Rich--house.ru

Строительный журнал Rich—house.ru
17 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Теплопроводность сплавов меди. Температура плавления латуни и бронзы

Плавка латуни: температура плавления латуни и особенности

Для того чтобы начать работу с тем или иным материалом, для начала следует ознакомиться со всеми его свойствами. Это нужно для того, чтобы знать какое механическое воздействие можно оказывать на материал, а также в каких условиях и какими инструментами можно осуществлять его обработку.

Латунь — металл, так что очень часто её обработка проводится именно посредством плавления. Температура плавления латуни очень важная характеристика, которая должна быть известна, если требуется обработка посредством термического воздействия.

Сплав латуни

Латунь — металл компонентный. Это означает, что чаще всего латунь идёт в сплавах с другими металлами. Для латуни главным легирующим элементом обычно считается цинк. Но при необходимости он может быть дополнен другими элементами: марганец, железо, свинец или никель.

У латуни есть несколько сплавов, которые в разной мере популярны, но рассмотреть следует два самых востребованных и интересных в практическом плане: двойной и многокомпонентный, содержащий медь.

Для любого мастера, работающего с латунью, температура плавления этого сплава имеет определённый практический смысл. Осведомлённость в этой области сможет помочь в решении многих вероятных проблем.

Если знать температуру плавления латуни, то есть предел, при котором её можно расплавить, то появится возможность изготавливать различные конструктивные элементы, возможно и в домашних условиях.

Основные характеристики

На такой показатель, как температура плавления латуни в первую очередь влияет её состав. Температура в разных случаях может иметь различные показатели, которые колеблются в диапазоне от восьмисот восьмидесяти градусов по Цельсию до девятисот пятидесяти.

Конечно, возможно этот диапазон понизить. Если существует потребность в этом, то следует просто в состав сплава вводить больше цинка. Для обратного эффекта следует делать соответственно наоборот.

Обработка этого металла может осуществляться посредством сварки, но следует помнить, что в таком случае она может прокатываться.

Следует знать тот важный факт, что если не позаботиться о покрытии поверхности этого сплава дополнительной защитой, то впоследствии придётся столкнуться с почернением поверхности. Это связано с тем, что при контакте с воздухом она немного окисляется, вследствие чего и происходит лёгкое почернение.

Поверхность латуни достаточно легко поддаётся полировке. Для того чтобы выбрать способ плавления для этого металла следует, для начала, учесть его состав.

Следует помнить, что на латунный сплав весьма негативно влияют такие элементы, как свинец или висмут. Это связано с тем, что эти элементы значительно снижают свойства материала к деформации в условиях, когда он находится в состоянии нагрева.

Латунь является цветным металлом, но в то же время она обладает множеством особых характеристик, что свойственны только этому материалу. Металл обладает некоторыми преимуществами, которые напрямую влияют на популярность материала:

  1. Латунь имеет высокую устойчивость к процессам коррозии.
  2. Материал обладает довольно высокой степенью текучести, что является очень важным фактором при его плавлении.
  3. Можно отметить и высокие антифрикционные свойства этого металла, а также довольно низкую склонность к ликвации.

В принципе, можно отметить ещё много разных достоинств, которые приписываются латуни, но они не общие, а узконаправленные. Это означает, что в зависимости от марки, материал используется в различных промышленных сферах.

Латунь используется в таких важных областях, как автомобилестроение и машиностроение. Также из этого компонентного металла создают большое количество разнообразных изделий различного назначения.

Для того чтобы можно было осуществлять работу с таким материалом, нужно для начала знать все его физические свойства, что впоследствии окажет непосредственную помощь в обработке латуни в домашних условиях.

Технические особенности латуни

  • Температура плавления латуни — 880–950 градусов по Цельсию.
  • Удельная теплоёмкость этого металла — 0,377 кДж*кг — 1*К-1 при термическом воздействии в 20 градусов по Цельсию.
  • Плотность материала — 8300–8700 кг/метр кубический.
  • Удельное электрическое сопротивление (0,07–0,08)*6—10 Ом*м.

Что следует учитывать при работе с латунью

Домашний мастер в бытовой обстановке использует довольно много изделий, изготовленных именно на основе латуни.

Очень много инструментов изготавливаются именно с использованием латуни, её очень часто можно встретить в различных сплавах, основой которых может быть медь или бронза.

Если быть осведомлённым насчёт того, какая температура плавления приемлема для латуни и её сплавов, впоследствии возможно использовать эти знания при починке или изготовлении различных изделий, которые могут быть использованы в хозяйстве.

Процедура плавления такого универсального компонента не лишена различных тонкостей и нюансов, о которых следует знать и помнить, чтобы избежать различных трудностей при обработке, а также отрицательных последствий в результате ошибочных действий.

Следует помнить, что при всех существующих тонкостях при плавлении латуни, отдельные нюансы следует учитывать при плавлении сплавов из бронзы и меди.

Дело в том, что эти сплавы имеет несколько другие параметры плавления, которые отличаются от характеристик латуни, поэтому прежде, чем начать работу с такими латунными сплавами, нужно для начала подробно узнать все их свойства. Это позволит не допустить досадных ошибок при их обработке, а также провести работу максимально эффективно и плодотворно.

Для того чтобы произвести плавку металла в домашних условиях, следует обладать определёнными знаниями и навыками, а также и специальными инструментами, которые смогут помочь в работе и произвести необходимые действия, предполагающие плавку латуни.

К тому же опытные мастера рекомендуют перед процедурой плавки латуни в домашних условиях запастись терпением, так как процедуру эту быстрой никак назвать не получится.

Для работы необходимо запастись следующими элементами:

  • техническое серебро;
  • газовая горелка ручного типа;
  • специальная графитовая горелка;
  • медный сплав.

Нужно перед работой приобрести буру, причём в достаточном количестве. К тому же для того чтобы обеспечить максимальные безопасные условия для окружающего пространства во время плавления металла, следует использовать асбестовый лист.

Процесс плавки латуни является довольно трудоёмким и потребует определённых затрат как времени, так и приложенных сил.

Опять же следует учесть особенности плавления сплавов, содержащих бронзу и медь, так как они имеют немного другие характеристики и свойства, что означает при плавке придётся применять другую температуру термического воздействия.

К процессу плавки латуни следует переходить уже только в том случае, когда рабочее место подготовлено должным образом, а все рабочие инструменты находятся на своём месте и готовы к работе.

Порядок проведения работ

Для начала следует подготовить муфельную печь. В ней и будет осуществляться вся основная работа.

Перед тем как начать непосредственно саму плавку, следует проверить работу имеющихся горелок, которые будут использованы в процессе. Кроме того, под рукой следует иметь специальный сосуд, сделанный из огнеупорного материала. Таким материалом является тигель, так что можно будет применить именно его.

Приобретённый ранее асбестовый лист, следует уложить на поверхность основания. Очень важным фактором является поддержание хорошей вентиляции в помещении, в котором будет проводиться вся работа.

Перед началом плавки, латунь следует измельчить, то есть создать измельчённую массу. Следует помнить, что чем меньше будут получившиеся куски металла, тем легче она будет впоследствии плавиться.

Затем тигель с измельчённой латунной массой помещается в муфельную печь, после чего пользователь выставляет необходимое температурное значение, используя специальный регулятор температур. После включения печи, можно будет наблюдать за всем процессом плавления через специальное маленькое окошко, которое имеется у таких печей.

После того как металл полностью расплавится, пользователю требуется лишь аккуратно открыть дверцы муфельной печи и достать оттуда тигель с расплавленной латуни.

Конечно, делать это нужно, используя специальные щипцы, для того, чтобы обезопасить себя от возможных ожогов. У расплавленной латуни, кстати, есть интересное свойство, которое заключается в том, что на поверхности образуется тонкая плёночка, которую впоследствии надо будет убрать. Такую процедуру можно будет проделать, если использовать обычную стальную проволоку.

После снятия образовавшейся плёнки с поверхности расплавленной латуни, следует просто залить металл в требуемую форму, которую пользователь должен предварительно подготовить на своём рабочем месте.

Плавление с помощи горелки

Кстати, бывают случаи, когда пользователь, к сожалению, не может использовать специальное оборудование, предназначенное для плавления. В этом случае, не стоит отчаиваться, так как плавка латуни может быть осуществлена при помощи газовых горелок.

При этом горелка должна быть установлена в вертикальном положении и очень хорошо закреплена. Затем на подставку устанавливает сосуд с металлом и производится плавка.

Следует опять же помнить, что если латунь содержит в своей основе медь, то температура будет непременно увеличиваться, что означает, что металл будет плавиться дольше.

Теплопроводность стали, алюминия, латуни, меди

Перед тем как работать с различными металлами и сплавами, следует изучить всю информацию, касающуюся их основных характеристик. Сталь является самым распространенным металлом и применяется в различных отраслях промышленности. Важным ее показателем можно назвать теплопроводность, которая варьируется в широком диапазоне, зависит от химического состава материала и многих других показателей.

  • Что такое теплопроводность
    • Показатели для стали
  • Влияние концентрации углерода
  • Значение в быту и производстве

Что такое теплопроводность

Данный термин означает способность различных материалов к обмену энергией, которая в этом случае представлена теплом. При этом передача энергии проходит от более нагретой части к холодной и происходит за счет:

  1. Молекул.
  2. Атомов.
  3. Электронов и других частиц структуры металла.

Теплопроводность нержавеющей стали будет существенно отличаться от аналогичного показателя другого металла — например, коэффициент теплопроводности меди будет иным, нежели у стали.

Для обозначения этого показателя используется специальная величина, именуемая коэффициентом теплопроводности. Она характеризуется количеством теплоты, которое может пройти через материал за определенную единицу времени.

Показатели для стали

Теплопроводность может существенно отличаться в зависимости от химического состава металла. Коэффициент данной величины у стали и меди будет разным. Кроме этого, при повышении или уменьшении концентрации углерода изменяется и рассматриваемый показатель.

Существуют и другие особенности теплопроводности:

  1. Для стали, которая не имеет примесей, значение составляет 70 Вт/(м* К).
  2. У углеродистых и высоколегированных сталей проводимость намного ниже. За счет увеличения концентрации примесей она существенно снижается.
  3. Само термическое воздействие также может оказывать воздействие на структуру металла. Как правило, после нагрева структура меняет значение проводимости, что связано с изменением кристаллической решетки.

Коэффициент теплопроводности алюминия значительно выше, что связано с более низкой плотностью этого материала. Теплопроводность латуни также отличается от соответствующего показателя стали.

