Rich--house.ru

Строительный журнал Rich—house.ru
12 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Теплопроводность бетона: классификация, таблица коэффициентов

Как определить коэффициент теплопроводности бетона и от чего он зависит

Одно из основных требований современного строительства – это сохранение тепла внутри помещений, что влияет на экономию денежных средств. Поэтому еще при проектировании здания инженеры подбирают строительные материалы с низкой теплопроводностью. Это в полной мере относится и к бетонным конструкциям. Что же это такое – теплопроводность бетона и от чего зависит этот показатель?

Способность материалов проводить тепло

По сути, это свойство любого материала пропускать через свою структуру тепло. И чем больше тепловой энергии проходит, тем выше теплопроводность. Для того чтобы сохранить температуру внутри дома, необходимы стройматериалы с низким коэффициентом.

Измеряется данный эксплуатационный показатель как соотношение тепловой энергии (измеряемой в ваттах), которая может изменить температуру воздуха на 1ºC при прохождении через строительный материал толщиной 1 м за один час. Соответственно единица измерения коэффициента теплопроводности будет такой – Вт/м К ©.

Критерии зависимости

От чего зависит коэффициент теплопроводности бетона? На него влияет несколько факторов, среди которых есть основные и второстепенные. К основным признакам можно отнести плотность бетона, его состав и качество компонентов, пористость и наличие в составе теплоизоляционных материалов, к примеру, керамзита или перлита.

К второстепенным относят влажность бетонной конструкции, температуру окружающей среды, качественное состояние самого бетона.

Классификация бетонов

Основное разделение бетонных растворов производится по их плотности, вот почему этот технический показатель стоит на первом месте определения теплопроводности материала.
Чтобы показать, как влияет плотность на способность проводить тепло, необходимо рассмотреть все группы классификации. Приведем несколько примеров бетонных растворов, которые чаще других используются в строительстве. Вот таблица их теплопроводности.

БетонТеплопроводность, Вт/м К.
С щебнем1,3
С песком0,7
Пористый1,4
Сплошной1,75
Теплоизоляционный0,18

Тяжелый

Таблица наглядно демонстрирует, что чем тяжелее наполнитель, тем выше теплопроводность бетонного раствора. То есть большой вес материала, а значит, и высокая плотность говорят о том, что изделие из него будет быстрее пропускать тепло.

Поэтому когда в сооружении фундамента дома применяется классическая рецептура изготовления бетонного раствора, где используется большое количество щебня, специалисты рекомендуют такое основание дополнительно утеплять (лучше снаружи).

По классификации бетонных растворов получается так: тяжелые виды (плотностью 1800—2500 кг/м³) обладают повышенной теплопроводностью, а легкие (плотностью 500-1800 кг/м³) пониженной. Соответственно их коэффициент будет варьироваться в диапазонах:

  • тяжелый – 1.2-1,5 Вт/м К;
  • легкий – 0,25-0,52 Вт/м К.

Теплоизоляционный

В таблице есть так называемый теплоизоляционный вид, в состав которого входят керамзит, шлаки, вместо песка добавляется вспученный перлит (мелкий речной песок). В эту же категорию можно отнести ячеистые виды бетонов.

У этого материала самый низкий коэффициент теплопроводности. Правда, его прочность тоже очень низкая. Но назначение этой марки – создание именно теплоизоляционных слоев. Из него не производятся несущие конструкции.

Состав легких бетонов

Итак, нас будут интересовать легкие бетоны, которые обладают самой низкой теплопроводностью и могут использоваться для сооружения несущих конструкций. Обозначим два из них, которые сегодня все чаще стали применяться для сооружения домов.

Это бетон, в состав которого входит перлит и керамзит. Сразу же оговоримся, что перлитобетон имеет плотность 1200 кг/м³, а керамзитобетон 950-1000 кг/м³.

Перлитобетон

Наименование компонентаКоличество компонентов
Цемент, кг280
Перлит вспученный, м³/кг0,9/240
Песок кварцевый, м³/кг0,4/680
Вода, л100-1500

Кстати, из этого раствора можно заливать как монолитные изделия, так и пустотелые. Так вот, марка первого всегда М50, а вот марка второго – М35.

Керамзитобетон

Наименование компонентовКоличество компонентов
Цемент, кг250
Керамзит, м³/кг1,2/720
Вода, л100-150

В зависимости от фракции используемого наполнителя керамзитобетон может быть марки М50 или М35.

Как рассчитать коэффициент

Для определения коэффициента теплопроводности бетона используются специальные математически формулы. Их две:

  1. Формула Кауфмана: 0,0935•(m) 0,5•2,28m + 0,025, применяется для сухих растворов;
  2. Формула Некрасова: (0,196 + 0,22 m2) 0,5 – 0,14, для влажных (3%) смесей.

В них буква m – это масса раствора, которую можно вычислить из его плотности. К примеру, все тот же керамзитобетон плотностью 1000 кг/м³, значит, его масса равна 1,0 кг. Именно этот показатель и учитывается в формулах.

Если это число подставить в любую из формул, то по Кауфману, к примеру, получится коэффициент – 0,238 Вт/м К. Температура раствора при расчетах должна быть равна +25 °С.

Прочность или теплоизоляция?

Конечно, есть определенные условия, при которых теплопроводность бетонной смеси будет или уменьшаться, или возрастать. В первую очередь придется обращать внимание на толщину заливаемой смеси. Чем этот показатель больше, тем ниже теплопроводность. Но при этом увеличивается расход самого материала, что влияет на себестоимость производимых работ.

Вот почему, решая сразу две задачи: увеличение теплоизоляционных характеристик конструкции и снижение ее себестоимости, в первую очередь необходимо соблюсти точное соотношение прочности и количества раствора.

В некоторых случаях идут на то, чтобы увеличить прочность, то есть использовать тяжелые бетоны, но при этом снизить теплоизоляционные свойства. Или наоборот. В любом случае основное требование – это прочность, а затем уже теплоизоляционные качества и другие характеристики.

Таблица Теплопроводности строительных материалов

Качество Теплопроводности материала, его суть — в данном случае теплопроводность строительного материала – это свойство переноса энергии тепла от теплой части вещества (в данном случе — материала дома), к холодной — частицами (молекулами) этого вещества.

