Rich--house.ru

Строительный журнал Rich—house.ru
1 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Таблица: Температурный коэффициент линейного расширения металлов, твердых веществ, жидкостей

Таблица: Температурный коэффициент линейного расширения металлов, твердых веществ, жидкостей

3.2. Термическое расширение твердых тел, жидкостей и газов

Относительное изменение длины твердых тел и объема твердых, жидких и газообразных тел при повышении температуры на ΔT характеризуется, с одной стороны, средним коэффициентом линейного расширения:

с другой — средним коэффициентом объемного расширения:

Здесь l и V — длина и объем тела при температуре T, l и V — те же величины при температуре T.

Предельные значения и при ΔT>0 называются истинным коэффициентом линейного расширения:

и истинным коэффициентом объемного расширения:

Размерность коэффициентов линейного и объемного расширения: К –1 , °С –1 .

В табл. 3.2.1 приведены значения α20 для металлов и сплавов и коэффициенты уравнения lT = l(1 + aT + bT 2 ), где l — длина образца при 0 °С. Интервал температур, в котором применимо это уравнение, указан в третьей графе. В табл. 3.2.2 представлены средние коэффициенты линейного расширения некоторых материалов, в табл. 3.2.3 — данные по объемному термическому расширению неорганических и органических жидкостей, далее — произведение pv, отнесенное к pV при нормальных условиях: для газов — в табл. 3.2.4–3.2.18, для простых веществ и неорганических соединений — в табл. 3.2.19–3.2.22, для органических соединений — в табл. 3.2.23–3.2.26.

Линейное расширение металлов и сплавов

Приложение 3. Коэффициент линейного расширения

Таблица 18. Коэффициент линейного расширения

Марка сталиРасчетное значение коэффициента a 10 6 , °С -1 , при температуре, °С
20-10020-20020-30020-40020-500
ВСт3, 20, 20К11,612,613,113,614,1
09Г2С, 16ГС, 17ГС, 17Г1С, 10Г2С1, 10Г213,014,015,316,116,2
12ХМ, 12МХ, 15ХМ, 15Х5М, 15Х5М-У11,912,613,213,714,0
08Х22Н6Т, 08Х21Н6М2Т9,613,816,016,016,5
12Х18Н10Т, 12Х18Н12Т, 03Х17Н14М3, 10Х17Н13М2Т, 10Х17Н13М3Т, 08Х18Н10Т, 08Х18Н12Т, 03Х18Н11, 08Х17Н13М2Т, 08Х17Н15М3Т16,617,018,018,018,0
03Х21Н21М4ГБ14,915,716,617,317,5
06ХН28МДТ, 03ХН28МДТ15,315,916,516,917,3
08Х18Г8Н2Т12,313,114,414,415,3

Производство, проектирование
и строительство резервуарных
парков «под ключ»

  • 8-800-555-9480

Москва и регионы

Саратов и область

г. Саратов, ул. Огородная, д. 162

  • Карта проезда
  • Словарь терминов
  • Интересные факты

© 2020 Саратовский резервуарный завод «САРРЗ».

Все материалы данного сайта являются объектами авторского права (в том числе дизайн). Запрещается копирование, распространение (в том числе путем копирования на другие сайты и ресурсы в Интернете) или любое иное использование информации и объектов без предварительного согласия правообладателя.

Таблица: Температурный коэффициент линейного расширения металлов, твердых веществ, жидкостей

Таблица коэффициента линейного расширения α,10 −6 /°C [2]

Марка стали20—100 °C20—200 °C20—300 °C20—400 °C20—500 °C20—600 °C20—700 °C20—800 °C20—900 °C20—1000 °C
08кп12,513,414,014,514,915,115,314,712,713,8
0812,513,414,014,514,915,115,314,712,713,8
10кп12,413,213,914,514,915,115,314,714,812,6
1011,612,613,014,6
15кп12,413,213,914,514,815,115,314,113,213,3
1512,413,213,914,414,815,115,314,113,213,3
20кп12,313,113,814,314,815,115,2
2011,112,112,713,413,914,514,8
2512,213,013,714,414,715,015,212,712,413,4
3012,112,913,614,214,715,015,2
3511,111,913,013,414,014,415,0
4012,412,614,513,313,914,615,3
4511,912,713,413,714,314,915,2
5011,212,012,913,313,713,914,513,4
5511,011,812,613,414,014,514,812,513,514,4
6011,111,913,514,6
15К12,012,813,613,814,0
20К12,012,813,613,814,2
2212,612,913,313,9
А1211,912,513,614,2
16ГС11,112,112,913,513,914,1
20Х11,311,612,513,213,7
30Х12,413,013,413,814,214,614,812,012,813,8
35Х11,312,012,913,714,214,6
38ХА11,012,012,212,913,5
40Х11,812,213,213,714,114,614,812,0
45Х12,813,013,7
50Х12,813,013,7

Измерения коэффициента теплового расширения

Приборы для измерения коэффициента теплового расширения жидкостей, газов и твёрдых тел называют дилатометрами.