Влияние концентрации углерода

Концентрация углерода в стали влияет на величину теплопередачи:

  1. Низкоуглеродистые стали имеют высокий показатель проводимости. Именно поэтому они используются при изготовлении труб, которые затем применяются при создании трубопровода системы отопления. Значение коэффициента варьирует в пределе от 54 до 47 Вт/(м* К).
  2. Средним коэффициентом для распространенных углеродистых сталей является значение от 50 до 90 Вт/(м* К). Именно поэтому подобный материал используется при изготовлении деталей различных механизмов.
  3. У металлов, которые не содержат различных примесей, коэффициент составляет 64 Вт/(м* К). Это значение несущественно изменяется при термическом воздействии.

Таким образом, рассматриваемый показатель у легированных сплавов может меняться в зависимости от температуры эксплуатации.

Значение в быту и производстве

Почему важно учитывать коэффициент теплопроводности? Подобное значение указывается в различных таблицах для каждого металла и учитывается в нижеприведенных случаях:

  1. При изготовлении различных теплообменников. Тепло является одним из важных носителей энергии. Его используют для обеспечения комфортных условий проживания в жилых и иных помещениях. При создании отопительных радиаторов и бойлеров важно обеспечить быструю и полную передачу тепла от теплоносителя к конечному потребителю.
  2. При изготовлении отводящих элементов. Часто можно встретить ситуацию, когда нужно провести не подачу тепла, а отвод. Примером назовем случай отвода тепла от режущей кромки инструмента или зубьев шестерни. Для того чтобы металл не терял свои основные эксплуатационные качества, обеспечивается быстрый отвод тепловой энергии.
  3. При создании изоляционных прослоек. В некоторых случаях материал не должен проводить передачу тепловой энергии. Для подобных условий эксплуатации выбирается металл, который обладает низким коэффициентом проводимости тепла.

Определяется рассматриваемый показатель при проведении испытаний в различных условиях. Как ранее было отмечено, коэффициент проводимости тепла может зависеть от температуры эксплуатации. Поэтому в таблицах указывается несколько его значений.

Учебные материалы

Медь относится к группе цветных металлов, наиболее широко применяемых в промышленности. Порядковый номер меди в периодической системе Д. И. Менделеева — 29, атомный вес А = 63,57. Медь имеет гранецентрированную кубическую решетку (ГЦК) с периодом а = 3,607 Å.

Удельный вес меди g = 8,94 г/см 3 , температура плавления — 1083 0 С. Чистая медь обладает высокой тепло — и электропроводностью. Удельное электрическое сопротивление меди 0,0175 мкОм×м, теплопроводность l = 395 Вт/(м×град). Предел прочности sв = 200…250 МПа, твердость 85…115 НВ, относительное удлинение d = 50 %, относительное сужение y = 75 %.

Медь — немагнитный металл. Она обладает хорошей технологичностью: обрабатывается давлением, резанием, легко полируется, хорошо паяется и сваривается, имеет высокую коррозионную стойкость. Основная область применения — электротехническая промышленность.

Электропроводность меди существенно понижается при наличии даже очень небольшого количества примесей. Поэтому в качестве проводникового материала применяют в основном особо чистую медь М00 (99,99 %), электролитическую медь М0 (99,95 %), М1 (99,9 %). Марки технической меди М2 (99,7 %), М3 (99,5 %), М4 (99,0 %).

В зависимости от механических свойств различают медь твердую, нагартованную (МТ) и медь мягкую, отожженную (ММ).

Вредными примесями в меди являются висмут, свинец, сера и кислород. Действие висмута и свинца аналогично действию серы в стали; они образуют с медью легкоплавкие эвтектики, располагающиеся по границам зерен, что приводит к разрушению меди при ее обработке давлением в горячем состоянии (температура плавления эвтектики соответственно 270 0 С и 326 0 С).

Сера и кислород снижают пластичность меди за счет образования хрупких химических соединений Сu2O и Сu2S.

В качестве конструкционного материала технически чистую медь применяют редко, так как она имеет низкие прочностные свойства, твердость. Основными конструкционными материалами на основе меди являются сплавы латуни и бронзы. Для маркировки медных сплавов используют следующее буквенное обозначение легирующих элементов:

  • О — олово; Ц — цинк; Х — хром;
  • Ж — железо; Н — никель; С — свинец;
  • К — кремний; А — алюминий; Ф — фосфор;
  • Мц — марганец; Мг – магний; Б – бериллий.

Латуни

Латуни — это медные сплавы, в которых основным легирующим элементом является цинк.

В зависимости от содержания цинка латуни промышленного применения бывают:

  1. однофазные a — латуни, содержащие до 39 % цинка (это предельная растворимость цинка в меди);
  2. двухфазные (a+b|)- латуни, содержащие до 46 % цинка;
  3. однофазные b|- латуни ,содержащие до 50 % цинка.

Однофазные a- латуни пластичны, хорошо обрабатываются резанием, давлением при температурах ниже 300 0 С и выше 700 0 С (в интервале от 300 0 С до 700 0 С — зона хрупкости). С увеличением содержания цинка прочность латуней повышается. В латунях b|- фаза представляет собой упорядоченный твердый раствор на базе электронного соединения СuZn с решеткой ОЦК, она хрупкая и прочная. Поэтому, чем больше в латунях b|- фазы, тем они прочнее и менее пластичны. Практическое применение имеют латуни с содержанием цинка до 42…43 %.

Латуни, обрабатываемые давлением, маркируются буквой Л (латунь), после которой ставятся буквенные обозначения легирующих элементов; цифры, следующие за буквами, указывают содержание меди и количество соответствующего легирующего элемента в процентах. Содержание цинка определяется по разности от 100 %. Например, латунь Л62 содержит 62 % Сu и 38 % Zn. Литейные латуни маркируются буквой Л, после которой ставится содержание цинка и других легирующих элементов в процентах. Количество меди определяется по разности от 100 %. Например, латунь ЛЦ36Мц20С2 содержит 36 % Zn, 20 % Mn, 2 % Pb и 42 % Сu.

К однофазным a — латуням относятся Л96 (томпак), Л80 (полутомпак), Л68, имеющая наибольшую пластичность (d = 56 %). Двухфазные (a+b|) — латуни марок Л59 и Л60 имеют меньшую пластичность в холодном состоянии, но большую прочность и износостойкость. Однофазные имеют после отжига sв = 250…350 МПа и d = (50…56) %, двухфазные — sв = 400…450 МПа и d = (35… 40 %).

Для повышения механических свойств и коррозионной стойкости латуни могут легироваться оловом, алюминием, марганцем, кремнием, никелем, железом и др.

Введение легирующих элементов (кроме никеля) уменьшает растворимость цинка в меди и способствует образованию b|- фазы, поэтому такие латуни чаще двухфазные (a+b|). Никель увеличивает растворимость цинка в меди, и при достаточном его содержании латунь из двухфазной становится однофазной. Свинец облегчает обрабатываемость резанием и улучшает антифрикционные свойства. Сопротивление коррозии повышают Al, Zn, Si, Mn, Ni, Sn.

В морском судостроении применяются оловянистые ”морские” латуни, например, ЛО70-1 (70 % Сu, 1 % Sn, 29 % Zn). Она используется для изготовления конденсаторных трубок, деталей теплотехнической аппаратуры.

Алюминиевые латуни используют для изготовления конденсаторных трубок, цистерн, втулок, а также для изготовления коррозионно-стойких деталей, работающих в морской воде. Марки латуней: ЛА77-2, ЛАЖ60-1-1, ЛАН59-3-2 (в электрических машинах, в хим. машиностроении). Из латуни ЛАНКМц75-2-2,5-0,5-0,5 изготовляют цельнотянутые круглые трубы для производства манометрических трубок и пружин в приборах повышенного класса точности. С помощью закалки и старения sв достигает 700 МПа.

Марганцевые латуни кроме хороших механических и технологических свойств (обрабатываются давлением в холодном и горячем состоянии) обладают высокой коррозионной стойкостью в морской воде, хлоридах и перегретом паре. Латуни ЛМц 58-2 и ЛМцА 57-3-1 применяются в основном для изготовления крепежных изделий арматуры.

Кремнистые латуни характеризуются высокой прочностью (sв до 640 МПа), пластичностью и вязкостью до минус 183 0 С. Латунь ЛК80-3 применяют для изготовления арматуры, деталей приборов в судо- и общем машиностроении.

Свинцовистые латуни отлично обрабатываются резанием и обладают высокими антифрикционными свойствами. Латуни ЛС60-1, ЛС59-1 применяют для изготовления крепежных деталей , зубчатых колес, втулок.

Никелевая латунь обладает повышенными механическими (sв до 785 МПа) и коррозионными свойствами, обрабатывается давлением в холодном и горячем состоянии. Латунь ЛН65-5 применяется для изготовления манометрических и конденсаторных трубок, различного вида проката.

Литейные латуни содержат те же элементы, что и латуни, обрабатываемые давлением; от последних литейные отличает, как правило, большее легирование цинком и другими металлами. Вследствие этого они обладают хорошими литейными характеристиками.

Бронзы

Бронзы — это сплавы меди с оловом, алюминием, кремнием и другими элементами.

По технологическому признаку бронзы делятся на деформируемые и литейные. Деформируемые маркируются буквами Бр, после которых перечисляются легирующие элементы, а затем соответственно содержание этих элементов в процентах. Содержание меди определяется по разности от 100 %. Например, БрОЦС 8-4-3 содержит 8 % Sn, 4 % Zn, 3 % Pb, 85 % Сu.

Литейные бронзы маркируются аналогично литейным латуням. Например, бронза Бр06Ц3Н6 содержит 6 % Sn, 3 % Zn, 6 % Pb, 85 % Сu.

Бронзы по сравнению с латунью обладают лучшими механическими, антифрикционными свойствами и коррозионной стойкостью.

Оловянные бронзы. Наибольшее практическое значение имеют сплавы, содержащие до 10…12 % Sn. Предельная растворимость олова в меди 15,8%, однако в реальных условиях кристаллизации и охлаждения предельная растворимость снижается примерно до 6 %. К однофазным сплавам относятся бронзы с содержанием олова до 5…6 % и a — фаза, представляет твердый раствор олова в меди с ГЦК — решеткой. При большем содержании олова наряду с a — раствором присутствует эвтектоид (a + Сu31Sn8). Предел прочности бронзы возрастает с увеличением олова, но при его высоких концентрациях резко снижается из-за большего количества хрупкого интерметаллида Сu31Sn8.