Большая часть значений коэффициентов теплопроводности стройматериалов в данной таблице позаимствованы в Приложении № 2 СНиП II-3-79 «Строительная теплотехника», из Свода правил — СП 50.13330.2012, а также — из СНиП 23-02-2003 «Тепловая защита зданий».

Таблица дополнена значениями теплопроводности, которые взяты с некоторых сайтов самих производителей строительных материалов.

Необходимо знать, что теплопроводность ряда строительных материалов имеет свойство меняться в зависимости от степени их влажности.

И потому, в таблице приведены значения теплопроводности строительных материалов как для «сухого» состояния строительного материала, так и для «влажного» состояния такового, в соответствии с приложением СП (свода правил) 50.13330.2012.

Знание таковых значений теплопроводности стройматериалов необходимы в силу того, что строительство домов происходит в различных климатических условиях (различных регионов страны), а значит, — степень влажности помещений будет при этом разной.

Значение «А» в таблице — это условия привычной, можно сказать «среднего качества» эксплуатации стройматериалов, значение «Б» — это условия более высокой в сравнении с привычной нормой среды — эксплуатации строящегося дома.

Условия А
для материала
(«обычные»)

Теплопроводность Кирпича силикатного . При кладке на цементно-песчанный раствор.

Теплопроводность Известняка.
При плотности — 1600 куб.м.

Теплопроводность Линолеума из ПВХ на теплоизолирующей основе.
При плотности — 1800 куб.м.

Теплопроводность Линолеума из ПВХ на тканевой основе. При плотности — 1800 куб.м.

Если в «Таблице теплопроводности материалов» для какого-либо из них отсутствует значение при условиях А и/или Б, это значит, что в «Своде правил» — СП 50.13330.2012, и у самих производителей — нет соответствующих значений, либо таковые значения просто не имеют смысла.

Работы в саду и огороде в Марте Март – это первый весенний месяц. И погоду предугадать еще трудно. По календарю уже весна, а на дворе зачастую еще.

Август – последний месяц лета. Месяц, славный своим щедрым урожаем. И месяц, когда мы делаем заготовки на весь год. Работы в саду и огороде в Августе.

Пергола своими руками? Это не так сложно. Если есть необходиомсть визуально отделитьодну часть сада от другой, еще это называется зонированием, в том слечае.

ДЕКОРАТИВНЫЕ ОГРАДЫ СВОИМИ РУКАМИ. Что можно предпринять, если в Вашем саду есть хозяйственная зона, и она выглядит не слишком эффектно, или пытается несколько.

Что такое теплопроводность бетона, коэффициент теплопроводности монолитного железобетона

При возведении частного дома или проведении утепляющих работ необходимо ответственно подойти к вопросам покупки материалов. Чтобы уменьшить потери тепловой энергии и снизить расходы на обогрев, следует учитывать такой параметр, как теплопроводность бетона. Он определяет способность блоков пропускать тепло и считается важнейшей эксплуатационной характеристикой.

Влияние теплопроводности на микроклимат внутри помещения

Среди большого разнообразия материалов бетонный массив считается достаточно популярным. Его ключевым свойством считается степень теплопередачи. Чтобы избежать непредвиденных теплопотерь, нужно учитывать это значение еще при составлении проекта теплоизоляции. В таком случае постройка будет как надежной и долговечной, так и комфортной для пребывания.

Если определить коэффициент теплопроводности бетона и найти подходящие материалы теплоизоляции, это позволит получить такие преимущества:

  • снизить затраты тепловой энергии;
  • уменьшить расходы на отопление;
  • организовать в помещении комфортный микроклимат.

Зависимость микроклимата в доме от степени теплопередачи объясняется следующими особенностями:

  1. По мере роста значений увеличивается интенсивность подачи тепла. В результате помещение быстрее остывает, но так же быстрее прогревается.
  2. Если теплопередача снижается, тепло долго удерживается внутри здания и не выходит наружу.

В результате степень проводимости тепловой энергии становится ключевым фактором, определяющим комфорт пребывания в доме. В зависимости от особенностей материала, он может обладать разной структурой и свойствами, а также теплопроводностью. Перед выбором блоков нужно внимательно изучить их эксплуатационные свойства и подготовить грамотный проект.

Теплопроводность железобетона и тепловое сопротивление

Начиная строительство помещения, следует ознакомиться с такими характеристиками:

  1. Коэффициент проводимости тепла. Он указывает на объемы тепла, которое проходит через блок в течение заданного интервала. Если значение снижается, это уменьшает способность пропускать тепловую энергию. При повышении значений ситуация выглядит противоположным образом.
  2. Сопротивление конструкций к потере тепла. Показатель указывает на способность материала сохранять тепло внутри постройки. Если он высокий, бетон подходит для теплоизоляции, если низкий — для быстрого отвода тепла наружу.

При составлении проекта здания и проведении тепловых расчетов важно уделять таким значениям особое внимание.

Коэффициент теплопроводности

В поисках хорошего материала для строительства необходимо определить, как меняется степень теплопроводности в зависимости от типа и модели монолита.

Коэффициент для различных видов монолита

Для сравнения показателей теплопроводности следует ознакомиться с таблицей, охватывающей свойства всех типов материала. Наименьшая степень присутствует у пористых конструкций:

  1. Сухие блоки и газонаполненный бетон обладают небольшой теплопроводностью. Она зависит от показателей плотности. Если удельный вес блока составляет 0,6 т/м³, коэффициент составит 0,14. При плотности 1 т/м³ — 0,31. Если влажность находится на базовом уровне, показатели увеличатся от 0,22 до 0,48. При повышении влажности — от 0,25 до 0,55.
  2. Бетон с наполнением керамзитом. С учетом значений плотности определяется теплопроводность. Изделие с плотностью 0,5 т/м³ получит показатель 0,14. По мере увеличения плотности до 1,8 т/м³ свойство вырастет до 0,66.
Читать еще:  Соединение стен с бетонными перекрытиями

При использовании шлака теплопроводность составит 0,3-0,7. Изделия на основе кварцевого или перлитового песка с плотностью 0,8-1 получат проводимость тепла 0,22-0,41.

