложненную конструкцию.

Если доверять отзывам «домашних» мастеров, данный аппарат по функциональности превосходит покупные модификации в несколько раз, как функциональными способностями, так и эксплуатационным сроком.

ВИДЕО: LM317 стабилизатор тока LED DRIVER

Принцип действия

Чтобы в результате прибор грамотно регулировал напряжение и мог правильно измерять мощность тока, исходящего от электросети, нужно понимать его принцип функционирования.

Преобразователь lm317t характеризуется такими действиями, как нормализация интенсивности потока тока к выходному напряжению, что способствует снижению мощности электричества. Уменьшение силы электротока происходит в самом резисторе, обладающем показателем в 1.25V.

Рабочий блок питания

Очень важно, чтобы области спаивания имели литую форму. В случае если соединение было произведено неправильно, возникает вероятность образования короткого замыкания. Также следует применять качественные составляющие только от известных производителей.

Помните, что схема сборки регулятора, в котором присутствует микросхема lm317, обладает ограничительными рамками. Самым нижним барьером считается 0,8 Ом, высоким – 120 Ом. Получается, чтобы данная система стабильно работала, требуется применять формулу 0.8

Сфера применения

Блок для стабилизации напряжения на lm317, специализирующийся на изменении показателей мощности и интенсивности электротока, применяется в таких ситуациях:

  1. При возникновении необходимости подключения к питанию 220V различной электротехники.
  2. Тестирование приборов в личной технической лаборатории.
  3. Проектирование системы освещения с применением светодиодных ламп и лент.

Характеристики

Стабилизатор напряжения lm317, основанный на работе микросхемы данной модификации, имеет такие характеристики:

  • Изделие дает возможность самостоятельно настраивать уровень выходного напряжения в пределах 1,2-28В.
  • Интенсивность нагрузки мощности электротока может варьироваться до 3А.

Следует обратить внимание на показатель нагрузки, его более чем достаточно для тестирования электроприборов собственного производства. Данными параметрами способен обеспечивать стабилизатор тока и напряжения, изготовленный по самой элементарной схеме.

Подготовительные работы

Для работы потребуется ряд элементов и деталей, которые можно приобрести в специализированном магазине или взять из другого устройства:

  • Стабилизатор тока lm317;
  • R-3 – сопротивление 0.1Ом*2 Вт;
  • TR-1 – трансформаторное устройство силового типа;
  • T-1 – транзистор вида КТ-81-9Г;
  • R-2 – сопротивление действие 220Ом;
  • F-1 – предохраняющий элемент 0.5 А и 250В;
  • R-1 – сопротивление 18К;
  • D-1 – светодиод IN-54-00;
  • P-1 – сопротивление 4,7 К;
  • BR-1 – светодиодный барьер;
  • LED-1 – цветной диод;
  • C-1 – конденсаторный аппарат модификации с параметрами 3 300 мкф*43V;
  • C-3 – конденсаторное устройство модификации 1мкф*43V;
  • C-2 – конденсаторный элемент керамического вида 0.1 мкф.

Перечень может видоизменяться в зависимости от разновидности применяемой схемы подключения.

Рабочая схема подключения

Предварительно перед сборкой преобразователя lm317t нужно приобрести все составляющие из вышеперечисленного списка.

Подбирайте качественные проверенные элементы, от этого будет зависеть функционирование не только агрегата собственного производства, но и техники, которая планируется к подключению.

Чаще всего такой СН применяют в комплекте со светодиодами

Основной деталью изделия является трансформатор, который можно извлечь из любого электрического прибора: музыкальный центр, телевизор или небольшая магнитола. Также его можно приобрести, специалисты рекомендуют отдавать предпочтение модификации TBK110. Однако выходное напряжение модель может производить только со значением 9В.

Сбор аппарата

Когда схема проектирования выбрана и подготовлены все необходимые запчасти, можно смело приступать к созданию стабилизатора тока на lm317. Процесс производства, схема подключения должна осуществляться таким образом:

  1. Монтируется подобранный вид трансформаторного агрегата.
  2. Производится сбор каскадной схемы и выпрямительного оборудования.
  3. Спаиваются все полупроводниковые светодиоды.

Важно знать! Вид выпрямительного элемента может относиться к двухполупериодному или однополупериодному оборудованию, обладающему удвоенными и утроенными мостовыми. Для изготовления аппарата по стандартной схеме следует применять мостовой вариант выправления.

  1. Производится определение выводов на системе. Их насчитывается всего три: вес, выход, вход. Чтобы в процессе не запутаться, нужно обозначить параметры на элементах соответствующими цифрами, от 1 до 3.
  2. Переверните агрегат таким образом, чтобы обозначенная вами нумерация имела начало с левой стороны.
  3. Проведите регулировку напряжения, стабилизируя параметры. Для этого минус поддайте на вывод «2» одновременно снимая настроенное значение интенсивности тока с третьего элемента.
  4. Исходя из выбранной вами схемы, осуществите монтаж остальных запчастей и поместите их в прочный пластиковый или алюминиевый корпус.

Форма изделия может быть различной, здесь все зависит от предпочтений пользователя и размерных параметров составляющих деталей.

Так выглядит самодельный СП в собранном виде

Если грамотно подобрать схему, следовать правилам подключения и производить процесс поэтапно, в результате может выйти качественный стабилизатора тока на lm317 микросхеме. Данный прибор послужит незаменимым агрегатом в каждой «домашней» лаборатории, специализированной на создании электротехнических устройств.

ВИДЕО: Самодельный стабилизатор напряжения для LED/светодиодов

Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector
×
×