Примечания

  1. Температурный коэффициент линейного расширения на портале Ti-temperatures.ru
  2. Зубченко А. С., Колосков М. М., Каширский Ю. В. и др. Марочник сталей и сплавов. — Машиностроение, 2003. — С. 585. — 784 с.

См. также

  • Объёмный коэффициент нефти

Ссылки

  • Таблица-справочник для некоторых металлов (PDF)
  • Коэффициент линейного расширения сталей по ПНАЭ Г-7-002-86

Wikimedia Foundation . 2010 .

  • Урёв
  • Передача информации

Смотреть что такое «Коэффициент теплового расширения» в других словарях:

коэффициент теплового расширения — Как физическая характеристика воды относи­тельное изменение объема на единицу изменения температуры; объясняет изменение плотности воды. [http://www.oceanographers.ru/index.php?option=com glossary&Itemid=238] Тематики океанология EN thermal… … Справочник технического переводчика

коэффициент теплового расширения — šiluminio plėtimosi koeficientas statusas T sritis fizika atitikmenys: angl. coefficient of thermal expansion; thermal expansion coefficient vok. Wärmeausdehnungskoeffizient, m rus. коэффициент теплового расширения, m pranc. coefficient de… … Fizikos terminų žodynas

коэффициент теплового расширения — šiluminio plėtimosi koeficientas statusas T sritis Energetika apibrėžtis Nedimensinis dydis, nusakantis dujų savybę plėstis nuo šilumos ir reiškiamas dujų tūrio po išsiplėtimo ir pradinio dujų tūrio santykiu. atitikmenys: angl. coefficient of… … Aiškinamasis šiluminės ir branduolinės technikos terminų žodynas

объемный коэффициент теплового расширения — — [А.С.Гольдберг. Англо русский энергетический словарь. 2006 г.] Тематики энергетика в целом EN volumetric coefficient of thermal expansion … Справочник технического переводчика

усреднённый по активной зоне ядерного реактора коэффициент теплового расширения — — [А.С.Гольдберг. Англо русский энергетический словарь. 2006 г.] Тематики энергетика в целом EN core average thermal expansion coefficient … Справочник технического переводчика

Коэффициент линейного расширения — Коэффициент теплового расширения величина, характеризующая относительную величину изменения объёма или линейных размеров тела с увеличением температуры на 1° К, при постоянном давлении. В соответствии с этим различают: Содержание 1 Коэффициент… … Википедия

Коэффициент термического расширения — Коэффициент теплового расширения величина, характеризующая относительную величину изменения объёма или линейных размеров тела с увеличением температуры на 1° К, при постоянном давлении. В соответствии с этим различают: Содержание 1 Коэффициент… … Википедия

коэффициент изобарического теплового расширения — — [http://slovarionline.ru/anglo russkiy slovar neftegazovoy promyishlennosti/] Тематики нефтегазовая промышленность EN coefficient of isobaric thermal expansion … Справочник технического переводчика

коэффициент поверхностного теплового расширения — — [А.С.Гольдберг. Англо русский энергетический словарь. 2006 г.] Тематики энергетика в целом EN coefficient of superficial expansion … Справочник технического переводчика

Температурный коэффициент объемного расширения пластовой нефти — 22. Температурный коэффициент объемного расширения пластовой нефти Количественная характеристика теплового расширения пластовой нефти, представляющая отношение относительного изменения объема пластовой нефти при его изобарическом нагревании… … Словарь-справочник терминов нормативно-технической документации

Онлайн расчет температурного линейного расширения материалов, металлов, камней, пластиков

Если данный калькулятор был для Вас полезным, пожалуйста нажмите на одну или несколько социальных кнопочек. Благодарим за Ваш большой вклад в поддержку нашего проекта. Желаем Вам крепкого здоровья, счастья, успехов в профессиональной деятельности и дальнейшего процветания Вашего бизнеса. Огромное спасибо.

Больше интересного

В этой статье мы расскажем о подготовке стен перед их окрашиванием.

В этом руководстве, изложен порядок расчета стального радиатора отопления на нашем калькуляторе, о описаны правила монтажа и условия эксплуатации в отопительной системе дома или квартыры

Что же такое линолеум на сегодняшний день? Почему он до сих пор популярен и многое другое.

Расчет температурного линейного расширения

Так же, как и здание после строительства может дать «усадку», некоторые материалы, напротив, со временем увеличиваются или удлиняются. Это явление в физике называется тепловым расширением, потому что возникает оно по мере того, как на твердое тело воздействует высокая температура. Оно становится причиной увеличения площади, поэтому фактор расширения необходимо принимать во внимание при строительстве автомагистралей и зданий.