Читать еще:  Гипс алебастр: как развести, применение и характеристики

Оловянные бронзы обычно легируют Zn, Pb, Ni, P. Цинк улучшает технологические свойства бронзы и удешевляет ее. Фосфор улучшает литейные свойства. Для изготовления художественного литья содержание фосфора может достигать 1 %. Свинец (до 3…5 %) вводится в бронзу для улучшения ее обрабатываемости резанием. Никель повышает механические свойства, коррозионную стойкость и плотность отливок, уменьшает ликвацию. Среди медных сплавов оловянные бронзы имеют самую низкую линейную усадку (0,8 % при литье в землю и 1,4 % — в металлическую форму).

Для проведения пластичности проводится гомогенизация сплавов при температурах 700…750 0 С с с быстрым охлаждением. Остаточные напряжения снимаются отжигом при 550 0 С.

Оловянные деформируемые бронзы Бр0Ф7-0.2, БрОЦС4-4-4, БрОЦ4-3 и другие имеют более высокую прочность, упругость, сопротивление усталости, чем литейные. Их используют для изготовления подшипников скольжения, шестерен, трубок контрольно — измерительных и других приборов, манометрических пружин и т.д.

Литейные оловянные бронзы. По сравнению с деформируемыми они содержат большее количество легирующих элементов, имеют ниже жидкотекучесть, малую линейную усадку, склонны к образованию усадочной пористости. Бронзы БрОЗЦ7С5Н, БрО10Ф1, БрО6Ц6С3, БрО5С25 и другие применяются для изготовления арматуры, работающей в воде и водяном паре, подшипников, шестерен, втулок.

Алюминиевые бронзы отличаются высокими механическими антикоррозионными свойствами, жидкотекучестью, малой склонностью к дендритной ликвации. Из-за большой усадки трудно получить сложную фасонную отливку. Они морозостойки, немагнитны, не дают искры при ударах. По коррозионной стойкости превосходят латуни и оловянистые бронзы.

Алюминий растворяется в меди, образуя a — твердый раствор замещения с пределом растворимости 9,4 %. При большем содержании в структуре появляется эвтектоид (a + g|); g| — интерметаллид Сu32Al9.

Однофазные бронзы БрА5, БрА7 имеют хорошую пластичность и относятся к деформируемым. Обладают наилучшим сочетанием прочности и пластичности: sв = 400…450 МПа, d = 60 %.

Двухфазные бронзы (a + g|) имеют повышенную прочность до 600 МПа, но пластичность заметно ниже d = (35…45) %. Эти сплавы упрочняются термообработкой и дополнительно легируются Fe, Ni, Mn.

Железо измельчает зерно и повышает механические и антифрикционные свойства алюминиевых бронз. Никель улучшает механические свойства и износостойкость, температуру рекристаллизации и коррозионную стойкость. Марганец повышает технологические и коррозионные свойства.

Бронзы БрАЖН10-4-4, БрАЖМц10-3-1-5 и др. применяются для изготовления зубчатых колес, деталей турбин, седел клапанов и других деталей, работающих в тяжелых условиях износа при повышенных температурах до 400 0 С, корпуса насосов, клапанные коробки и др.

Закалка проводится с температуры 950 0 С, после чего бронзы подвергают старению при 250…300 0 С в течение 2…3 ч.

Кремнистые бронзы применяются в качестве заменителей оловянистых бронз. До 3 % кремний растворяется в меди, и образуется однофазный a-твердый раствор. При большем содержании кремния появляется твердая и хрупкая g-фаза. Никель и марганец улучшает механические и коррозионные свойства. Они не теряют пластичности при низких температурах, хорошо паяются, обрабатываются давлением, немагнитны и не дают искры при ударах. Их используют для деталей, работающих до 500 0 С, а также в агрессивных средах (пресная, морская вода).

Бронзы БрКН1-3, БрКМц3-1 применяют для изготовления пружин, антифрикционных деталей, испарителей и др.

Бериллиевые бронзы. Содержат 2…2,5 % Ве. Эти сплавы упрочняются термической обработкой. Предельная растворимость бериллия в меди при 866 0 С составляет 2,7 %, при 600 0 С — 1,5 %, а при 300 0 С всего 0,2 %. Закалка проводится при 760…800 0 С в воде и старение при 300 0 С в течение 3 ч. Сплав упрочняется за счет выделения дисперсных частиц g-фазы СuBe, что приводит к резкому повышению прочности до 1250 МПа при d = 3…5 %. Бронзы БрБ2, БрБНТ1,9 и БрБНТ1,7 имеют высокую прочность, упругость, коррозионную стойкость, жаропрочность, немагнитны, искробезопасны (искра не образуется при размыкании электрических контактов). Применяются для изготовления мембран, пружин, электрических контактов.

Свинцовые бронзы. Свинец практически не растворяется в жидкой меди. Поэтому сплавы после затвердевания состоят из кристаллов меди и включений свинца. Такая структура обеспечивает высокие антифрикционные свойства. Бронза БрС30 применяется для изготовления вкладышей подшипников скольжения, работающих при повышенных давлениях и с большими скоростями. По сравнению с оловянистыми бронзами, теплопроводность ее в 4 раза больше, поэтому она хорошо отводит теплоту, возникающую при трении. Прочность этих бронз невысокая sв = 60 МПа, d = 4 %.

Проводниковые материалы: медь, алюминий, бронза, латунь.

Проводниковые материалы

1. Общие сведения

К проводниковым материалам в электротехнике относятся металлы, их сплавы, контактные металлокерамические композиции и электротехнический уголь. Металлические вещества являются проводниками первого рода и характеризуются электронной проводимостью; основной параметр для них — удельное электрическое сопротивление в функции температуры.

Диапазон удельных сопротивлений металлических проводников весьма узок и составляет от 0,016 мкОм×м для серебра до 1,6 мкОм×м для жаростойких железохромоалюминиевых сплавов.

Электрическое сопротивление графита с увеличением температуры проходит через минимум с последующим постепенным повышением.

По роду применения проводниковые материалы подразделяются на группы:

· проводники с высокой проводимостью — металлы для проводов линий электропередачи и для изготовления кабелей, обмоточных и монтажных проводов для обмоток трансформаторов, электрических машин, аппаратуры, катушек индуктивности и пр.;

· конструкционные материалы — бронзы, латуни, алюминиевые сплавы и т.д., применяемые для изготовления различных токоведущих частей;

· сплавы высокого сопротивления — предназначаемые для изготовления дополнительных сопротивлений к измерительным приборам, образцовых сопротивлений и магазинов сопротивлений, реостатов и элементов нагревательных приборов, а также сплавы для термопар, компенсационных проводов и т.п.;

· контактные материалы — применяемые для пар неразъемных, разрывных и скользящих контактов;

· материалы для пайки всех видов проводниковых материалов.

Кроме чисто электротехнических свойств, для проведения необходимой технологической обработки и обеспечения заданных сроков службы в эксплуатации, проводниковые материалы должны обладать достаточной нагревостойкостью, механической прочностью и пластичностью.

2. Медь

Чистая медь по электрической проводимости занимает следующее место после серебра, обладающего из всех известных проводников наивысшей проводимостью. Высокая проводимость и стойкость к атмосферной коррозии в сочетании с высокой пластичностью делают медь основным материалом для проводов.

На воздухе медные провода окисляются медленно, покрываясь тонким слоем окиси CuO, препятствующим дальнейшему окислению меди. Коррозию меди вызывают сернистый газ SO2, сероводород H2S, аммиак NH3, окись азота NO, пары азотной кислоты и некоторые другие реактивы.

Проводниковую медь получают из слитков путем гальванической очистки ее в электролитических ваннах. Примеси даже в ничтожных количествах, резко снижают электропроводность меди, делая ее малопригодной для проводников тока, поэтому в качестве электротехнической меди применяют лишь две ее марки М0 и М1.

Почти все изделия из проводниковой меди изготавливаются путем проката, прессования и волочения. Так, волочением могут быть изготовлены провода диаметром до 0,005 мм, ленты толщиной до 0,1 мм и медная фольга толщиной до 0,008 мм.

Проводниковая медь применяется как в отожженном после холодной обработки виде (мягкая медь марки ММ), так и без отжига (твердая медь марки МТ).

При температурах термообработки выше 900 °C вследствие интенсивного роста зерна механические свойства меди резко ухудшаются.

В целях повышения предела ползучести и термической устойчивости медь легируют серебром в пределах 0,07—0,15%, а также магнием, кадмием, цирконием и другими элементами.

Медь с присадкой серебра применяется для обмоток быстроходных и нагревостойких машин большой мощности, а медь, легированная различными элементами, используется в коллекторах и контактных кольцах сильно нагруженных машин.

3. Латуни

Сплавы меди с цинком, называемые латунями, широко используются в электротехнике. Цинк растворяется в меди в пределах до 39%.

В различных марках латуни содержание цинка может доходить до 43%. Латуни, содержащие до 39% цинка, имеют однофазную структуру твердого раствора и называются a-латунями. Эти латуни обладают наибольшей пластичностью, поэтому из них изготавливают детали горячей или холодной прокаткой и волочением: листы, ленты, проволоку. Без нагрева из листовой латуни методом глубокой вытяжки и штамповкой можно изготовить детали сложной конфигурации.

Латуни с содержанием цинка свыше 39% называют a+b-латунями или двухфазными и применяют главным образом для фасонных отливок.

Двухфазные латуни являются более твердыми и хрупкими и обрабатываются давлением только в горячем состоянии.

Присадка к латуням олова, никеля и марганца повышает механические свойства и антикоррозионную устойчивость, а добавки алюминия в композиции с железом, никелем и марганцем сообщают латуням кроме улучшения механических свойств и коррозионной стойкости высокую твердость. Однако присутствие в латунях алюминия затрудняет пайку, а проведение пайки мягкими припоями становится практически невозможным.

· латуни марок Л68 и Л63 вследствие высокой пластичности хорошо штампуются и допускают гибку, легко паяются всеми видами припоев. В электромашиностроении широко применяются для различных токоведущих частей;

· латуни марок ЛС59-1 и ЛМЦ58-2 применяются для изготовления роторных (беличьих) клеток электрических двигателей и для токоведущих деталей, изготовленных резанием и штамповкой в горячем состоянии; хорошо паяются различными припоями;

· латунь ЛА67-2,5 применяется для литых токоведущих деталей повышенной механической прочности и твердости, не требующих пайки мягкими припоями;

· латуни ЛК80-3Л и ЛС59-1Л широко применяются для литых токоведущих деталей электрической аппаратуры, для щеткодержателей и для заливки роторов асинхронных двигателей. Хорошо воспринимают пайку различными припоями.