Факторы влияющие на коэффициент

Степень проводимости бетона любой марки определяется множеством факторов. В их числе:

  1. Структура массива. Если в монолите присутствуют воздушные полости, передача тепла будет медленной и без больших потерь. По мере увеличения пористости теплоизоляция улучшается.
  2. Удельный вес массива. Монолит обладает разной плотностью, которая определяет его структуру и интенсивность обмена тепла. При росте показателей плотности растет и теплоотдача. В результате конструкция быстрее лишается тепла.
  3. Содержание влаги в стенах из бетона. Массивы с пористой структурой гигроскопичны. Остатки влаги, находящейся в капиллярах, могут просачиваться в бетон и заполнять воздушные поры, способствуя быстрой передаче тепла.

С помощью пористых компонентов можно защитить постройку от быстрого расходования тепла и обеспечить хорошие климатические условия в здании. Изделия с низкой теплопроводностью эффективны при изоляции помещений, поэтому их применяют в северных регионах с суровыми зимами.

Теплопроводность и утепление зданий

Приступая к организации эффективной теплозащиты частного жилища, важно обращать внимание на тип материала, из которого создаются стены. С учетом специфики конструкции и эксплуатационных свойств, выделяют такие разновидности бетонных масивов:

  1. Конструкционные. Необходимы при возведении капитальных стен. Их характеризует повышенная устойчивость к нагрузкам и способность быстро пропускать тепловую энергию.
  2. Материалы для теплоизоляции. Задействуются при обустройстве помещений с минимальными нагрузками на стены. Обладают небольшим весом, пористым строением и малой теплопередачей.

Чтобы в помещении всегда сохранялась комфортная температура, рекомендуется использовать для возведения стен разные виды бетона. Однако в таком случае показатели толщины стен будут меняться. Оптимальный уровень проводимости тепла возможен при таких параметрах толщины:

  1. Пенобетон — не больше 25 см.
  2. Керамзитобетон — до 50 см.
  3. Кирпичи — 65 см.

Как производится расчет

Для сохранения тепла внутри дома и сокращения потерь тепловой энергии несущие стены делаются многослойными. Чтобы рассчитать толщину слоя изоляции, необходимо руководствоваться следующей формулой — R=p/k.

Она имеет следующую расшифровку:

  • R — показатель устойчивости к скачкам температуры;
  • p — толщина слоя в метрах;
  • k — Проводимость тепла монолитом.

Теплопроводность строительных материалов таблица

Конструкционные материалы и их показатели

Конструкционный бетон, теплопроводность которого зависит от применяемых наполнителей, пользуется большой популярностью. Это обусловлено его прочностью и эластичностью, что позволяет возводить надежные и защищенные от потерь тепла постройки.

Материалы из бетона с добавлением пористых заполнителей

Пористые конструкции характеризуются хорошим удержанием тепла, при этом точный показатель теплопроводности зависит от следующих факторов:

  1. Параметры ячеистости.
  2. Уровень влажности.
  3. Показатели плотности.
  4. Теплопроводность матрицы.

Показатели теплоизоляционных материалов

Теплоизоляционные конструкции, состоящие из шлакового наполнителя и керамзита, характеризуются минимальной теплопроводностью. Однако их прочностные свойства остаются невысокими, поэтому основная сфера применения — изоляция несущих стен и пола. Возводить основные конструкции из таких материалов запрещено.

Таблица показателей

Таблица значений для разных материалов выглядит следующим образом:

Руководствуясь сведениями из этой таблицы, можно подобрать оптимальный строительный материал для возведения надежной и защищенной от холода постройки.

Как определить коэффициент теплопроводности бетона и от чего он зависит?

При выполнении мероприятий по строительству зданий или ремонту ранее возведенных построек важно надежно теплоизолировать стены строения. Для уменьшения объема тепловых потерь и снижения затрат на поддержание комфортной температуры важно ответственно подойти к выбору теплоизоляционных материалов и выполнению тепловых расчетов. Решая задачи, связанные с обеспечением энергоэффективности бетонных строений, необходимо учитывать теплопроводность бетона. Этот показатель характеризует способность проводить тепло и является одной из наиболее важных характеристик.

Теплопроводность бетонного массива

Как влияет теплопроводность бетона на микроклимат внутри помещения

Из множества строительных материалов, применяемых для возведения зданий, одним из наиболее распространенных является бетон. Среди главных рабочих характеристик материала выделяется коэффициент теплопроводности бетона. На этапе проектирования необходимо предусмотреть применение в процессе строительства теплоизоляционных материалов, позволяющих превратить возведенную железобетонную конструкцию в жилое строение. Ведь важно возвести не только устойчивое, экологически чистое и оригинальное здание, но и создать благоприятные условия для проживания.

Зная теплопроводность бетонного массива, и правильно выбрав теплоизоляционные материалы, можно добиться значительных результатов:

  • существенно сократить тепловые потери;
  • снизить затраты на обогрев помещения;
  • обеспечить внутри здания комфортный микроклимат.

Влияние уровня теплопроводности на внутренний микроклимат выражается простой зависимостью:

  • при возрастании коэффициента, интенсивность тепловой передачи возрастает, и строение, возведенное из материала с такими характеристиками, быстрее остывает и, соответственно, ускоренными темпами нагревается;
  • снижение способности бетонного массива передавать тепло позволяет на протяжении увеличенного периода времени сохранять внутри помещения комфортную температуру, с соответственным уменьшением тепловых потерь.

Зная теплопроводность бетонного массива можно обеспечить внутри здания комфортный микроклимат

Если подытожить, то степень теплопроводимости бетона является определяющим фактором, влияющим на комфортность жилища. Различные виды бетона отличаются структурой массива, свойствами применяемого наполнителя и, соответственно, степенью теплопроводности. Важно использовать такие марки бетона совместно с утеплителями, чтобы обеспечить надежное удержание бетонным массивом тепла в помещении. Выбор применяемых для строительства материалов производится на проектной стадии.