К примеру, при возведении дома с железобетонными элементами в климатических условиях, близким к тропическим или южным, строители могут не учесть вероятность линейного расширения. Впоследствии увеличенные металлические конструкции могут привести к повреждению других механизмов и преждевременному разрушению всей конструкции.

Подобный пример можно привести и при строительстве железнодорожных рельс. Нагреваясь под прямыми лучами солнечного света, молекулы металла расширяются и удлиняются. В холодное время года рельсы напротив, укорачиваются. Хотя это сложно заметить невооруженным взглядом, с целью безопасности нужно учитывать это при строительстве с применением не только металла, но и камня, даже пластика.

Как определить температурное линейное расширение

Чтобы избежать негативных последствий расширения материалов, используются специальные термометры. Они чувствительны к малейшим изменениям температуры. Но лучше предусмотреть возможные изменения и перестраховаться еще на стадии планирования производства. Для этого разработан онлайн-калькулятор, который моментально демонстрирует:

  • коэффициент линейного теплового расширения;
  • удлинение по осям Х, Y и Z;
  • величину, на которую удлиняется материал при заданной температуре.

Все, что нужно сделать для этого – выбрать из выпадающего списка нужный материал, выбрать его параметры: толщину, дину и ширину. Если нужно конкретно узнать его состояние при той или иной температуре, можете выбрать и эту функцию на сайте. Отметим, расчеты проводятся относительно начальной температуры материала 0°C. Ответы выдаются на анализе коэффициентов линейного теплового расширения, и расчетам, которые уже проведены и запрограммированы на сайте. Система реагирует на изменения и самостоятельно выполняет подсчет.

Какие материалы чаще всего подвергаются расширению

Прежде всего, это – металлы: алюминий, купрум, медь. Среди камней можно отметить гранит базальт, кварцит и даже кирпич. Аналогично на высокие температуры реагируют дерево, сложные штукатурки и стекло. Из вышеперечисленных материалов наименьший коэффициент теплового расширения имеют:

  • клинкерный и стеновой кирпич;
  • дерево;
  • штукатурка;
  • базальт;
  • стеновой кирпич.

Для сравнения, наибольший показатель – у алюминия, стали и меди. К примеру, КТЛР алюминия составляет 24•10-6 1/град, что в 2 раза больше, чем у стали. Поэтому монтаж трубопровода невозможен без предварительных расчетов, особенно если планируется использовать алюминиевые трубы для горячего водоснабжения или отопления. Изменение длины трубопровода при перепадах температуры определяется по формуле

dL = a • l • (tmax – tc), мм, где:

  • а – КТЛР материала, из которого изготовлена труба или другое изделие;
  • tmax – наибольшая температура, которой достигает теплоноситель;
  • tс — температура окружающей среды на момент установки конструкции;
  • l — длина трубопровода.

Также есть специально составленные таблицы значений среднего температурного коэффициента линейного расширения различных материалов. Но прибегать к ним и сложным расчетам не обязательно, если под рукой есть интернет и безошибочное решение можно получить с помощью калькулятора за считанные минуты.

Тепловое расширение твёрдых тел и жидкостей

Тепловое расширение используют, если нужно одну деталь плотно насадить на другую, например колесо на вал (рис. 84). Диаметр отверстия в колесе делают чуть меньше диаметра вала. При нагревании колесо расширяется, и его свободно насаживают на вал. Остывая, колесо сжимается и плотно охватывает вал.

Если тело нагревается неравномерно, то разные его участки расширяются по-разному. В теле возникают напряжения, оно деформируется и может разрушиться. По этой причине лопается стеклянный стакан, когда в него наливают кипяток.

В настоящее время существуют специальные стёкла, которые очень незначительно расширяются при повышении температуры. Таким является кварцевое стекло, которое на 96—99% состоит из кварца. Кварцевое стекло делают из горного хрусталя — особо чистого кварца. А обычное стекло изготавливают из смеси кварцевого песка, соды и мела. Если изготовить палочки длиной 10 см из кварцевого и из обыкновенного стекла и нагреть их на 100 °С, то палочка из обычного стекла удлинится на 0,01 см, а палочка из кварцевого стекла — всего на 0,0005 см. Поэтому в посуде из кварцевого стекла можно кипятить воду.

Свойство тел, изготовленных из разных веществ, по-разному изменять свою длину при нагревании также широко используется.