4. Проводниковые бронзы

Проводниковые бронзы относятся к медным сплавам, необходимость применения которых в основном вызвана недостаточной в ряде случаев механической прочностью и термической устойчивостью чистой меди.

Общая номенклатура бронз весьма обширна, но высокой электропроводностью обладают лишь немногие марки бронз.

· кадмиевая бронза относится к наиболее распространенным проводниковым бронзам. Из числа всех марок кадмиевая бронза обладает наивысшей электрической проводимостью. Вследствие повышенного сопротивления истиранию и более высокой нагревостойкости эта бронза широко применяется для изготовления троллейных проводов и коллекторных пластин;

· бериллиевая бронза относится к сплавам, приобретающим прочность в результате старения. Она обладает высокими упругими свойствами, устойчивыми при нагревании до 250 °C, и электрической проводимостью в 2—2,5 раза большей, чем проводимость других марок бронз общего назначения. Эта бронза нашла широкое применение для изготовления различных пружинных деталей, выполняющих одновременно и роль проводника тока, например: токоведущие пружины, отдельные виды щеткодержателей, скользящие контакты в различных приборах, штепсельные разъемы и т.п.;

· фосфористая бронза обладает высокой прочностью и хорошими пружинными свойствами, из-за малой электропроводности применяется для изготовления пружинных деталей с низкими плотностями тока.

Литые токоведущие детали изготовляются из различных марок машиностроительных литьевых бронз с проводимостью в пределах 8—15% проводимости чистой меди. Характерной особенностью бронз является малая усадка по сравнению с чугуном и сталью и высокие литейные свойства, поэтому они применяются для отливки различных токоведущих деталей сложной конфигурации, предназначенных для электрических машин и аппаратов.

Все марки литьевых бронз можно подразделить на оловянные и безоловянные, где основными легирующими элементами являются Al, Mn, Fe, Pb, Ni.

5. Алюминий

Характерными свойствами чистого алюминия является его малый удельный вес, низкая температура плавления, высокая тепловая и электрическая проводимость, высокая пластичность, очень большая скрытая теплота плавления и прочная, хотя и очень тонкая пленка окиси, покрывающая поверхность металла и защищающая его от проникновения кислорода внутрь.

Малая плотность делает алюминий основой легких конструкционных материалов; большая пластичность позволяет применять к алюминию все виды обработки давлением и получать из него листы, прутки, проволоку, трубы, тончайшую фольгу, штампованные детали с глубокой вытяжкой и др.

Хорошая электрическая проводимость обеспечивает широкое применение алюминия в электротехнике. Так как плотность алюминия в 3,3 раза ниже, чем у меди, а удельное сопротивление лишь в 1,7 раза выше, чем у меди, то алюминий, на единицу массы имеет вдвое более высокую проводимость, чем медь.

Прочная пленка окиси быстро покрывает свежий срез металла уже при комнатной температуре, обеспечивая алюминию высокую устойчивость против коррозии в атмосферных условиях.

Сернистый газ, сероводород, аммиак и другие газы, находящиеся в воздухе промышленных районов, не оказывают заметного влияния на скорость коррозии алюминия. Действие водяного пара на алюминий также незначительно. В контакте с большинством металлов и сплавов, являющихся благородными по электрохимическому ряду потенциалов, алюминий служит анодом и, следовательно, коррозия его в электролитах будет прогрессировать.

Чтобы избежать образования гальванопар во влажной атмосфере, место соединения алюминия с другими металлами герметизируется лакировкой или другим путем.

Длительные испытания проводов из алюминия показали, что они в отношении устойчивости против коррозии не уступают медным.

Таблица 1. Основные характеристики проводниковых материалов

Плотность, кг/м 3 ·10 3

Удельное электрическое сопротивление при 20 °C, Ом×м·10 –6

Средний температурный коэффициент сопротивления от 0 до 100 °C, 1/град

Провода, кабели, шины, проводники короткозамкнутых роторов, корпуса и подшипниковые щиты малых электромашин

Кадмиевая бронза — контакты, фосфористая — пружины

Латунь: разновидности и температура плавления

При какой температуре плавится латунь? Стоит ли плавить ее в домашних условиях? Как происходит лазерная резка латуни? Этими вопросами задавался каждый, кто сталкивался с потребностью изготовить что-либо из сплава меди и цинка. От правильно выбранного температурного режима зависит скорость плавки латуни и качество будущего изделия. Чтобы избежать порчи материала, ознакомьтесь с полезной информацией.

Где применяется латунь

Такой цветной металл, как латунь, представляет собой сплав меди и цинка (до 50%) с возможными примесями небольшого количества легирующих элементов. Она имеет высокую тепло- и электропроводность, плотность в пределах 8300—8800 кг/м3 и прочность до 600 Мн/м2. Благодаря этим качествам, а также привлекательному золотисто-желтому цвету, латунь широко используется:

  • В искусстве. Статуэтки, бюсты известных деятелей часто изготавливаются из этого материала, так как он хорошо поддается воздействию высоких температур. К тому же в поиске идеальных форм готовую скульптуру всегда можно переплавить.
  • При дизайне интерьера и экстерьера. Стильные светильники, рамы для зеркал, столешницы из сплава меди и цинка создают атмосферу 1970-х и модерна середины века и выполняют утилитарные функции. Чтобы сплав не почернел под воздействием воздуха, изделия покрываются защитными составами.
  • В промышленности. Сплав меди и цинка обладает низким коэффициентом трения, поэтому им часто покрывают трущиеся поверхности подшипников и прочих деталей, выпускают из него механизмы для наземного и водного транспорта, фурнитуру и т.д.

изделия из латуни

  • В строительстве. Бронза и латунь устойчивы к коррозии, поэтому изделия из них могут применяться в условиях высокой влажности. Запорная и балансировочная латунная арматура распространена при монтаже водопроводов.
  • Разновидности латуни

    В зависимости от состава химических веществ, латуни подразделяются на:

    • Двухкомпонентные, или простые. Такие сплавы включают в себя преимущественно медь и цинк, количество иных элементов незначительно. В свою очередь, среди них выделяются:
    1. Альфа-латуни, или однофазные. В них содержится менее 39 % цинка, поэтому нет необходимости доводить температуру плавления до 905 °C, чтобы он растворился в меди.
    2. Бета-латуни, или двухфазные. Вторая фаза латуни возникает, если в составе сплава находится большее количество цинка, чем то, которое может раствориться. Как правило, b-латуни не такие пластичные, как а-латуни, но более прочные.

      классификация латуней по химическому составу

    • Многокомпонентные, или специальные. Они состоят из меди, цинка и таких легирующих элементов, как железо, олово, кремний, алюминий, марганец и свинец.

    По степени и качеству обработки латуни бывают:

    • Деформируемые. Для изготовления деталей используются такие состояния деформируемых латуней, как особо твердое (с обжатием >50%),твердое (с обжатием >30%), полутвердое (с обжатием 10-30 %) и мягкое (отожженные сплавы). Смесь меди и цинка представлена в виде трубок с круглым сечением, проволоки, лент, листов.
    • Литейные. Литейная латунь — легкоплавкая разновидность, содержащая в себе не менее 50-80% меди, остальное – цинк и легирующие элементы. Сюда относятся полученные латунные изделия, а также арматура.

    При какой температуре плавится латунь

    Без знания о том, при скольких градусах плавится латунь и как ее плавить, невозможно будет не только отлить детали из сплава меди и цинка, но и осуществить лазерную резку латуни. Неправильно подобранная температура для обработки приведет к ухудшению качеств сплава и излишним энергозатратам.

    Температура плавления латуни составляет 880-950 °C. Этот показатель изменяется в зависимости от химического состава сплава. Удельная теплота плавления латуни не совпадает с температурой литья. Особенно хорошо это заметно при плавке свинцовых латуней, которые имеют сниженную текучесть. Разница между температурами их плавления и литья составляет 145-185 °C. Например, латунь марки ЛС59-1В плавится при температуре 900° C, но литье можно осуществлять при 1030-1080 °C. Для марок ЛС59-1 и ЛС74-3 эти показатели составляют 885-895 °C / 1030-1080 °C и 965° C / 1120-1160 °C соответственно, и т. д. У двухкомпонентных латуней температуры плавления и литья совпадает. Например, у Л60 это 885-895 °C, Л80 -965-1000° C, Л96 – 1055-1070 °C.

    Удельная теплоемкость латуни составляет 380 Дж/(кг °С). Иначе говоря, чтобы нагреть 380 кг до температуры 1 °С, необходимо потратить 1 Дж энергии.

      режимы обработки простых и свинцовых латуней

    Обратите внимание: чем больше находится в латуни свинца и висмута, тем проблематичней ее будет расплавить. Наиболее быстро плавится латунь, содержащая в себе большое количество цинка. Сплавы, где количество этого элемента доходит до 32,5 %, можно обрабатывать и без нагревания, с помощью протяжки или прокатки.

    Для чего необходима плавка латуни

    Как правило, латунь плавится прежде, чем из нее изготовят фасонные части, конденсационные трубы, сепараторы, червячные винты, втулки, а также иные детали, предназначенные для использования при высоких температурах (до 300 градусов по Цельсию). Плавят латунь для отливки перил, карнизов, дверных ручек, декоративных панно, рам для зеркал и картин. Из этого сплава могут быть отлиты и кухонные принадлежности: чайники, самовары, подносы, хлебницы, декоративная посуда для размещения на стене. Для изготовления сувениров и украшений также пригодится смесь меди и цинка.

    Зная, как расплавить латунь, можно осуществить это в домашних условиях. В быту из расплавленной латуни отливают больстеры, затыльники, мебельную и оконную фурнитуру и т.д.

    Расплавить латунь в домашних условиях

    Оборудование для плавки латуни в домашних условиях представляет собой индукционную печь из огнеупорных материалов, тигель из графита или шамотного кирпича, литейный ковш, стальные щипцы и объемную ложку. Перед тем как плавить металл, тигель необходимо на протяжении 20-30 минут прокалить при температуре не менее 95 °С. Ложка необходима для удаления шлака, щипцы – для вынимания тигля из печи, а ковш – для поддержки тигля при разливании металла.

      плавка латуни в домашних условиях

    Для обеспечения безопасности земля должна быть застелена асбестовым листом, а расплавленный металл нужно проносить к формам строго над ящиком с песком. Обязательно наличие специальной экипировки. Чтобы избежать отравления токсичными веществами, печь стоит расположить на открытом воздухе или в хорошо проветриваемом помещении.