Теплопроводность железобетона и тепловое сопротивление – знакомимся с понятиями

Принимая решение об использовании для строительства здания определенной марки бетона или другого строительного материала, следует обращать внимание на следующие характеристики, обеспечивающие энергоэффективность строения:

  • коэффициент теплопроводности железобетона или бетона. Это специальный показатель, характеризующий объем тепловой энергии, которая может пройти через различные стройматериалы за определенный промежуток времени. При снижении величины коэффициента, способность материала проводить тепло уменьшается, а при возрастании показателя – скорость отвода тепла возрастает;
  • тепловое сопротивление строительных конструкций. Этот параметр характеризует свойства стройматериалов препятствовать потерям тепловой энергии. Тепловое сопротивление является обратным показателем, если сравнивать со степенью теплопроводности. При повышенном значении показателя теплового сопротивления стройматериал может применяться для теплоизоляционных целей, а при пониженном – для ускоренного отвода тепла.

Разрабатывая проект будущего здания, и выполняя тепловые расчеты, необходимо учитывать указанные показатели.

Коэффициент теплопроводности бетона для различных видов монолита

Определяясь с видом бетона, который будет использоваться для постройки жилого дома, следует оценить, как изменяется теплопроводность монолита для разновидностей этого строительного материала. Поможет сравнить теплопроводность бетона таблица, которая охватывает характеристики всех типов бетона. Рассмотрим, как изменяется уровень теплопроводности бетонного массива, который выражается в Вт/м 2 х ºC для наиболее распространенных разновидностей материала.

Наименьшее значение коэффициента у бетонных композитов с ячеистой структурой:

  • для сухого пенобетона и газонаполненного бетона величина показателя небольшая, по сравнению с другими видами. Она возрастает при повышении плотности материала. При удельном весе 0,6 т/м 3 коэффициент равен 0,14, а при плотности 1 т/м 3 уже составляет 0,31. При базовой влажности значения возрастают от 0,22 до 0,48, а при повышенной от 0,26 до 0,55;
  • керамзитонаполненный бетон, в зависимости от плотности массива, также имеет различную величину коэффициента, который изменяется пропорционально возрастанию удельного веса. Так керамзитобетон с плотностью 0,5 т/м 3 имеет низкий коэффициент, равный 0,14, а при возрастании плотности до 1,8 т/м 3 параметр теплопроводности возрастает до 0,66.

Величина коэффициента определяется также используемым для приготовления бетонной смеси наполнителем:

  • для тяжелого бетона плотностью 2,4 т/м 3 , содержащего щебеночный наполнитель, показатель составляет 1,51;
  • бетон, где в качестве наполнителя используются шлаки, характеризуется уменьшенной величиной теплопроводности, составляющей 0,3–0,7;
  • керамзитобетон, содержащий кварцевый или перлитовый песок, имеет плотность 0,8–1 и, соответственно, уровень теплопроводности, равный 0,22–0,41.

Коэффициент теплопроводности бетона

надежно теплоизолируют возводимое строение. При сооружении стен зданий из бетона, имеющего пористую структуру и пониженный уровень теплопроводности, необходим тонкий слой теплоизолятора. Применение тяжелых марок бетона требует усиленного утепления строения. Для этого укладывается толстый слой теплоизолятора. При подборе материала следует учитывать, что с возрастанием плотности увеличивается теплопроводность бетонного массива.

Какие факторы влияют на коэффициент теплопроводности железобетона

Уровень теплопроводимости бетона, независимо от его марки и наличия в массиве стальной арматуры, зависит от комплекса факторов. Рассмотрим показатели, каждый из которых оказывает определенное влияние на данную характеристику:

  • структура бетонного массива. При создании внутри монолита воздушных полостей процесс передачи тепла через ячеистый массив осуществляется на небольшой скорости и с минимальными потерями. Если подытожить, то увеличенная концентрация ячеек позволяет снизить потери тепла;
  • удельный вес материала. Плотность бетонного массива влияет на его структуру и, соответственно, на интенсивность процесса теплообмена. При возрастании плотности материала увеличивается степень теплопередачи и возрастает объем тепловых потерь;
  • концентрация влаги в бетонных стенах. Бетонный массив, имеющий пористую структуру, гигроскопичен. Частицы влаги, которые по капиллярам просачиваются вглубь бетона, заполняют воздушные поры и ускоряют тем самым процесс теплопередачи.

Выполняя расчеты необходимо учитывать, что с уменьшением влажности материала снижается степень теплопроводимости, и теряется меньшее количество тепла. Применение пористого заполнителя позволяет снизить потери тепла и обеспечить комфортный микроклимат помещения. Стройматериалы с низкой теплопроводностью целесообразно использовать для теплоизоляционных целей. Зная зависимость теплопроводности бетона от его характеристик можно выбрать оптимальный вид материала для постройки стен.

Коэффициент теплопроводности железобетона

Теплопроводность бетона и утепление зданий

Решение о теплоизоляции стен возводимых зданий принимается в зависимости от того, из каких видов бетона производится сооружение стен. Бетонные изделия делятся на следующие виды:

  • конструкционные, применяемые для капитальных стен. Отличаются повышенной нагрузочной способностью, увеличенной плотностью, а также способностью ускоренными темпами проводить тепло;
  • теплоизоляционные, используемые в ненагруженных конструкциях. Характеризуются уменьшенным удельным весом, ячеистой структурой, благодаря которой снижается теплопроводность стен.

Таблица теплопроводности строительных материалов: коэффициенты

Для поддержания комфортной температуры в помещении можно возводить стены из различных видов бетона. При этом толщина стен будет существенно изменяться. Одинаковый уровень теплопроводности капитальных стен обеспечивается при следующей толщине:

  • пенобетон – 25 см;
  • керамзитобетон – 50 см;
  • кирпичная кладка – 65 см.

Для поддержания благоприятного микроклимата, в рамках мероприятий по энергосбережению, выполняется теплоизоляция строительных конструкций. На стадии разработки проекта специалисты определяют возможные пути потери тепла и выбирают оптимальный вариант утеплителя.

Сравнительный график коэффициентов теплопроводности некоторых строительных материалов и утеплителей

Основной объем тепловых потерь происходит из-за недостаточно эффективной теплоизоляции следующих частей здания:

  • поверхности пола;
  • капитальных стен;
  • кровельной конструкции;
  • оконных и дверных проемов.