Возьмём две пластины, изготовленные, например, из меди и железа, соединим их (рис. 85, а) и будем нагревать. Медная пластина расширяется сильнее, чем железная, поэтому они прогнутся (рис. 85, б). Такие пластины называют биметаллическими. Их используют в термометрах, в регуляторах температуры. Например, в регуляторе температуры биметаллическая пластина, нагреваясь до предельно допустимой температуры, изгибается и размыкает цепь. В результате этого дальнейшее нагревание не происходит.

6. Жидкости, так же как и твёрдые тела, расширяются при нагревании. Поскольку они не имеют определённой формы, то нельзя говорить о линейном расширении жидкостей. Их объёмное расширение можно наблюдать на следующем опыте. Возьмём колбу, наполним её водой. Закроем колбу пробкой со вставленной в неё трубкой (рис. 86). При нагревании вода начнёт подниматься по трубке в колбе. Тепловое расширение жидкостей объясняется увеличением средних расстояний между положениями равновесия её молекул.

Различные жидкости при нагревании расширяются по-разному: керосин, например, расширяется сильнее, чем вода.

7*. Пусть при температуре 0 °С жидкость имела объём V, а при температуре t °С — объём V. Тогда объём жидкости при нагревании вычисляется по формуле:

где α — температурный коэффициент объёмного расширения жидкости. Его единицей является 1 град -1 или 1 К -1 .

Значения температурного коэффициента объёмного расширения для разных жидкостей различны и лежат в пределах от 10 -3 до 10 -4 град -1 . Он примерно в 10 3 раз больше, чем температурный коэффициент объёмного расширения твёрдых тел. Например, температурный коэффициент объёмного расширения ртути 0,18 • 10 -3 град -1 , эфира — 1,7 • 10 -3 град -1 , воды (при 20 °С) — 2,1 • 10 -4 град -1 .

Сравнив значения температурного коэффициента объёмного расширения ртути и эфира, можно заметить, что для ртути он примерно в 10 раз меньше. Это означает, что при изменении температуры на 1 °С относительное изменение объёма ртути в 10 раз меньше, чем объёма эфира.

Сравнение значений температурного коэффициента объёмного расширения жидкостей и твёрдых тел показывает, что для эфира он примерно в 100 раз больше, чем для алюминия.

Таблица: Температурный коэффициент линейного расширения металлов, твердых веществ, жидкостей

Материал

Коэффициент линейного теплового расширения

(10 -6 м/(мK)) / ( 10 -6 м/(м o С))

(10 -6 дюйм/(дюйм o F))

Коэффициент — линейное расширение — алюминий

Коэффициент — линейное расширение — алюминий

Коэффициент линейного расширения алюминия в 2 раза больше, чем железа, что вызывает значительные деформации свариваемых конструкций. [1]

Действие термосигнала основано на разности коэффициентов линейного расширения алюминия и стали. [2]

Принцип его работы основан на разности коэффициентов линейного расширения алюминия и стали. Удлинение алюминиевого корпуса примерно в два раза больше удлинения стальных деталей. При повышении температуры сверх допустимой стальные пластинки выпрямляются и контакты замыкаются через контактную шайбу, включая сигнализационную цепь. [3]

С повышением температуры характер влияния легирующих элементов на коэффициент линейного расширения алюминия при условии отсутствия фазовых превращений сохраняется. [5]

Для алюминиевых поршней зазоры значительно увеличивают, так как коэффициент линейного расширения алюминия почти в 2 5 раза больше, чем у стали. [6]

Часто при повышенных температурах возникают трудности, обусловленные различием коэффициентов линейного расширения алюминия и металлопокрытия. Казалось бы, что вследствие сходства кристаллической решетки хрома и алюминия хромовые покрытия должны хорошо держаться при нанесении их непосредственно на алюминий. Однако различное тепловое расширение этих двух металлов приводит к тому, что уже при нагревании до 200 С происходит растрескивание и отслаивание хромового покрытия. У цинковых, медных и никелевых покрытий, по величине коэффициента расширения занимающих промежуточное положение между хромом и алюминием, эти недостатки не проявляются в такой степени. [7]

На рис. 213 представлены зависимости влияния различных легирующих присадок на коэффициент линейного расширения алюминия в интервале температур 20 — 100 С. Как следует из рис. 213, бериллий, железо, никель, хром и кремний в значительной степени понижают к. Наиболее сильное влияние из указанных элементов оказывает железо. [9]

Для деталей, работающих при повышенных температурах, следует учитывать возможность растрескивания покрытия вследствие большой разницы коэффициентов линейного расширения алюминия и хрома. [10]

Термический коэффициент линейного расширения армированных ПА в 2 — 3 раза меньше, чем у ненаполненных, и равен коэффициенту линейного расширения алюминия . [11]

Благодаря сниженной усадке, жесткости материала и низкому коэффициенту линейного расширения ( 3.1 СГ С, который приближается к коэффициенту линейного расширения алюминия ) хорошо оформляются тонкостенные детали сложной конфигурации с большим количеством металлической арматуры. [12]