    Когда оборудование будет готово к работе, подлежащий плавлению материал измельчают и помещают в тигель, который отправляется в печь. Тигель должен оставаться в печи до полного расплавления металла. Проследить этот процесс можно через окошко, если печь заводского производства, или же периодически приподнимая огнеупорную крышку, если печь самодельная. Жидкая латунь выливается в форму, где должна остыть перед окончательной обработкой.

    Расплавить латунь в домашних условиях можно и с помощью газовой горелки. Для этого ее размещают под емкостью, в которой находится измельченный сплав. Равномерно прогревая дно емкости, можно добиться жидкого состояния металла.

    Учтите, что во время плавки необходимо предотвращать появление даже мелких пузырьков, которые могут испортить качество будущего изделия. Расплавленный металл перемешивать нельзя, даже во время удаления шлака с его поверхности.

    Можно ли паять латунь

    Многих новичков, как правило, волнуют вопросы: паяется латунь или нет и до скольки градусов ее можно нагревать. Ответ однозначный: паять латунь можно. Произвести спайку латунных поверхностей вполне реально, хоть и потребуется больше сноровки, чем при соединении обычным припоем. Припой для латуни должен состоять из меди и серебра, соединенных в соотношении 1 к 2. Размещенные на асбестовом основании детали смачивают флюсом (бура, борная кислота, вода), посыпают измельченным припоем, затем нагревают газовой горелкой. Температура не должна превышать 700° C во избежание деформации деталей, нагрев нужно производить постепенно.

    Разница между температурами плавления припоя и латунных деталей не превышает 50 °С, поэтому при перегреве есть риск получить вместо качественного изделия большой слиток. Если работа была проделана качественно, то шов будет иметь такой же цвет, как и латунная поверхность детали. Это объясняется химической диффузией. Последний этап пайки – удаление остатков флюса. Для этого используется горячая трехпроцентная серная кислота, которая затем смывается с изделия водой.

    Общая характеристика латуни и бронзы, их состав и отличия

    Латунь и бронза — два сплава, которые широко используются в промышленности и бытовой сфере. Внешне они довольно похожи, но имеют принципиально разные свойства и химический состав. Единственное, что в них общее — это наличие меди в качестве основного составляющего в сплаве. Человеку, далекому от промышленности, достаточно трудно на глаз отличить между собой предметы, изготовленные из бронзы и латуни, поэтому не лишней будет информация о характеристиках этих сплавов.

    Общая характеристика бронзы

    Бронза используется в разных сферах достаточно давно. Раньше сплав получали исключительно из меди и олова. Его еще назвали колокольным, т.к. именно из такого материала раньше делали колокола. Однако с развитием металлургии начали получать металл, в котором олово заменили на другие компоненты. Отсюда и пошли названия сплавов:

    • алюминиевый:
    • кремниевый;
    • оловянный и т.д.

    Как выглядит бронза

    Применяемый химический состав бронзы, влияет не только на ее характеристики, но и на конечный цвет металла.

    Характеристика латуни

    Латунь является двойным или многокомпонентным сплавом на основе меди. В качестве составляющего компонента в ней выступает цинк. Иногда сплав дополняют никелем, свинцом, марганцем и т.д. В 19 веке латунный сплав использовался в качестве поддельного золота из-за характерного цвета металла. Из него делали ювелирные украшения и другие предметы быта.

    Сегодня латунь используют для того, чтобы получить материал сталь-латунь. Он устойчив к коррозии, не истирается и довольно пластичный, несмотря на свою прочность и твердость.

    Сравнительная характеристика и отличие металлов

    В металлургической промышленности существуют четкие критерии отличия бронзы и латуни. Однако если человек не связан с данной сферой деятельности, он не сможет на глаз определить, какой перед ним материал. Сочетание меди с оловом или с цинком позволяет получить сплавы, обладающие различными свойствами и используемые в определенных областях.

    Бронза и латунь имеют различные свойства и относятся к совершенно разным категориям. Первый сплав может быть оловянным или безоловянным, в то время как второй бывает двух- или многокомпонентным.

    Бронзовый сплав состоит из олова, в который может добавляться свинец. От процентного содержания того или иного элемента, будет зависеть цвет металла. Основным добавочным элементом в латуни выступает цинк.

    Бронза устойчива к воздействию химических и агрессивных составов. К тому же ее отрицательная реакция на соленую морскую воду дала возможность использовать сплав в судостроении и мореходстве. Латунь не может этим похвастаться, поэтому для придания ей улучшенных качеств, в сплав необходимо ввести дополнительные элементы. Кроме этого, у бронзы хорошие прочностные и антифрикционные характеристики, нежели у латуни. Это позволяет значительно расширить сферу применения сплава.

    Большое содержание цинка в латуни придает сплаву разнообразную цветовую гамму от розово-красного оттенка, до золотисто-желтого. Это и обуславливает ее схожесть с благородным золотом.

    Как выглядит латунь

    Серебристо-белый цвет бронзы достигается за счет добавления в ее состав более 35% Sn. Сплав, содержащий от 85% меди, получается коричнево-красного цвета. Поскольку соединения с высоким вхождением примесей встречаются редко, то можно утверждать, что в основном латунь — это металл золотисто-желтого цвета, а бронза — ближе к красному, иногда темно-коричневая. Те ж цвета латуни и бронзы будут и на изломе предметов. Это и позволяет без труда отличить латунные изделия от бронзовых.

    Из такого металла, как латунь, изготавливаются не только декоративные элементы, такие как мебельная фурнитура или художественные вещи для декора интерьер, но и главные детали, используемые в различных промышленных сферах.

    Бронза и латунь имеют температуру плавления ниже, чем у чистой меди. Это дает возможность изготавливать из них различные изделия для домашнего использования. Очень красиво смотрится художественное литье из бронзы и латуни. Однако для этого необходимо иметь соответствующее оборудование и знать технологию и правила выполнения такой процедуры.

    Нюансы спектрального сравнительного анализа

    Из-за многообразия сплавов на основе меди сложно с точностью определить тип их соединения. Любой из способов отличить латунь и бронзу, даже самый действенный, не дает 100% гарантии. Если необходим точный ответ на вопрос, какой именно это сплав, то единственный путь к достоверному ответу — использование спектрального анализа. Можно обратиться в пункт приема металлолома, в котором может быть соответствующе оборудование.

    Спектральный анализ позволяет определить химический состав сплава металла по его спектру. Кроме этого подобный метод имеет и другие преимущества:

    • высокая чувствительность;
    • точность получения результатов;
    • изучение состава изделий из латуни и бронзы без разрушения их структуры;
    • можно изучить состав даже на маленьком образце.

    Для проведения спектрального анализа используют специальный инструмент — стилоскоп. Он предназначен для быстрой визуальной качественной и количественной оценки черных и цветных сплавов в видимой области спектра.

    Методы отличия латуни от бронзы в домашних условия

    Очень часто, когда находятся или приобретаются старые изделия из металла, на первый взгляд не понятно, из какого именно сплава они изготовлены. Визуально предметы из латуни и бронзы очень похожи. Однако есть несколько проверенных методов, которые помогут определить тот или иной сплав в домашних условиях.

    Термическая обработка

    Некоторые металлы очень чувствительны к высоким температурам. Например, для цинка критическими станут 600- 650 градусов. После такого воздействия он окислится. Зная это, можно отличить латунь от бронзы с помощью пламени горелки.

    1. Если бронзу начать нагревать до указанной температуры, она быстро станет горячей, но ее цвет и механические характеристики останутся прежними. Если нагретый бронзовый предмет попытаться согнуть он может поломаться.
    2. Латунь, содержащая в своем составе цинк, отреагирует на высокую температуру несколько иначе. Окисление цинка вызовет налет пепельного цвета на поверхности изделия. К тому же, после термообработки в 600 градусов, латунь станет пластичной, и образец из сплава при изгибании не сломается, а просто согнется.

    Отличить латунь от бронзы можно при помощи термической обработки

    Для использования данного метода проверки нужно будет подыскать мощную горелку, т.к. обычная конфорка от плиты или пламя костра не подойдут.

    Химические методы

    Воздействие на сплав химическими реактивами достаточно достоверный способ отличить бронзу от латуни. Однако для его осуществления нужно иметь специальное оборудование, азотную кислоту и некоторый опыт работы с такими веществами.

    При отсутствии химических реактивов, можно применить раствор морской соли. При помещении в него латунной стружки, она поменяет свой внешний вид, а бронзовая останется такой же, как и была.

    Использование магнита

    Не все металлы одинаково реагируют на магнит. Некоторые прилипают к нему основательно, некоторые просто слегка приподнимаются, а есть и такие, которые остаются к нему равнодушными. Входящие в состав бронзы олово и свинец, способны притягиваться магнитом. Единственное, что для такой проверки понадобится довольно сильный магнит. Бронзовое изделия, после его воздействия, будет слегка подлипать к поверхности. На латунь магнит не окажет никакого воздействия.

    Теплопроводность алюминия и латуни

    Шаг пятый.
    Предыдущие шажки можно увидеть здесь.
    Достался мне тут недавно бракованный кулер Titan D5TB/Cu35. Все было нормально, но основание не отшлифовано совсем, медный пятак имел частые борозды видимо от отрезного станка глубиной примерно 0,5 мм.
    Решено было – отполировать и поставить.
    Эффект превзошел все ожидания. Температура, под нагрузкой, упала до 47 градусов.
    Как это возможно? Алюминий эффективней меди?

    Теплопроводность:
    Алюминий 180-200 Вт/м*К
    Медь обычная 300-320 Вт/м*К

    Плотность:
    Рал=2700 кг/м3
    Рмед=8940 кг/м3, где Р-плотность

    Удельная теплоёмкость:
    Алюминий – 880 Дж / кг*К
    Медь – 385 Дж / кг*К

    видим, что:
    · плотность меди выше, чем у алюминия примерно в 3,31 раза
    · теплопроводность меди выше, чем у алюминия примерно в 1,66-1,75 раза
    · теплоёмкость медного радиатора меньше, чем у алюминиевого примерно в 2,28 раза, при равной массе.