При профессиональном подходе и выборе эффективных утеплителей можно сделать свой дом более комфортным, а также сэкономить значительный объем денежных средств на отоплении.

Как производится расчет с учетом коэффициента теплопроводности бетона

Для поддержания комфортной температуры и снижения теплопотерь несущие стены современных зданий выполняются многослойными и включают капитальные конструкции, теплоизоляционные материалы, отделочные покрытия. Каждый слой сэндвича имеет определенную толщину.

Читать еще:  Гидроизоляция стяжки пола – материалы и технологии

Решая задачу по расчету толщины теплоизолятора, необходимо использовать формулу расчета теплового сопротивления – R=p/k, которая расшифровывается следующим образом:

  • R – величина температурного сопротивления;
  • p – значение толщины слоя, указанное в метрах;
  • k – коэффициент теплопроводности железобетона, бетона или другого материала, из которого изготовлены стены.

Используя данную зависимость можно самостоятельно выполнить расчет, используя обычный калькулятор. Для этого необходимо разделить толщину строительной конструкции на коэффициент теплопроводимости бетона или другого материала. Рассмотрим пример расчета для стен толщиной 0,3 метра, возведенных из газобетона с удельным весом 1000 т/м 3 и степенью теплопроводности, равной 0,31.

Алгоритм вычислений:

  • Рассчитайте термосопротивление, разделив толщину стен на коэффициент теплопроводности – 0,3:0,31=0,96.
  • Отнимите полученный результат от предельно допустимого для определенной климатической зоны – 3,28-0,96=2,32.

Перемножив коэффициент теплопроводности утеплителя на величину термического сопротивления, получим в результате требуемый размер слоя. Например, толщина листового пенопласта с коэффициентом теплопроводности 0,037 составит – 0,037х2,32=0,08 м.

Заключение

При выполнении проектных работ и осуществлении мероприятий по теплоизоляции зданий необходимо учитывать теплопроводность бетона. Она зависит от структуры, плотности и влажности стройматериала. Понимая определение теплопроводности, и владея методикой расчетов, несложно определить толщину утеплителя для бетонных стен здания. Правильно подобранный теплоизолятор позволит минимизировать тепловые потери, уменьшить затраты на отопление, а также обеспечить поддержание благоприятной температуры.

Какие показатели влияют на коэффициент теплопроводности бетона?

Важную роль при строительстве дома играет теплопроводность бетона. Это свойство указывает на способность строения удерживать тепловую энергию. Показатель изменяется в зависимости от вида и влажности материала. Стройматериал с высокой способностью удерживать тепло позволяет сэкономить на утеплении помещения. Пористые виды бетона чаще используют в качестве утеплителя, но при этом учитывают, что с повышением объема пор в материале происходит ухудшение устойчивости к механическим нагрузкам.

  1. Что это такое?
  2. Что влияет на показатель?
  3. Коэффициент теплопроводности
  4. Как проводятся расчеты?
  5. Утепление и показатели теплопроводности бетона

Что это такое?

При строительстве конструкций и домов со значительной нагрузкой на стены лучше выбрать конструкционный вид материала, а потом утеплить его с помощью полистирола.

Коэффициент теплопроводности бетона служит основной характеристикой при выборе теплоизоляционного сырья. Этот показатель указывает на способность стройматериала удерживать тепло внутри помещения. Высокое значение способствует более оперативному охлаждению дома в зимнее время и нагреванию летом. Блоки повышенной плотности быстрее передают тепло, в то время как поросодержащий материал задерживает нагретый воздух внутри сооружения. Поэтому материалы с более пористой структурой чаще всего применяют в качестве утеплителя.

Что влияет на показатель?

От теплопроводности материала, из которого построен дом, зависит микроклимат в нем. При выборе сырья для сооружения стен учитывают все факторы, влияющие на изоляционные способности. Выбрав бетон, как основной стройматериал, рекомендуется учитывать такие показатели:

  • Плотность. Высокое значение свидетельствует о близком расположении молекул материала друг к другу, что способствует более быстрой передаче тепла. Такой бетон является более прочным, но в то же время малоэффективен для утепления помещения. Плотный вид стройматериала требует дополнительных расходов на теплоизоляцию.
  • Пористость. Поризованная структура бетона делает материал неоднородным, что препятствует быстрой передачи тепла. Поэтому большое количество пустот свидетельствует о хороших теплоизоляционных свойствах. Теплопроводность керамзитобетона меньше чем у жестких бетонов в 5 раз. Минусом такого сырья является низкая прочность, что препятствует использованию материала при возведении несущих конструкций.
  • Влажность. Мокрые стены лучше проводят тепло, поэтому дома, построенные на влажном фундаменте без хорошей гидроизоляции склонны к повышению теплоотдачи.

Коэффициент теплопроводности

Значение показателя указывает на объем тепловой энергии, которую материал толщиной 1 м и площадью 1 м2 может провести за 1 секунду. При этом разница температур по обе стороны стройматериала составляет 1 °C. Значение показателя характеризует способность помещения из этого бетона удерживать тепло в зимнее время. Правильно подобранный материал при строительстве жилья позволит сэкономить на оплате за услуги тепла.

Как проводятся расчеты?

Чтобы определить этот показатель пользуются такими формулами:

  • Кауфмана. Применяется для определения коэффициента на сухом бетоне. Выглядит так: λ = 0,0935*(m)0,5*2,28m + 0,025;
  • Некрасова. При изменении влажности и показатель меняется. Поэтому для бетона с влажностью более 3% используют такую формулу: λ = (0,196 + 0,22 m2)0,5—0,14.

Для расчета нужно иметь сведения об исследуемых экземплярах. Знак m обозначает объемную массу объекта, а λ — непосредственно искомый коэффициент. Так как вес различных видов бетона при одинаковом объеме меняется, то и значение показателя также изменяется. Коэффициент теплопроводности керамзитобетона имеет одно из самых низких значений. Поэтому этот материал чаще всего применяют в качестве утеплителя.