Алюминий почти вдвое менее теплопроводен, чем медь, но все же его теплопроводность очень велика по сравнению со сталью и ее величину необходимо учитывать при сварке и пайке. Коэффициент линейного расширения алюминия очень велик ( 25 — 10 — 6), вследствие чего пайка алюминия с другими металлами возможна только в некоторых конструктивных формах. [13]

Как известно, модуль упругости алюминия втрое меньше Модуля упругости стали, величины же деформаций соответственно больше. Следует учитывать также, что коэффициент линейного расширения алюминия вдвое больше, а удельный вес примерно втрое меньше, чем стали. [14]

В этом случае можно использовать близость коэффициентов линейного расширения алюминия и эпоксидного компаунда и отказаться от буферных прослоек — полностью или частично. [15]

Коэффициент теплового линейного расширения для некоторых распространенных материалов, таких как: алюминий, медь, стекло, железо и многое другое.

Материал

Коэффициент линейного теплового расширения

(10 -6 м/(мK)) / ( 10 -6 м/(м o С))

Коэффициент линейного расширения для различных марок стали

Поиск и выбор коэффициента линейного расширения для различных марок сталей и сплавов по таблице, при указанных температурах °C. В таблице использованы справочники [1, 2, 3].

Для выбора марок стали следует пользоваться системой поиска по таблице.

Коэффициент линейного расширения α, 10 –6 1/°C

Марка стали, сплава20–100°C20–200°C20–300°C20–400°C20–500°C20–600°C20–700°C20–800°C20–900°C20–1000°C
0812,513,414,014,514,915,115,314,712,713,8
08кп12,513,414,014,514,915,115,314,712,713,8
1011,612,613,014,6
10кп12,413,213,914,514,915,115,314,714,812,6
1512,413,213,914,414,815,115,314,113,213,3
15кп12,413,213,914,514,815,115,314,113,213,3
2011,112,112,713,413,914,514,8
20 [5]11,612,613,113,614,114,614,812,9
20кп12,313,113,814,314,815,115,2
2512,213,013,714,414,715,015,212,712,413,4
3012,112,913,614,214,715,015,2
3511,111,913,013,414,014,415,0
4011,912,813,514,114,614,915,212,513,514,5
4511,912,713,413,714,314,915,2
5011,212,012,913,313,713,914,513,4
5511,011,812,613,414,014,514,812,513,514,4
6011,011,913,514,6
15К12,012,813,613,814,0
20К12,012,813,613,814,2
22К12,612,913,313,9
22К [5]11,812,212,813,213,513,914,612,712,413,4
А1211,912,513,614,2
15Г12,313,214,9
20Г12,313,414,415,115,2
30Г12,613,914,615,015,515,614,8
40Г11,111,712,714,3
50Г11,812,513,213,814,314,815,112,3
16ГС11,112,112,913,513,914,1
10Г211,314,7
45Г211,311,912,714,7
09Г2С [9]11,412,212,613,213,8
09Г2С**11,912,513,113,614,014,4
20Х10,511,612,413,113,614,0
30Х12,413,013,413,814,214,614,812,012,813,8
35Х11,312,012,913,714,214,6
38ХА12,713,113,513,814,214,6
40Х11,812,213,213,714,114,614,812,0
45Х12,813,013,7
50Х12,813,013,7
05Г4ДМФ12,513,314,2814,2614,6814,9514,85
10ГН2МФА, 10ГН2МФА-ВД,

* Приведены данные для сталей 12Х18Н9Т и 12Х18Н12М3Т.

  1. Марочник сталей и сплавов. 2-е изд.,исправл. и доп. / Зубченко А.С., Колосков М.М., Каширский Ю.В. и др. Под ред. А.С. Зубченко. М.: Машиностроение, 2003. 784 с.
  2. Михайлов-Михеев П.Б. Справочник по металлическим материалам турбино- и моторостроения. М.: Машгиз, 1961. 838 с.
  3. Машиностроение. Энциклопедия. Т. II–3. Цветные металлы и сплавы. Композиционные металлические материалы. /Под общей редакцией И.Н. Фридляндера. М.: Машиностроение, 2001. 880 с.
  4. Журавлев В.Н., Николаева О.И. Машиностроительные стали. Справочник. 4-е изд., перераб. и доп. М.: Машиностроение, 1992. 480 с.
  5. Стали и сплавы. Марочник. Справ. изд. /Сорокин В.Г. и др. Науч. ред. В.Г. Сорокин, М.А. Гервасьев. М.: Интермет Инжиниринг, 2001. 608 с.
  6. Марочник стали и сплавов для атомных энергетических установок. /Под ред. И.Р. Крянина, Г.П. Федорцова-Лутикова. М.: ЦНИИТМАШ, 1971. 195 с.
  7. Масленков С.Б., Ляпунов А.И., Зинченко В.М., Ушаков Б.К. Энциклопедический справочник термиста-технолога. В 3-х т. Т. 3. М.: Наука и технология, 2004. 704 с.
  8. Масалева Е.Н., Пигрова Г.Д. Фазовые превращения в высокохромной нержавеющей стали 0Х11Н10М2Т. МиТОМ, 1976, № 9. С. 38–41.
  9. Масленков С.Б., Масленкова Е.А. Стали и сплавы для высоких температур. Справочное издание. В 2-х книгах. Кн. 1. М.: Металлургия, 1991. 383 с.
  10. Международный транслятор современных сталей и сплавов. /Под ред. В.Я. Кершенбаума. Т. 2. М.: Интак, 1992. 556 с.