    Таким образом, если радиаторы одинаковые по размерам и форме, то выполненный из меди будет в 3,31 раза тяжелее, его теплоемкость будет примерно в 1.44 раз больше чем у алюминиевого. Следовательно, при одинаковой нагрузке медный радиатор нагреется в 1.44 раза меньше. При большей разнице температур между процессорным ядром и радиатором теплообмен проходит эффективнее, следовательно, медный радиатор лучше.
    Но на практике, я заменил медный радиатор на алюминиевый и выиграл. Почему?
    В данном случае я заменил небольшой, но тяжелый радиатор от Thermaltake Volcano 10, с частыми тонкими ребрами, на вдвое больший радиатор от Titan D5TB/Cu35 с достаточно редкими и толстыми ребрами. Масса радиаторов примерно равна, поэтому теплоемкость алюминиевого радиатора будет больше. Следовательно, нагреваться он будет дольше. Кроме того, сопротивление воздушному потоку меньше из-за большей ширины каналов. Следовательно, через алюминиевый радиатор проходит большее количество воздуха, и он (воздух) забирает больше тепла. Тепловой баланс устанавливается на низшей отметке температуры, так как, во-первых, за единицу времени больше тепла отдается в атмосферу вследствие большего количества проходящего воздуха, а площадь теплообмена у обоих радиаторов примерно равна. А во-вторых, сам радиатор нагревается медленнее вследствие большей теплоемкости, поэтому для достижения равной с медным радиатором температуры алюминиевому требуется больше времени, что усугубляет первое положение. Кроме того, возможно в радиаторе от Thermaltake Volcano 10 образовывались не продуваемые зоны, в которых застаивался теплый воздух.
    Основное преимущество меди, большая теплопроводность, в данном случае существенного влияния не оказывает, ввиду слабого воздушного потока вследствие чего и алюминиевый и медный радиаторы успевают равномерно распределить тепло по поверхности своих ребер и, следовательно, единица площади ребер обоих радиаторов отдает воздуху примерно равное количество тепла.
    Все, что здесь написано, отражает мою личную точку зрения и не более. Я не старался придерживаться классической терминологии и возможно применил неверные определения, за что прошу строго меня не судить.

    Конструктивная критика принимается здесь.

    Примеси в медных сплавах

    отсюда

    Примеси, содержащиеся в меди (и, естественно, взаимодействующие с ней), подразделяют на три группы.

    Образующие с медью твердые растворы

    К таким примесям относятся алюминий, сурьма, никель, железо, олово, цинк и др. Данные добавки существенно снижают электро- и теплопроводность. К маркам, которые преимущественно используются для производства токопроводящих элементов, относятся М0 и М1. Если в составе медного сплава содержится сурьма, то значительно затрудняется его горячая обработка давлением.

    Не растворяющиеся в меди примеси

    Сюда относятся свинец, висмут и др. Не влияющие на электропроводность основного металла, такие примеси затрудняют возможность его обработки давлением.

    Примеси, образующие с медью хрупкие химические соединения

    К этой группе относятся сера и кислород, который снижает электропроводность и прочность основного металла. Наличие серы в медном сплаве значительно облегчает его обрабатываемость при помощи резания.

    ПРУЖИННЫЕ СПЛАВЫ НА МЕДНОЙ ОСНОВЕ

    ООО ВПО ПромМеталл http://bronza555.ru/
    vpoprommetall@yandex.ru +7-903-798-09-70 (звоните!)
    Складскую справку можно скачать здесь
    ВВЕДЕНИЕ

    Пружинные сплавы относятся к особой группе в основном металлических материалов, обладающих кроме обязательных для них высоких механических свойств, получаемых либо холодной пластической деформацией, либо методами дисперсионного упрочнения [1], еще и величиной сопротивления малым пластическим деформациям, или пределом упругости. Читать далее →

    Таблица теплопроводности металлов и сплавов

    Температуропроводность металлов

    В таблице представлены значения коэффициента температуропроводности чистых металлов в зависимости от температуры. Температуропроводность металлов указана в интервале температуры от -250 до 1600°С в размерности м 2 /с.

    Рассмотрены следующие металлы: алюминий, кадмий, натрий, серебро, калий, никель, свинец, кобальт, бериллий, литий, сурьма, висмут, магний, цинк, вольфрам, олово, сурьма, железо, платина, золото, медь, родий, молибден, тантал, иридий.

    По значениям температуропроводности в таблице можно выделить металлы с наибольшим и наименьшим значением этого свойства. Наименьшей температуропроводностью обладает такой металл, как висмут, его коэффициент температуропроводности при температуре 50°С равен 6,8 м 2 /с. Температуропроводность чистого серебра равна 158,3 м 2 /с при 100°С. Этот металл имеет наиболее высокое значение этой характеристики.

    Следует отметить, что по мере роста температуры металла, величина его температуропроводности уменьшается, за исключением платины и кобальта.

    Источник:
    Промышленные печи. Справочное руководство для расчетов и проектирования. 2–е издание, дополненное и переработанное, Казанцев Е.И. М., «Металлургия», 1975.- 368 с.

    Свойства алюминия: плотность, теплопроводность, теплоемкость Al

    отсюда

    Теплопроводность и плотность алюминия

    В таблице представлены теплофизические свойства алюминия Al в зависимости от температуры. Свойства алюминия даны в широком диапазоне температуры — от минус 223 до 1527°С (от 50 до 1800 К).

    Как видно из таблицы, теплопроводность алюминия при комнатной температуре равна около 236 Вт/(м·град), что позволяет применять этот материал для изготовления радиаторов и различных теплоотводов.

    Кроме алюминия, высокой теплопроводностью обладает также медь. У какого металла теплопроводность больше? Известно, что теплопроводность алюминия при средних и высоких температурах все-таки меньше, чем у меди, однако, при охлаждении до 50К, теплопроводность алюминия существенно возрастает и достигает значения 1350 Вт/(м·град). У меди же при такой низкой температуре значение теплопроводности становится ниже, чем у алюминия и составляет 1250 Вт/(м·град).

    Алюминий начинает плавиться при температуре 933,61 К (около 660°С), при этом некоторые его свойства претерпевают значительные изменения.
    Значения таких свойств, как температуропроводность, плотность алюминия и его теплопроводность значительно уменьшаются.

    Плотность алюминия в основном определяется его температурой и имеет зависимость от агрегатного состояния этого металла. Например, при температуре 27°С плотность алюминия равна 2697 кг/м 3 , а при нагревании этого металла до температуры плавления (660°С), его плотность становится равной 2368 кг/м 3 . Снижение плотности алюминия с ростом температуры обусловлено его расширением при нагревании.

    Теплопроводность сплавов меди. Температура плавления латуни и бронзы

    Теплопроводность латуни и бронзы

    В таблице приведены значения теплопроводности латуни, бронзы, а также медно-никелевых сплавов (константана, копели, манганина и др.) в зависимости от температуры — в интервале от 4 до 1273 К.

    Теплопроводность латуни, бронзы и других сплавов на основе меди при нагревании увеличивается. По данным таблицы, наибольшей теплопроводностью из рассмотренных сплавов при комнатной температуре обладает латунь Л96. Ее теплопроводность при температуре 300 К (27°С) равна 244 Вт/(м·град).

    Также к медным сплавам с высокой теплопроводностью можно отнести: латунь ЛС59-1, томпак Л96 и Л90, томпак оловянистый ЛТО90-1, томпак прокатный РТ-90. Кроме того, теплопроводность латуни в основном выше теплопроводности бронзы. Следует отметить, что к бронзам с высокой теплопроводностью относятся: фосфористая, хромистая и бериллиевая бронзы, а также бронза БрА5.

    Медным сплавом с наименьшей теплопроводностью является марганцовистая бронза — ее коэффициент теплопроводности при температуре 27°С равен 9,6 Вт/(м·град).

    Теплопроводность цветных металлов и технических сплавов

    ВПО ПромМеталл (бронза, латунь, медь) +7-903-798-09-70 Александр Иванович
    складскую справку скачать можно здесь

    отсюда

    В таблице представлены значения теплопроводности металлов (цветных), а также химический состав металлов и технических сплавов в интервале температуры от 0 до 600°С.

    Цветные металлы и сплавы: никель Ni, монель, нихром; сплавы никеля (по ГОСТ 492-58): мельхиор НМ81, НМ70, константан НММц 58,5-1,54, копель НМ 56,5, монель НМЖМц и К-монель, алюмель, хромель, манганин НММц 85-12, инвар; магниевые сплавы (по ГОСТ 2856-68), электрон, платинородий; мягкие припои (по ГОСТ 1499-70): олово чистое, свинец, ПОС-90, ПОС-40, ПОС-30, сплав Розе, сплав Вуда. Читать далее →

    Существует и другой способ перемещения тепла (теплопередачи). Он возможен не только в подвижной среде (жидкости и газе), но и в твердых телах. Тепло может перемещаться по телу и через него к другому предмету без перемещения частей этого тела относительно друг друга, т.е. без перемещения вещества. Такой способ носит название теплопроводности.

    Различные вещества по-разному проводят тепло. Лучшие проводники тепла — металлы (особенно серебро, медь). Хуже всего проводят тепло теплоизоляторы — воздух, войлок, древесина. Плохая теплопроводность воздуха используется в наших домах — слой воздуха между двойными стеклами окон является прекрасным теплоизолятором.

    Таблица теплопроводности
    (сравнение чисел характеризует относительную скорость передачи тепла каждым материалом)

    ВеществоКоэффициент
    теплопроводности
    Серебро428
    Медь397
    Золото318
    Алюминий220
    Латунь125
    Железо74
    Сталь45
    Свинец35
    Кирпич0,77
    Вода0,6
    Сосна0,1
    Войлок0,057
    Воздух0,025

    Закупка кофемашин кофемашины saeco с доставкой кофе.

    Температура плавления латуни и бронзы: плавка в домашних условиях

    Такой параметр, как температура плавления латуни, является важным во многих ситуациях. Объясняется это тем, что данный металл, основу которого составляет медь, очень активно используется для производства продукции различного назначения. Зная температуру плавления данного металла, можно даже в домашних условиях изготавливать из него не только предметы интерьера, но и элементы различных конструкций.

    Максимально возможное измельчение металла – одно из главных условий плавки латуни в домашних условиях

    Характеристики и сферы применения латуни

    Среди множества разновидностей латуни наибольшее распространение получили два ее типа – двойная и многокомпонентная. Основным элементом, определяющим характеристики данного сплава, является цинк, который может присутствовать в нем в количестве от 5 до 45%. Кроме цинка, в составе латуни в зависимости от ее марки могут присутствовать марганец, железо, никель и свинец, которые также оказывают влияние на ее свойства.

    Простые латуни – химический состав и применение (нажмите для увеличения)

    Латунь, как и другой медный сплав – бронза, активно используется в различных отраслях промышленности. Кроме того, из латуни изготавливают элементы мебельных конструкций и предметы интерьера. Основной технологической операцией, позволяющей придать изделию из латуни требуемую конфигурацию, является литье, которое, как уже говорилось выше, можно выполнить и в домашних условиях. Естественно, чтобы провести такую операцию, необходимо знать, при какой температуре латунь плавится.