Важную роль в строительстве играет влажность бетона, которая сказывается не только на теплопроводности стройматериала, но и его прочностных показателях. Гидроизоляционные мероприятия помогут предупредить такие побочные эффекты.

Утепление и показатели теплопроводности бетона

Сравнительная таблица теплопроводности различных видов материала:

В зависимости от вида стройматериала, используемого при строительстве дома, проводятся дополнительные изоляционные работы. Это приводит к повышению способности стен к удерживанию тепла. Бетон выступает, как самостоятельный стройматериал, который требует утепления, или утеплитель. Во втором случае материал не подходит для строительства несущих конструкций, так как имеет низкую прочность. Как видно из таблицы, теплопроводность монолитного железобетона самая высокая, поэтому из него строят ответственные объекты, а при необходимости повышения теплоизоляционных способностей здания применяют пенополистирол, минвату или керамзитобетон. Поэтому перед строительством дома оценивают возможные пути потери тепла и проводят утепление помещения.

Особенности теплопроводности бетона

Теплопроводность бетона — одна из важных характеристик строительного материала наряду с прочностью, плотностью и морозостойкостью. Ее учитывают в теплотехническом расчете для определения минимальной толщины наружных стен. Ограждающие конструкции в первую очередь защищают внутренние помещения от холода и промерзания. Особенно важно это для отапливаемых зданий, когда для обогрева расходуются значительные средства. Установлено, что от 20 до 30% тепла уходит через стены и перекрытия.

Строительство в разных климатических зонах предполагает эксплуатацию зданий при большом интервале внешних температур. Определение минимально необходимой толщины наружной конструкции с учетом теплотехнических свойств бетона экономически целесообразно. Это позволяет существенно сократить затраты на возведение и обогрев сооружения в отопительный сезон.

  1. О понятии теплопроводности
  2. Что такое коэффициент теплопроводности
  3. От чего зависит величина коэффициента
  4. Как рассчитать ограждающую конструкцию

О понятии теплопроводности

Теплопроводностью обладают все твердые, жидкие и газообразные вещества. Энергию от нагретого участка более холодному передают хаотично движущиеся частицы — молекулы, атомы, электроны. Чем ближе друг к другу они расположены, тем активнее происходит теплообмен.

Плотность материала напрямую влияет на его способность проводить тепло. Например, кирпич по сравнению с ячеистым бетоном более плотный, лучше проводит тепловую энергию. Кирпичная стена толщиной 500 мм также защищает помещение от теплопотерь, как легкобетонная толщиной 300 мм. Железобетон плотнее керамзитобетона в три раза, соответственно, он более теплопроницаемый.

Бетон представляет собой сложную неоднородную структуру. Входящие в состав компоненты обладают разной способностью теплопередачи. Наименьшую имеет воздух в капиллярах цементного камня и микрополостях внутри заполнителя. Чем материал пористее, тем хуже передается тепловая энергия.

Закономерную связь между видом заполнителя и теплопроводностью бетона подтверждают опыты материаловедов Довжика В. Г., Миснара А. Они установили, что чем мельче размер замкнутых пор в теле монолита, тем хуже передается тепло.

Третий фактор, влияющий на теплопроводность — влажность. Вода проводит тепло в 20 раз лучше воздуха. Заполняя поры бетона, она ухудшает теплоизоляционные качества. Зимой возможно промерзание увлажненного слоя ограждающей конструкции.

Что такое коэффициент теплопроводности

Физический смысл коэффициента теплопроводности — это количество тепла, которое проходит через образец единичного объема за одну секунду при разнице температур в один Кельвин (градус Цельсия). Единица измерения — Вт/(м °К), обозначение — λ, k, ϰ.

Чем выше значение коэффициента, тем большей способностью к передаче тепла обладает материал. В абсолютном вакууме λ=0, максимальный — у алмаза и графена, применяемого в наноразработках.

У бетона значение коэффициента теплопроводности находится в пределах 0,05 -2,02 Вт/(м °К) в зависимости от плотности и влажности материала. У ячеистого автоклавного бетона марки М150 λ=0,055 Вт/(м °К), а тяжелые бетоны М800-1000 характеризуются показателем 2,02 Вт/(м °К).

В строительстве при расчете конструкций на сопротивление теплопередаче используют таблицу с точными значениями коэффициента. Его указывают для трех состояний материала:

  • в сухом виде;
  • при нормальной влажности;
  • при повышенной влажности.

Теплотехнический расчет проводят в соответствии с условиями эксплуатации бетона.

От чего зависит величина коэффициента

Коэффициент теплопроводности бетона определяют опытным путем. Поскольку у материала неоднородная структура, то величина непостоянна и носит условный характер.

Параметры, от которых зависит показатель:

  • Плотность. Тепловую энергию передают друг другу частицы, поэтому чем ближе они расположены, тем быстрее этот процесс. Соответственно, рыхлые материалы с меньшей плотностью способны лучше противостоять теплопередаче.
  • Пористость материала. Тепловой поток перемещается сквозь толщу монолита, часть которого составляют воздушные пустоты. Теплопроводность воздуха очень мала — 0,02 Вт/(м °К). Чем больше занятый воздухом объем, тем коэффициент λ ниже.
  • Структура пор — размеры и замкнутость. Мелкие полости снижают скорость передачи энергии, в то время как в крупных сообщающихся отверстиях теплообмен совершается конвекционным путем, увеличивая тем самым общую теплопередачу.
  • Влажность. Коэффициент теплопроводности воды 0,6 Вт/м К, это достаточно большой показатель. Проникая в полости бетона, влага уменьшает способность материала сохранять тепло.
  • Температура. Чем она у вещества выше, тем быстрее движутся молекулы. Зависимость от температуры линейная, выражается формулой λ=λо х (1+b х t), где λ и λо — искомый и начальный коэффициенты теплопроводности, b — справочная величина, t — температура в градусах.

Как рассчитать ограждающую конструкцию

Чтобы определить минимальную толщину наружной стены или перекрытия, при которой в помещении сохранится благоприятный микроклимат в жару и мороз, используют теплотехнический расчет.