Похожие статьи

Маркировка сталей в европейских странах

Содержание страницы1. Система маркировки сталей в ГерманииОбозначение сталей с помощью букв и цифрОбозначение сталей с помощью порядковых номеров2. Система маркировки сталей во Франции3. Система маркировки сталей в Италии4. Система маркировки сталей в Швеции5. Системы маркировки сталей в США6. Система обозначений AISI7. Система обозначений ASTM8. Универсальная система обозначений UNS9. Система маркировки сталей в ЯпонииКонструкционные сталиКоррозионно-стойкие сталиЖаропрочные […]

Маркировка цветных сплавов за рубежом

Содержание страницы1. Никелевые сплавы2. Алюминиевые сплавы3. Медь и медные сплавы4. Титановые сплавы5. Циркониевые сплавы 1. Никелевые сплавы За рубежом маркировка никелевых сплавов, как и в России, близка к обозначениям, применяемым для сталей. Например, немецкая марка NiCr7030 означает сплав, в котором более 60% никеля, 20–32% хрома, около 5% железа. 2. Алюминиевые сплавы В США наиболее широко […]

Маркировка цветных сплавов в России и странах СНГ

Содержание страницы1. Никелевые сплавы2. Алюминиевые сплавы3. Медь и медные сплавы4. Баббиты5. Титановые сплавы6. Циркониевые сплавы 1. Никелевые сплавы К сплавам на основе никеля отнесены материалы, в которых содержание никеля не менее 55%. В зависимости от области применения сплавы на основе никеля поделены на 2 группы: Деформируемые сплавы, предназначенные для работы в коррозионно-активных средах и при […]

§ 9.3. Тепловое объемное расширение

Измерения показывают, что в пределах не очень большого интервала температур можно считать, что относительное изменение объема пропорционально изменению температуры:

Коэффициент пропорциональности α называют температурным коэффициентом объемного расширения. Он показывает, на какую долю своего первоначального значения изменяется объем тела при изменении температуры на 1 К. Коэффициент объемного расширения, как и коэффициент линейного расширения, зависит от природы вещества и температуры. Зависимость α от температуры незначительна и ею можно пренебречь, если интервал изменения температуры невелик. Для большинства твердых тел коэффициент α имеет порядок 10 -5 —10 -4 К -1 , т. е. очень мал по сравнению с коэффициентом объемного расширения газов.

Из формулы (9.3.1) легко найти выражение для объема тела при любой температуре:

В этой формуле значение начального объема V обычно берут при начальной температуре t = 0 °С. Однако и здесь, как в случае линейного расширения, можно пользоваться формулой

где V1 — объем тела при температуре t1; V2 — объем тела при температуре t2; Δt = t2 — t1.

Объем полого (пустого) твердого тела (сосуда) при нагревании увеличивается так, как если бы это тело было сплошным. Объем полости в твердом теле (сосуде) при его нагревании увеличивается так, как увеличивался бы объем тела, изготовленного из того же вещества и имеющего форму и размер полости.

Связь между коэффициентами линейного и объемного расширения

Коэффициент линейного расширения α1 и коэффициент объемного расширения а связаны между собой. Эту связь можно найти, рассматривая тепловое расширение тела простой формы, например кубика с ребром l. При нагревании кубика на Δt каждая его сторона увеличится на Δl и станет равной

Объем тела при этом будет равен

Подставляя l из уравнения (9.3.4) в уравнение (9.3.5), получим

Так как величина α1 очень мала, то при малых изменениях температуры членами Зα1 2 Δt и α1 2 (Δt) 2 можно пренебречь по сравнению с членом Зα1. Поэтому

Итак, температурный коэффициент объемного расширения равен утроенному коэффициенту линейного расширения.