    Режимы обработки простых и свинцовых латуней (нажмите для увеличения)

    В зависимости от химического состава латуни температура ее плавления может находиться в интервале 880–950°. Основным элементом, который оказывает влияние на данный параметр, является цинк: чем его больше в составе латуни, тем при меньшей температуре ее можно расплавить.

    Плавка – не единственная технологическая операция, которой хорошо поддается латунь. Как и бронза, этот сплав можно подвергать различным видам механической обработки. Более того, для соединения латунных деталей можно использовать сварку. На текучесть латуни в расплавленном состоянии, что особенно важно учитывать при выполнении литья, негативно влияют такие химические элементы в ее составе, как свинец и висмут.

    Сложнолегированные латуни – химический состав и применение (нажмите для увеличения)

    Латунь, как и бронза, которая также относится к категории сплавов, выполненных на основе меди, – цветной металл, что во многом и определяет сферы ее применения. Изделия из латуни, имеющей желто-золотистый цвет, отличаются высокими декоративными характеристиками, но для того чтобы со временем они не чернели от взаимодействия с окружающим воздухом, их необходимо покрывать защитными составами.

    Как и бронза, латунь обладает высокой устойчивостью к коррозии, что позволяет успешно применять данный сплав для производства предметов, которые эксплуатируются в условиях повышенной влажности. Широкому распространению изделий из латуни в различных отраслях промышленности способствует и то, что она обладает хорошими антифрикционными свойствами.

    Одним из достоинств данного сплава, что особенно важно при выполнении литья, является его низкая склонность к ликвации.

    Освоив технику литья латуни, можно создавать настоящие шедевры

    Изделия из сплавов, выполненных на основе меди, к числу которых относится латунь, широко используются не только в промышленности, но и в быту. В связи с этим информация о том, как плавить такой металл, какая у него температура плавления и как правильно выполнять из него литье, может оказаться полезной во многих ситуациях.

    Что потребуется для литья

    Зная о том, как плавят латунь, можно не только выполнять ремонт латунных изделий, но и в домашних условиях изготавливать их. Чтобы на практике заняться литьем латуни или бронзы, следует подготовить соответствующее оборудование, часть которого можно изготовить своими руками. Кроме того, следует учитывать, что не все марки латуни и бронзы обладают хорошей текучестью, что значительно затрудняет их литье.

    Для того чтобы расплавить латунь или бронзу, которые отличаются достаточно высокой температурой плавления, потребуется специальная печь. Многие домашние мастера самостоятельно изготавливают такие печи, работающие по индукционному принципу. В качестве основы подобного нагревательного приспособления можно использовать огнеупорный кирпич. Элементы кирпичного каркаса соединяются между собой при помощи специального раствора, способного выдерживать высокую температуру.

    Самодельная плавильная печка с усиленным металлическим каркасом

    Емкость, в которой будет выполняться само плавление (тигель), может быть также изготовлена в домашних условиях. В качестве материала для нее подойдут графит или шамотный кирпич. Более предпочтительным материалом для изготовления тигля, по признанию многих специалистов, является шамотный кирпич. Такой материал отличается долговечностью и позволяет выполнить значительно большее количество плавок, чем сосуд из графита.

    Тигель из огнеупорной глины, обмазанный жидким стеклом с тальком

    Важнейшим элементом печи, в которой латунь или бронзу можно подвергнуть плавлению, является нагревательный элемент. Конечно, можно выполнять нагрев тигля и при помощи угля, но большей эффективностью и удобством использования обладают печи, нагрев в которых осуществляется при помощи индукционного принципа. Для того чтобы сделать и эффективно использовать нагревательное устройство такого типа, вам потребуется источник тока, мощность которого составляет порядка 20–25 кВт.

    Плавка латуни требует применения такого вещества, как бура, которая добавляется в сплав для улучшения его характеристик. Учитывая тот факт, что вам придется работать с металлом, который имеет очень высокую температуру, надо предусмотреть все меры безопасности. Одной из таких мер, которая позволяет минимизировать риск возгорания различных предметов, расположенных в непосредственной близости с плавильной печью, является использование асбестового листа, которым нужно застелить участок пола.

    Для изготовления нагревательных элементов печи понадобится толстая нихромовая проволока и керамические трубки

    Для извлечения тигля с расплавленной латунью необходимы специальные щипцы с длинными ручками, а все работы, сопряженные с воздействием высокой температуры, следует выполнять в плотных перчатках и защитных очках. Поскольку при плавке из латуни начинает выделяться цинк, пары которого вредны для здоровья, в месте выполнения литья нужно предусмотреть хорошую вентиляцию.

    В домашних условиях можно выполнять не только плавку, но также и сварку (пайку) латуни. Для выполнения этой технологической операции, при помощи которой можно вернуть к жизни поломанные изделия из данных сплавов, вам потребуются газовая горелка и специальный припой, основу которого составляет техническое серебро. Такой припой, как и флюс, специально предназначенный для пайки цветных металлов, можно приобрести в готовом виде или сделать его самостоятельно, используя для этого техническое серебро и медь.

    После того как все оборудование и необходимые инструменты подготовлены, можно приступать непосредственно к литью латуни.

    Процесс плавки

    Для того чтобы латунь быстрее перешла в жидкое состояние, лучше помещать ее в тигель в измельченном виде. Следует иметь в виду: чем меньше будут такие куски, помещенные в тигель, тем быстрее начнется процесс плавления.

    После того как вы наполните тигель измельченным металлом, необходимо установить сосуд в печь и начать ее нагрев до температуры плавления латуни. Если для плавки латуни вы используете заводскую муфельную печь, то следить за процессами, протекающими в тигле, можно через специальное окошко. В том случае, если вы самостоятельно изготовили печь простейшей конструкции, вам понадобится крышка из огнеупорного материала, которой будет закрываться емкость для плавления латуни.

    Плавку в компактной печке заводского изготовления можно производить прямо на кухне

    Тигель извлекается из печи только тогда, когда весь металл, который в него помещен, полностью расплавился. Для вынимания емкости с латунью следует пользоваться специальными щипцами и делать это максимально аккуратно. На поверхности латуни, подвергнутой плавлению, всегда присутствует пленка, которую в обязательном порядке надо убрать. Выполнить такую операцию совсем несложно, если взять для этого обычную стальную проволоку.

    Для литья изделия из латуни вы должны подготовить форму, благодаря которой металл, переходя из жидкого расплавленного состояния в твердое, примет требуемые очертания. Заливка латуни в такую форму выполняется только после того, как удалена пленка, о которой говорилось выше. Затем вам останется только дождаться, когда латунь, залитая в форму, полностью перейдет в твердое состояние и остынет.

    Заливка форм латунным расплавом

    В домашних условиях можно использовать и более упрощенный вариант плавильной печи, применяя в качестве нагревательных элементов газовую горелку. Подвергнуть латунь плавлению таким образом можно, надежно закрепив газовую горелку под сосудом для плавки в вертикальном положении. При этом важно следить за тем, чтобы пламя, которое выдает горелка, равномерно охватывало всю нижнюю часть сосуда.

    Процесс плавки пойдет быстрее, если использовать вторую горелку

    Используя такое простое приспособление, следует иметь в виду, что латунь, которая будет плавиться в тигле, подвергается значительному окислению. Чтобы минимизировать последствия этого процесса, который негативно отражается на характеристиках сплава, можно использовать обычный древесный уголь.

    Таким образом, существует несколько способов, позволяющих эффективно расплавить латунь в домашних условиях. Выбирая один из них в зависимости от своих предпочтений и финансовых возможностей, вы сможете изготавливать из латуни методом литья изделия различного назначения.

    Медь и сплавы на ее основе: латуни, бронзы. Их свойства, применение, классификация.

    Медь — это тяжелый розово-красный металл, мягкий и ковкий, плавится при температуре 1084,5°С, очень хорошо проводит электрический ток и теплоту: электрическая проводимость меди в 1,7 раза выше, чем алюминия, в 6 раз выше, чем железа, и лишь немного уступает электрической проводимости серебра. Получают ее из медных руд, таких как халькоперит (медный колчедан), борнит, халькозин (медный блеск), ковеллин, малахит и азурит. Дальнейшей электролитической обработкой черной меди получают чистую медь. Цвет меди — красноватый. Плотность — 8,9 г/см3, температура плавления — 1083°C.

    Медь и сплавы на ее основе: латуни, бронзы.

    К цветным металлам, наиболее широко применяемым в промышленности, относятся медь, алюминий, хром, олово, цинк, магний, вольфрам, молибден, никель, свинец, титан, серебро, золото, платина и др.

    К сплавам цветных металлов относятся: медные сплавы (латунь, бронза и др.); алюминиевые сплавы (дюралюминий, силумин и др.); магниевые сплавы; титановые сплавы; свинцово-оловянистые сплавы и др.

    Латунь — это сплав меди (45 — 80%) с цинком (от 3 до 50%), а также с другими элементами: алюминием, оловом, свинцом, железом, никелем и др. Плотность латуни 8,3 — 8,5 г/см3, температура плавления 890–1000°C.

    В зависимости от технологических свойств латуни подразделяются на литейные и обрабатываемые давлением. Они обладают хорошей прочностью, пластичностью, антифрикционными и антикоррозионными свойствами.

    Высокими механическими, антикоррозионными и литейными свойствами обладает томпак — латунь, содержащая не более 22% цинка и не менее 61% меди.

    Латуньобозначается буквой Л. В маркировке латуни буквы обозначают химические элементы, входящие в сплав, первые две цифры, стоящие за буквами, указывают содержание меди, а цифры, отделенные дефисом, — среднее содержание легирующих элементов в процентах в порядке, соответствующем буквам. Так, латунь марки ЛКС80-3-3 содержит 79 — 81% меди, 10,5 — 16,5% цинка, 2,5 — 4,5% кремния, 2 — 4% свинца.

    Латунь широко применяется в промышленности.

    Бронза — это сплав меди с одним или несколькими химическими элементами: оловом, свинцом, цинком, никелем, фосфором, кремнием, марганцем, алюминием, железом. Плотность бронзы 7,5 — 9,3 г/см³, температура плавления 940 — 1093 °C. Используется в качестве материала для деталей машин, арматуры, подвергающихся трению, атмосферному воздействию, а также действию слабых кислот и т. д.

    Бронзы характеризуются высокими механическими, литейными, антифрикционными и антикоррозионными свойствами.

    В зависимости от состава различают бронзы:

    — оловянистые, применяемые для вкладышей подшипников и арматуры;

    — алюминиевые (6 — 11,5% алюминия), применяемые для фасонного литья и лент;

    — кремнистые (1 — 3,5% кремния);

    — марганцовистые (4,5 — 5,5 % марганца);

    — свинцовые (30 — 60 % свинца), применяемые для подшипников скольжения;

    — бериллиевые (2% бериллия), применяемые для пружин и износостойких деталей;

    — медно-титановые и др.

    Бронзы хорошо обрабатываются и отливаются.

    Бронзы обозначаются буквами Бр и другими буквами (аналогично латуни), указывающими элементы, входящие в их состав, и цифрами, показывающими соответственно среднее содержание этих элементов в процентах. Так, бронза марки БрАЖМц 10-3-1,5 содержит 9,5 — 10,5% алюминия, 2,5 — 3,5 % железа, 1 — 2 % марганца, остальное — медь.

    В группу благородных металлов входят золото, платина, серебро.

    При нормальной комнатной температуре в жидком состоянии находится ртуть. Плотность ртути — 13,5 г/см3, температура кипения — 357°C, затвердевания – 38,9°C.

    Свойства меди.

    Медь хорошо поддается холодной пластической обработке, штамповке, горячей ковке. Во время холодной пластической обработки несколько повышает свою твердость. Отличается хорошей тепло- и электропроводностью. Под влиянием влаги быстро окисляется, покрываясь зеленым налетом. Широко используется в электротехнической промышленности, для изготовления художественных изделий, в гальванопластике и для металлопокрытий. Медь входит также в состав многих сплавов. Медь можно паять, сваривать с предварительным подогревом, под давлением.

    Цветные металлы и их сплавы характеризуются высокой сопротивляемостью коррозии, большой пластичностью, вязкостью, хорошей обрабатываемостью, высокой электро- и теплопроводностью.

    Классификация меди.

    Чистая медь (Сu) это популярный представитель группы цветных металлов, который обладает внушительным набором полезных физико-технических характеристик. Главные свойства этого металла — высокая электрическая и тепловая проводимость, дополняемая хорошей сопротивляемостью окислению. Существует несколько видов заготовок из чистой меди, в которых основной металл представлен от 99,4% до 99,9% от общего объёма с остаточными примесями и легирующими компонентами — фосфором, цинком, никелем, оловом, свинцом, бериллием, кремнием. Кроме сочетания легирующих элементов, чистая медь различается по давлению, необходимому для деформации структуры. Металл, твердость которого примерно равна 45 МПа называется мягкой медью, а если этот параметр равен 110 МПа, такую медь называют твёрдой. Более точная классификация по пределу прочности заключается в наличии трёх видов меди с соответствующим отражением в маркировке — мягкая медь (м), полутвёрдая (пт) и твёрдая (т).

    Для повышения физико-технических характеристик чистой меди в современной металлургии создаются передовые медные сплавы, легируемые различными металлами и минералами. Основные элементы, которые включены в состав медных сплавов этих двух типов — это цинк, олово, алюминий, кремний, фосфор, никель. В качестве дополнительных легирующих компонентов для создания новых физических и химических характеристик используются марганец, висмут, никель, бериллий и другие элементы таблицы Менделеева.

    Все медные сплавы подразделяются на три большие группы — латунь, оловянистые и неоловянистые бронзы. Информация о бронзах и латунях представлена в отдельных статьях текущего раздела.

    По аналогии с алюминиевыми сплавами, металлы на основе меди также делятся на деформируемые и литейные сплавы. Деформируемые медные сплавы отличаются высокой пластичностью и электропроводностью. Эти металлы широко используются для создания различных конструкций, штампованных деталей, пружин, гильз, электротехнических и электронных изделий, а также декоративно-функциональных предметов интерьера. Из них производятся многие виды проката: медный лист и трубы, сорт и арматура. Литейные медные сплавы характеризуются отличной плавкостью и являются основным материалом для художественного и промышленного фасованного литья.

    Медно-фосфористые сплавы представляют собой металлы, в состав которых входит два основных элемента — медь и фосфор. Кроме того, в составе таких сплавов находятся в незначительных пропорциях висмут и сурьма. Медно-фосфористые сплавы используются в машиностроении, для создания новых сплавов, в качестве раскислителей и в производстве бытовой техники. В частности материалы этого класса, дополненные серебром, являются самофлюсующимися припоями для эффективной пайки меди и других цветных металлов.

    Большим спросом в промышленном производстве пользуются жаропрочные сплавы меди, включающие кремний, хром и цинк в различных пропорциях. Эти прогрессивные материалы способны выдерживать значительные термальные нагрузки без изменения основных физико-химических характеристик. Подобное свойство обусловило широкое применение медных сплавов для изготовления деталей, работающих в условиях повышенного термального прессинга.

    Жаропрочные сплавы включают в свой состав от одного до нескольких легирующих элементов. Для упрочнения термической стойкости в такие сплавы вводят хром, марганец, кремний, никель и цинк в различных пропорциях и сочетаниях. Предварительная стадия процесса производства на основе медных сплавов этой категории в обязательном порядке включает в себя термообработку заготовок для облегчения механических воздействий. Электротехнические медные сплавы — это подгруппа жаропрочных соединений, которая используется для производства электронных деталей, электрооборудования и приборов. Металлы этого класса, кроме термостойкости, отличаются повышенной электропроводностью, что и определяет область применения. В основном они представлены медным кругом различного диаметра.

    В отдельную группу также выделены медно никелевые сплавы, отличающиеся непревзойдённой коррозийной стойкостью, что позволяет с успехом использовать этот передовой материал в современном судостроении. К этой же группе относится мельхиор, который широко используется для изготовления посуды и украшений. Наличие в сплаве никеля существенно увеличивает сопротивление окислению, повышает упругость и прочность конечного соединения. Одновременно понижаются главные свойства меди — теплопроводность и электропроводимость, что учитывается при использовании медно-никелевых сплавов. Как правило, обработка медно-никелевых сплавов требует повышенных температурных режимов и высокого давления.

    Большинство медных сплавов обладают серьёзным конкурентным приоритетом, ставящим эти металлы в группу незаменимых материалов в определённой области производства. Минимальный коэффициент трения — это главное преимущество различных сплавов этой категории, который активно используется в изготовлении деталей для механических узлов, работающих в режиме постоянного рабочего контакта с различными твёрдыми поверхностями.

    Применение меди.

    Одна из важнейших отраслей применения меди — электротехническая промышленность. Из меди изготавливают электрические провода. Для этой цели металл должен быть очень чистый: примеси резко снижают электрическую проводимость. Присутствие в меди 0,02% алюминия снизит ее электрическую проводимость почти на 10%. Еще более резко возрастает сопротивление металла в присутствии неметаллических примесей. Для получения чистой меди, которую можно использовать в электротехнике, проводят ее электрорафинирование. Этот метод основан на проведении электролиза водного раствора соли меди с растворимым медным анодную или черновую, медь, которая служит одним из электродов, погружают ванну, заполненную водным раствором сульфата меди. В ванну погружают еще один электрод. К электродам подключают источник постоянного тока таким образом, чтобы техническая медь стала анодом (положительный полюс источника тока), электрод — катодом. На аноде идет реакция окисления металла: анод (+) Сu (техн.)-2e=Сu2+ + примеси.

    Ионы меди переходят в раствор и перемещаются к катоду (отрицательно заряженному электроду). Нерастворимые примеси собираются вблизи анода, некоторые примеси могут переходить в раствор. На катоде протекает процесс восстановления ионов меди: катод (-) Сu2 + + 2е=Сu. Условия электролиза таковы, что примеси, находящиеся в растворе, не восстанавливаются.

    Электрорафинированием получают Н электролитическую медь чистотой 99,999%, что вполне достаточно для нужд электротехники. Очень важная область применения меди — производство медных сплавов.

    Со многими металлами медь образует так называемые твердые растворы, которые похожи на обычные растворы тем, что в них атомы одного компонента (металла) равномерно распределены среди атомов другого. Большинство сплавов меди — это твердые растворы.

    Сплав меди, известный с древнейших времен — бронза содержит 4 — 30% олова (обычно 8 — 10%). Бронза по своей твердости превосходит отдельно взятые чистые медь и олово. В настоящее время в бронзах олово часто заменяют другими металлами, что приводит к изменению их свойств. Алюминиевые бронзы, которые содержат 5 — 10% алюминия, обладают повышенной прочностью. Из такой бронзы чеканят медные монеты.

    Очень прочные, твердые и упругие бериллиевые бронзы содержат примерно 2% бериллия. Пружины, изготовленные из бериллиевой бронзы, практически вечные. Широкое применение в народном хозяйстве нашли бронзы, изготовленные на основе других металлов: свинца, марганца, сурьмы, железа, никеля и кремния.

    Большую группу составляют медно-никелевые сплавы. Эти сплавы имеют серебристо-белый цвет, несмотря на то, что преобладающим компонентом является медь. Сплав мельхиор содержит от 18 до 33% никеля (остальное медь). Он имеет красивый внешний вид. Из мельхиора изготавливают посуду и украшения, чеканят монеты («серебро»). Похожий на мельхиор сплав — нейзильбер содержит кроме 15% никеля, до 20% цинка. Этот сплав используют для изготовления художественных изделий, медицинского инструмента.

    Медно-никелевые сплавы константан (40% никеля) и манганин (сплав меди, никеля и марганца) обладают очень высоким электрическим сопротивлением. Их используют в производстве элект­роизмерительных приборов. Характерная особенность всех медно-никелевых сплавов — их высокая стойкость к процессам коррозии — они почти не подвергаются разрушению даже в морской воде.

    Сплавы меди с цинком с содержанием цинка до 50% носят название латунь. Это дешевые сплавы, обладают хорошими механическими свойствами, легко обрабатываются. Латуни благодаря своим качествам нашли широкое применение в машиностроении, химической промышленности, в производстве бытовых товаров. Для придания латуням особых свойств в них часто добавляют алюминий, никель, кремний, марганец и другие металлы.

    Из латуней изготавливают трубы для радиаторов автомашин, трубопроводы, патронные гильзы, памятные медали, а также части технологических аппаратов для получения различных веществ.
    В технике применяют процессы меднения — покрытие стальных изделий тонким слоем меди. Зачем это делается? Стальные детали и изделия часто покрывают защитно-декоративными хромовыми и никелевыми покрытиями. Такое покрытие, нанесенное непосредственно на сталь, непрочно: оно растрескивается и отпадает.

    Если сталь покрыть тонким слоем меди, а затем хромом или никелем, то электролитические осадки получаются высокого качества. Меднение проводят также для облегчения спаивания деталей — медь очень хорошо подвергается пайке.

    Ссылка на основную публикацию
    ВсеИнструменты
    Adblock
    detector
    ×
    ×