В упрощенном виде он представлен формулой:

R — нормативное температурное сопротивление, м²/ (°С Вт);

Читать еще:  Конструкция, способы установки опалубки для фундамента и особенности

δ — толщина стены или слоя бетона, м;

λ — коэффициент теплопроводности, Вт/(м °С).

Нормативное сопротивление находят по таблице СП 131.13330.2012 «Строительная климатология». Каждому региону соответствует свое значение. Например, для Москвы оно равно 3,28 м²/ (°С Вт).

Если предположить, что наружные стены будут выполнены из керамзитопенобетона плотностью 800 кг/м³ с λ=0,21 Вт/(м °С), то искомая толщина конструкции равна:

δ=R х λ= 3,28х0,21=0,688 м.

Чтобы не сооружать такие массивные стены, их утепляют эффективными теплоизоляционными материалами. Это позволяет уменьшить толщину ограждения, понизить нагрузку на фундамент.

В многослойных конструкциях расчет ведут для каждого слоя. Суммарное сопротивление должно соответствовать нормативному:

Теплотехнический расчет с использованием коэффициента теплопроводности бетона производят перед началом строительства на этапе проектирования.

Теплопроводность бетона

Коэффициент теплопроводности бетона – одна из важных характеристик, учитываемых при проектировании здания. Эта величина применяется в теплотехнических расчетах, позволяющих точно определить минимально допустимую толщину стен.

Понятие коэффициента теплопроводности

Эта величина определяет количество тепла, проходимое через единицу объема образца при разнице температур в 1 градус Цельсия. Единица измерения – Вт/(м*C). Чем больше эта характеристика, тем выше способность материала передавать тепло и тем хуже он выполняет функции теплоизолятора.

Бетон имеет неоднородную структуру. Теплопередача определяется компонентами, входящими в состав строительного материала. Наименьшую теплопроводность имеет воздух, который находится в микропорах заполнителей и капиллярах цементного камня. Поэтому чем выше его содержание, тем лучше теплоизоляционные свойства бетонного элемента.

Факторы, влияющие на теплопропускаемость бетона

Из-за неоднородности структуры бетонных конструкций и разных условий эксплуатации коэффициент теплопроводности в этом случае – величина условная. На этот параметр оказывают влияние:

  • Плотность. Чем плотнее материал, тем ближе друг к другу находятся его частицы, тем быстрее передается тепло. Это значит, что тяжелые бетоны имеют больший коэффициент теплопроводности, по сравнению с легкими (керамзитовыми, вермикулитовыми, перлитовыми).
  • Пористость и структура пор. Чем больше объем, занятый воздухом, тем лучше материал задерживает тепло. Но на теплоизоляционные характеристики влияет не только процентное содержание воздуха, но и размеры, а также замкнутость пор. Лучше всего прохождению тепла препятствуют мелкие замкнутые поры. Крупные поры, которые сообщаются между собой, увеличивают теплопередачу.
  • Влажность. Это еще один фактор, влияющий на коэффициент теплопередачи бетона. Вода способна проводить тепло в 20 раз лучше воздуха. Поэтому увлажненный материал резко теряет теплоизоляционные характеристики. При отрицательных температурах вода в увлажненном слое замерзает, вызывая не только повышенные теплопотери здания, но и быстрое разрушение строительного материала. В таблицах, применяемых при точных теплотехнических расчетах, часто указывают три значения коэффициента теплопроводности – в сухом виде, при нормальной влажности, в увлажненном состоянии.
  • Температура. С повышением температуры коэффициент теплопроводности увеличивается.

Сравнение коэффициента теплопроводности тяжелого бетона, пено- и газобетона, керамзитобетона, фибробетона.

Наиболее высоким коэффициентом теплопроводности обладает тяжелый бетон, армированный стальными стержнями или проволокой (железобетон) – до 2,04 Вт/(м*C). Немного ниже этот показатель у неармированных бетонных элементов.

Более низким коэффициентом теплопроводности и повышенными теплоизоляционными характеристиками обладают: керамзитобетон, изготовленный с использованием кварцевого или перлитового песка, сухой пено- и газобетон. Уровень теплопередачи фибробетона сравним с аналогичным показателем плотного керамзитобетона.

Таблица коэффициентов теплопроводности различных видов бетона

Вид бетонаКоэффициент теплопроводности, Вт/(м*C)
Тяжелый армированный бетон1,68- 2,04
Тяжелый бетон1,29-1,52
Керамзитобетон (в зависимости от плотности)0,14-0,66
Пенобетон (в зависимости от плотности)0,08-0,37
Газобетон разной плотности0,1-0,3
Фибробетон0,52-0,75

Правильное проведение теплотехнических расчетов позволяет определить оптимальную толщину стен, что обеспечивает уменьшение расходов на отопление и комфортный микроклимат внутри здания.

Теплопроводность бетона: классификация, таблица коэффициентов

Часто домашнему мастеру приходится выбирать материалы для постройки или обновления сооружений, поэтому важно обращать внимание на различные характеристики. Теплопроводность бетона — одна из них. Это свойство может отличаться у разных видов. В основном на теплопроводность влияет тип наполнителя. Чем легче материал, тем выше у него теплоизоляция, а чем тяжелее деталь — тем она прочнее.

Определение теплопроводности

При возведении различных зданий и сооружений используются разные материалы. Из-за довольно сурового климата чаще всего приходится проводить дополнительное утепление. Например, при возведении жилых помещений используются специальные изоляторы, поддерживающие комфортную для проживания температуру. Поэтому при выборе стройматериалов в обязательном порядке необходимо обратить внимание на их теплоизоляционные свойства.

Теплопроводность — это способность тела передавать энергию от более нагретых частей менее нагретым. Процесс может протекать как в твердых частях детали, так и в его порах. В твердых частях — это кондукция, в порах — конвекция. Материал быстрее остывает в его твердых частях. В порах же застаивается воздух, вследствие чего материал дольше держит тепло.

Зависимость от различных показателей

Теплоизоляционные характеристики бетона, кирпича, гипсокартона, дерева и многих других стройматериалов зависят от ряда параметров. Например:

  • Влаги.
  • Пористости.
  • Плотности.

Чем больше пор в детали, тем она теплее, а тяжелый стройматериал — прочнее. В современных условиях строительства используются различные типы материала. Но их условно можно поделить на два основных — это тяжелые и легкие пенистые типы.