Зависимость плотности вещества от температуры

При изменении температуры тел изменяется и их плотность. Пусть при температуре t1 плотность вещества равна р1, а объем тела равен V1. При температуре t2 значения этих величин стали соответственно равными р2 и V2. Так как при изменении температуры масса тела m не изменяется, то

Разделив почленно второе равенство на первое, получим

Пользуясь формулой (9.3.3), можно записать

Так как αΔt значительно меньше единицы, то для приближенных расчетов можно упростить эту формулу следующим образом:

Пренебрегая выражением (αΔt) 2 по сравнению с единицей, получим

При нагревании плотность вещества уменьшается.

Тепловое расширение жидкостей

Связи между частицами жидкости, как мы знаем, слабее, чем между молекулами в твердом теле. Поэтому следует ожидать, что при одинаковом нагревании жидкости расширяются в большей степени, чем твердые тела. Это действительно подтверждается на опыте.

Наполним колбу с узким и длинным горлышком подкрашенной жидкостью (водой или лучше керосином) до половины горлышка и отметим резиновым колечком уровень жидкости. После этого опустим колбу в сосуд с горячей водой. Сначала будет видно понижение уровня жидкости в горлышке колбы, а затем уровень начнет повышаться и поднимется значительно выше начального. Это объясняется тем, что вначале нагревается сосуд и объем его увеличивается. Из-за этого уровень жидкости опускается. Затем нагревается жидкость. Расширяясь, она не только заполняет увеличившийся объем сосуда, но и значительно превышает этот объем. Следовательно, жидкости расширяются в большей степени, чем твердые тела.

Температурные коэффициенты объемного расширения жидкостей значительно больше коэффициентов объемного расширения твердых тел; они могут достигать значения 10 -3 К -1 ,

Жидкость нельзя нагреть, не нагревая сосуда, в котором она находится. Поэтому мы не можем наблюдать истинного расширения жидкости в сосуде, так как расширение сосуда занижает видимое увеличение объема жидкости. Впрочем, коэффициент объемного расширения стекла и других твердых тел обычно значительно меньше коэффициента объемного расширения жидкости, и при не очень точных измерениях увеличением объема сосуда можно пренебречь.

Особенности расширения воды

Наиболее распространенная на Земле жидкость — вода — обладает особыми свойствами, отличающими ее от других жидкостей. У воды при нагревании от 0 до 4 °С объем не увеличивается, а уменьшается. Лишь с 4 °С объем воды начинает при нагревании возрастать. При 4 °С, таким образом, объем воды минимален, а плотность максимальна(1). На рисунке 9.4 показана примерная зависимость плотности воды от температуры.

Отмеченное особое свойство воды оказывает большое влияние на характер теплообмена в водоемах. При охлаждении воды вначале плотность верхних слоев увеличивается, и они опускаются вниз. Но после достижения воздухом температуры 4 °С дальнейшее охлаждение уже уменьшает плотность, и холодные слои воды остаются на поверхности. В результате в глубоких водоемах даже при очень низкой температуре воздуха вода имеет температуру около 4 °С.

Объем жидких и твердых тел увеличивается прямо пропорционально росту температуры. У воды обнаруживается аномалия: ее плотность максимальна при 4 °С.

(1) Эти данные относятся к пресной (химически чистой) воде. У морской воды наибольшая плотность наблюдается примерно при 3 °С.

Тепловое расширение твердых тел

Тепловое расширение — изменение линейных размеров и формы тела при изменении его температуры. Для характеристики теплового расширения твёрдых тел вводят коэффициент линейного теплового расширения.

Механизм теплового расширения твердых тел можно представить следующим образом. Если к твердому телу подвести тепловую энергию, то благодаря колебанию атомов в решетке происходит процесс поглощения им теплоты. При этом колебания атомов становятся более интенсивными, т.е. увеличиваются их амплитуда и частота. С увеличением расстояния между атомами увеличивается и потенциальная энергия, которая характеризуется межатомным потенциалом.

Последний выражается суммой потенциалов сил отталкивания и притяжения. Силы отталкивания между атомами с изменением межатомного расстояния меняются быстрее, чем силы притяжения; в результате форма кривой минимума энергии оказывается несимметричной, и равновесное межатомное расстояние увеличивается. Это явление и соответствует тепловому расширению.

Зависимость потенциальной энергии взаимодействия молекул от расстояния между ними позволяет выяснить причину возникновения теплового расширения. Как видно из рисунка 9.2, кривая потенциальной энергии сильно несимметрична. Она очень быстро (круто) возрастает от минимального значения Ер0 (в точке r) при уменьшении r и сравнительно медленно растет при увеличении r.

Рисунок 2.5

При абсолютном нуле в состоянии равновесия молекулы находились бы друг от друга на расстоянии r, соответствующем минимальному значению потенциальной энергии Ер0. По мере нагревания молекулы начинают совершать колебания около положения равновесия. Размах колебаний определяется средним значением энергии Е. Если бы потенциальная кривая была симметричной, то среднее положение молекулы по-прежнему соответствовало бы расстоянию r. Это означало бы общую неизменность средних расстояний между молекулами при нагревании и, следовательно, отсутствие теплового расширения. На самом деле кривая несимметрична. Поэтому при средней энергии, равной , среднее положение колеблющейся молекулы соответствует расстоянию r1 > r.

Изменение среднего расстояния между двумя соседними молекулами означает изменение расстояния между всеми молекулами тела. Поэтому размеры тела увеличиваются. Дальнейшее нагревание тела приводит к увеличению средней энергии молекулы до некоторого значения , и т. д. При этом увеличивается и среднее расстояние между молекулами, так как теперь колебания совершаются с большей амплитудой вокруг нового положения равновесия: r2 > r1, r3 > r2 и т. д.

Применительно к твердым телам, форма которых при изменении температуры (при равномерном нагревании или охлаждении) не меняется, различают изменение линейных размеров (длины, диаметра и т. п.) — линейное расширение и изменение объема — объемное расширение. У жидкостей при нагревании форма может меняться (например, в термометре ртуть входит в капилляр). Поэтому в случае жидкостей имеет смысл говорить только об объемном расширении.

Основной закон теплового расширения твердых тел гласит, что тело с линейным размером L при увеличении его температуры на ΔT расширяется на величину ΔL, равную:

где α — так называемый коэффициент линейного теплового расширения.

Аналогичные формулы имеются для расчета изменения площади и объема тела. В приведенном простейшем случае, когда коэффициент теплового расширения не зависит ни от температуры, ни от направления расширения, вещество будет равномерно расширяться по всем направлениям в строгом соответствии с вышеприведенной формулой.

Коэффициент линейного расширения зависит от природы вещества, а также от температуры. Однако, если рассматривать изменения температуры в не слишком широких пределах, зависимостью α от температуры можно пренебречь и считать температурный коэффициент линейного расширения величиной постоянной для данного вещества. В этом случае линейные размеры тела, как вытекает из формулы (2.28), зависят от изменения температуры следующим образом:

Из твердых тел сильнее всех расширяется воск, превышая в этом отношении многие жидкости. Коэффициент теплового расширения воска в зависимости от сорта в 25 – 120 раз больше чем у железа. Из жидкостей сильнее других расширяется эфир. Однако есть жидкость, расширяющаяся в 9 раз сильнее эфира – жидкая углекислота (СО3) при +20 градусах Цельсия. Ее коэффициент расширения в 4 раза больше, чем у газов.

Наименьшим коэффициентом теплового расширения из твердых тел обладает кварцевое стекло – в 40 раз меньше, чем железо. Кварцевую колбу раскаленную до 1000 градусов можно смело опускать в ледяную воду, не опасаясь за целостность сосуда: колба не лопается. Малым коэффициентом расширения, хотя и большим, чем у кварцевого стекла, отличается также алмаз.

Из металлов, меньше всего расширяется сорт стали, носящий название инвар, коэффициент его теплового расширения в 80 раз меньше, чем у обычной стали.

В приведенной ниже таблице 2.1 показаны коэффициенты объемного расширения некоторых веществ.

Таблица 2.1 — Значение изобарического коэффициента расширения некоторых газов, жидкостей и твёрдых тел при атмосферном давлении

Контрольные вопросы

1. Дать характеристику распределению нормальных колебаний по частотам.

2. Что такое фонон?

3. Объяснить физический смысл температуры Дебая. Чем определяется значение температуры Дебая для данного вещества?

4. Почему при низких температурах решёточная теплоёмкость кристалла не остается постоянной?

5. Что называется теплоёмкостью твёрдого тела? Чем она определяется?

6. Объяснить зависимость решёточной теплоёмкости кристалла Cреш от температуры T.

7. Получить закон Дюлонга-Пти для молярной теплоёмкости решётки.

8. Получить закон Дебая для молярной теплоёмкости решётки кристалла.

9. Какой вклад вносит электронная теплоемкость в молярную теплоемкость металла?

10. Что называется теплопроводностью твёрдого тела? Чем она характеризуется? Чем осуществляется теплопроводность в случаях металла и диэлектрика.

11. Как зависит коэффициент теплопроводности кристаллической решётки от температуры? Объяснить.

12. Дать определение теплопроводности электронного газа. Сравнить χэл и χреш в металлах и диэлектриках.

13. Дать физическое объяснение механизму теплового расширения твёрдых тел? Может ли КТР быть отрицательным? Если да, то объяснить причину.

14. Объяснить температурную зависимость коэффициента теплового расширения.

Читать еще:  ВОЛМА — Нивелир Экспресс (20 кг.) наливной пол(64)
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector
×
×