Тяжелый сорт бетона тоже можно разделить на два вида: тяжелые и особо тяжелые. Для усиления прочности во второй вид добавляют различные наполнители — магнетит, металлический скреп, барит и др. Особо тяжелый бетон применяется при строительстве объектов, нуждающихся в защите от радиации. Плотность материала в этой категории начинается от 2500 кг/куб. м.

Обычный тяжелый бетон изготавливают с добавлением гранита, диабаза, известняка, на основе горного щебня. Плотность материала здесь варьируется от 1500 до 2500 кг/куб. м.

Легкий сорт бетона тоже можно поделить на две группы. Довольно часто в строительных работах используют виды на базе пористого наполнителя, в роли которого выступают шлак, керамзит, пемза и др.

Для изготовления второй группы применяется обычный наполнитель, который вспенивается в процессе замеса. В итоге получается материал с очень большим количеством пор.

Теплоизоляция легкого бетона, конечно же, высокая, но вот прочность гораздо ниже тяжелого. Применяются такие стройматериалы при сооружении зданий, которые не подвергаются серьезным перегрузкам.

Ячеистый бетон можно разделить по назначению:

  • Теплоизолирующий (плотностью до 800 кг/куб.м).
  • Конструкционно-теплоизолирующий (плотность до 1350 кг/куб. м).
  • Конструкционный (до 1850 кг/куб.м).

Теплоизоляционные блоки чаще всего применяют для утепления стен, которые возводили из кирпича или цементного раствора. Кроме того, из такого бетона можно соорудить небольшие ограждающие конструкции.

К конструкционно-теплоизолирующим и просто конструкционным видам можно отнести керамзитобетон, шлакопемзобетон, пенобетон и др. Их можно использовать в качестве теплоизоляционного и строительного материала.

Влияние влаги

В строительных кругах известно утверждение, что сухие стройматериалы изолируют тепло гораздо лучше влажных. Объясняется это довольно-таки высокой степенью теплопроводности воды. Стены, потолки, полы защищены от холода благодаря порам в стройматериале, заполненным воздухом. При воздействии с влагой воздух вытесняется. Это приводит к повышению коэффициента теплопередачи бетона.

В холодный сезон влага, попавшая в материал, замерзает, что приводит к еще более печальным последствиям. Степень подверженности материала к проницаемости влагой у разных марок может быть отличной друг от друга.

Коэффициент теплопроводности бетона и железобетона составляет 0,18−1,75 Вт/м*К. Таблица теплопроводности бетона и других материалов:

Кирпич как изолятор

Для сопоставления свойств теплопроводности можно сравнить бетон и кирпич. По прочностным свойствам кирпич ничуть не уступает своему собрату, а иногда и превосходит его. То же самое можно сказать и про плотность. Современные виды кирпича, используемые в строительных работах, можно разделить на силикатный и керамический. Те, в свою очередь, могут быть полнотелыми, пустотелыми и щелевыми.

Таким образом, теплоизоляция кирпича и бетона идентична. Что силикатный кирпич, что керамический держат тепло довольно слабо. Это значит, что сооружения необходимо дополнительно утеплять. Изоляторами как в кирпичных, так и бетонных зданиях служат чаще всего пенополистирол и минеральная вата.

Что такое теплопроводность бетона?

Содержание статьи:

Основная цель сферы строительства заключается в обеспечении сохранения тепла в пространстве, поэтому при возведении зданий нужно подбирать материалы, обладающие пониженным уровнем теплопроводности. Чем меньше показатель пропускания тепла, тем прохладнее в доме в жару и теплее в холодную пору. Данная характеристика актуальна и для бетонов. Наша компания предлагает бетон в СПб от производителя всех марок с добавлением необходимых упрочнителей и присадок.

Определение теплопроводности

Теплопроводимость представляет собой относительный коэффициент, для определения которого вычисляют показатель теплоты, проходящей через стену с площадью 1 м 2 , толщиной 1 м за 1 час. Условная разница температур снаружи помещения и внутри него составляет 1 градус.

Способность материала к проведению тепла – важный фактор, ведь чем больше пропускная величина, тем, соответственно, выше коэффициент теплосохранения. Соотношение энергии, охлаждающей или нагревающей материал в процессе теплообмена обуславливает уровень пропуска.

Основные показатели теплоотдачи

Коэффициент проводимости тепла вычисляется на основании двух критериев:

  • типа использованного заполнителя, который оказывает существенное влияние на плотность стройматериалов;
  • климатических условий.

Классификация бетонных смесей осуществляется по плотности. Именно по этой причине фактор разновидности заполнителя столь важен. На величину теплопроводности влияют строительные стандарты.

К примеру, различные составляющие бетона имеют разный коэффициент теплоотдачи:

  • монолитные бетоны – 1,75;
  • пористые бетоны – 1,4;
  • щебень – 1,3;
  • песок – 0,7;
  • теплозащитные составы – 0,18.

Таким образом, можно подвести итог, что чем тяжелее наполнитель, тем выше коэффициент теплопроводности раствора. Тяжелые бетоны обладают увеличенной плотностью, а значит хуже сохраняют тепло. Как следствие, строения, изготовленные из смеси с добавлением щебня, нуждаются в дополнительном утеплении. В свою очередь, керамзитобетон с низким уровнем теплопроводности (всего 0,41) не нуждаются в теплозащитном материале.

Взаимосвязь влажности и теплопроводности

Влажность оказывает существенное влияние на способность постройки из бетона пропускать тепло. Повышенное содержание влаги в воздухе уменьшает способность бетонных стен удерживать комфортную температуру. Если поры материала заполняются водой, а не воздухом, значительно повышается риск промерзания помещения в зимний период.

К примеру, пористые бетоны способны проводить тепло на коэффициент 0,14 Вт, тогда как аналогичные материалы, пропитанные водой – уже на 1-3 Вт.

При строительстве помещений теплопроводности следует уделять повышенное внимание, ведь от данной характеристики напрямую зависит не только комфортность нахождения в доме, но и экономия на коммунальных услугах

0 0 голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты