Rich--house.ru

Строительный журнал Rich—house.ru
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Эвтектические силумины: алюминий и 12 % кремния

Эвтектические силумины: алюминий и 12 % кремния

Силумины – это сплавы алюминия и кремния, причем наиболее распространенные среди литейных алюминиевых сплавов.

Силумины интересны тем, что эвтектика имеет небольшое содержание кремния (рис.1), и механические свойства сплавов с эвтектикой достаточны для практического использования. Силумины применяют в литом виде, хотя в настоящее время достижения технологий литейного производства позволяют создавать и деформируемые силумины.

Рисунок 1. Диаграмма состояния алюминий – кремний

Как и все сплавы с эвтектикой, силумины можно классифицировать по структуре: доэвтектический, эвтектический, заэвтектический (рис.2). Эвтектический сплав представляет собой пластинчатую эвтектику кристаллов кремния и твердого раствора кремния в алюминии (рис.2 б); доэвтектический сплав состоит из дендритов твердого раствора кремния в алюминии и эвтектики в междендритном пространстве (рис.2 а); структура заэвтектического сплава — кристаллы избыточного кремния и эвтектика (рис.2 в).

абв

Рисунок 2. Структура силумина: а – доэвтектический, б – эвтектический, в — заэвтектический

Силумины слабо упрочняются термической обработкой. Вообще силумины интересны тем, что их свойства существенно зависят от технологии литья, чем и пользуются на практике. Ключевой вопрос для силумина – размер и морфология кристаллов кремния как эвтектического, так и избыточного. Для последнего еще вопрос в том, желательно его наличие, или же нет. Если концентрация кремния в сплаве немного больше эвтектической, то его структура состоит из эвтектики и первичного кремния (рис. 3 а). Сплав можно сделать доэвтектическим путем модифицирования. Если в сплав ввести до 1% смеси NaF+NaCl, то точка эвтектической кристаллизации сместится в сторону больших концентраций кремния и более низкой температуры кристаллизации (рис. 4) и структура сплава кардинально изменится (рис. 3 б).

аб

Рисунок 3. Микроструктура силумина: а – немодифицированный, б – после модифицирования.

Рисунок 4. Схема влияния модифицирования на кристаллизацию силумина

Избыточный кремний после модифицирования пропадает, а кремний в эвтектике измельчается. Поэтому механические свойства сплава изменятся. Предел прочности сплава с 13% Si повышается от 140 до180 МПа, а относительное удлинение от 3 до 8%.

Силумин (сплав): состав, свойства

Основные свойства

По свойствам его часто сравнивают со сталью (нержавеющей). Следует отметить, что он по сравнению с последней имеет меньший удельный вес. Силумины – это сплавы алюминия с кремнием. Обладают следующими свойствами:

  • удельной прочностью. Показатели сплава и сталей близки по значениям, но, учитывая, что вес силумина меньше, конструкции из него выигрышнее;
  • устойчивостью к износу;
  • антикоррозийностью. На поверхности металла образуется защитная пленка, которая оберегает его от негативного влияния окружающей среды;
  • низким удельным весом, равным 2,8 г/см3;
  • пластичностью. При заливке в формы из сплава получают детали, имеющие сложные конфигурации. Благодаря хорошей жидкотекучести процесс литья удешевляется;
  • невысокой температурой плавления. Она равна примерно 600 градусов по Цельсию, что значительно ниже, чем температура плавления стали. Это свойство также оказывает влияние на литье и удешевляет стоимость проводимых работ;
  • доступной ценой.

Перечисленные свойства силумина (сплава) показывают, что этот материал выгодно использовать при производстве различных изделий. Следует, однако, отметить, что он обладает повышенной хрупкостью. При падении деталь, изготовленная из силумина, может треснуть.

Свойства силумина

Важно, что силумин — это все сплавы, которые были получены на основе кремния и алюминия, но необходимо понимать, что не все конечные материалы обладают одними и теми же свойствами. Нужно знать, что с повышением процента содержания кремния, повышается итоговая прочность материала, но при этом растет и его хрупкость. К основным преимуществам, которые можно выделить у этого сплава относят:

  • Высокая прочность.
  • Малый физический вес.
  • Высокая устойчивость материала к износу.
  • Устойчивость также и к коррозии.
  • Одно из важных преимуществ — это цена силумина, которая считается довольно низкой. Допустим, кухонные принадлежности из этого материала стоят от 250 р. до 2000-3000 р.

Все эти преимущества в совокупности и смогли обеспечить высокую популярность данного материала.

Недостаток у этого материала лишь один — это его повышенная хрупкость. Если говорить о механическом воздействии, то силумин способен выдержать высокие нагрузки, однако если, к примеру, уронить изделие из этого сплава, то оно, скорее всего, треснет. Также стоит отметить, что температура плавления силумина не слишком высокая — всего 580 градусов по Цельсию.

Читать также: Ножницы с металлическими ручками

Маркировка

Силумины – это сплавы на основе алюминия. В них добавляют кремний и некоторые другие элементы для улучшения свойств. Для быстрого и точного подбора материала с определенным составом и процентным содержанием входящих элементов разработали маркировку сплавов.

Она включает в себя сочетание цифровых и буквенных символов. Буквами указывают входящие в состав компоненты, а цифрами – их процентное содержание, кроме алюминия. Буквы располагаются в порядке убывания процентного содержания элемента. Запись АК12Ц3 означает, что сплав содержит 12% кремния, 3% цинка, а все остальное – 85% — алюминий.

Виды силумина

Силумины в цветной металлургии делятся на:

  • Деформируемые (доэвтектические и эвтектические). При литье доэвтектические сплавы используют легированные только кремнием 4–10%. Иногда допускается небольшое количество примесей из меди и марганца. Эвтектика имеет около 13% кремния.
  • Литейные (заэвтектические). Они обладают повышенной жидкотекучестью, что обеспечивает изготовление отливок, имеющих сложную форму и тонкие стенки, низкую усадку, невысокую склонность образовывать трещины. Содержание кремния доходит до 20%.

Что такое силумин и как его варить

Кремний – это один из основных легирующих элементов, который используется в сплавах из алюминия, то есть силуминах. Как правило, силумины содержат в своем составе от 5 до 14% силиция, что на несколько процентов больше или меньше концентрации эвтектики.

Сплавы из алюминия имеют важные свойства, которые с трудом или практически не достигаются в других сплавах. Среди таких свойств стоит отметить жидкотекучесть и свариваемость. Также сплавы алюминия имеют малую усадку при литье, из-за чего низкой становится их склонность к образованию трещин усадки. Силумины из-за малого различия по возможностям растворения кремния при разных температурах практически не становятся более прочными с помощью термической обработки, поэтому важным методом повышения его механических свойств является модифицирование. Модифицирование производят с помощью обработки жидкого силумина небольшим количеством натрия или с использованием солей натрия. Благодаря модифицированию происходит измельчение частичек эвтектической смеси, что связывают со способностями натрия обволакивать образованные зародыши кремния, а также тормозить их рост.

Помимо этого при модифицировании отмечается небольшое переохлаждение, которое соответствует протеканию эвтектического превращения и таким образом эвтектическая концентрация сдвигается вправо. Выходит, что заэвтектические сплавы, которые лежат правее относительно эвтектической точки, после прохождения процесса модифицирования оказываются доэвтектическими. Структура сплава алюминия после модификации оказывается состоящей из избыточных кристаллов твердого раствора, а также имеет такие качества, как дисперсия и практически точечную эвтектику.

Обладая литейными свойствами, силумины нередко являются основным материалом для создания технологичных и высокопрочных литейных сплавов из алюминия, которые иногда подвергаются термической обработке для повышения прочности. Создавая такие сплавы, используется дополнительное легирование силуминов для образования в их структуре новых фаз, которые способны приводить к повышению прочности во время термической обработки. Такими элементами является магний, медь и марганец. В основании такого легирования на сегодняшний день созданы и интенсивно применяются литейные сплавы из алюминия.

Прочность таких сплавов после прокалки и старения становится больше 200 – 230 МПа. Данный эффект упрочнения сплавов при закалке и старении можно объяснить образованием при старении зон Гинье-Престона, а также промежуточных фаз сложного состава, который отличается по составу и кристаллической решетке от равновесной им.

Сваривание силумина производится с помощью аргонодуговой сварки с использованием таких присадочных материалов, как АК5 и АК6.

Сварка алюминия дома

Ремонт изделий из силумина

Силумин – это сплав, обладающий повышенной хрупкостью, поэтому изделия из него при эксплуатации могут треснуть.

Для их восстановления применяют эпоксидный клей. Внешний вид восстановится, но использовать его при больших нагрузках не стоит. Для склеивания следует:

  • обезжирить то место, на которое будет наноситься клей, дать подсохнуть;
  • развести клей в соответствии с приложенной инструкцией и нанести на обезжиренную поверхность;
  • плотно соединить сломанные части и забыть о них на сутки.

Ремонт сваркой

В некоторых случаях поврежденное изделие лучше подвергнуть сварке. Эту процедуру проводят самостоятельно в домашних условиях или обращаются к специалисту. При проведении работ температура материала повышается, вследствие этого на сплаве появляется оксидная пленка, препятствующая соединению частей изделия. Для устранения этих негативных явлений для сварки используют аргон, обеспечивающий защиту от отрицательных факторов. Для работы необходимо:

  • подготовить неплавящиеся вольфрамовые электроды и припой для сварки конструкций из алюминия;
  • обезжирить поверхность;
  • изделие зафиксировать;
  • разогреть поверхность до 220 градусов по Цельсию. Для отвода тепла свариваемую деталь положить на стальную прокладку;
  • сварить шов, используя переменный ток;
  • произвести обработку швов для эстетики внешнего вида.

Изделие готово к эксплуатации при небольших нагрузках.

Применение

Низкая стоимость в сочетании с технологичностью дает возможность сплав силумин, в состав которого входят алюминий с кремнием, широко применять в народном хозяйстве:

  • машиностроении – поршни, детали для корпуса, цилиндры, двигатели;
  • авиастроении – блоки цилиндров, поршни для охлаждения, авиационные узлы;
  • оружейном деле – коробки для стволов, узлы для пневматических винтовок;
  • газотурбинном оборудовании – генераторы, теплообменники;
  • изготовлении бытовых приборов – кастрюли, сковородки, казаны, коптильни;
  • скульптурной технике.

В составе силумина (сплава) могут присутствовать добавки цинка, титана, железа, калия, меди в небольших количествах. Все его марки обладают значительными литейными качествами, жидкотекучестью, и просто свариваются. Сплаву присущи износостойкость и прочность, но он является хрупким материалом. Изделия из силумина выдерживают большую нагрузку, но при падении могут расколоться. В этом заключается главный недостаток материала.

Применение [ править | править код ]

Применяются для литья деталей в авто-, мото- и авиастроении (напр., картеров, блоков цилиндров, поршней), и для производства бытовой техники (теплообменников, санитарно-технических запорных арматур, мясорубок), в скульптурной технике, в дешёвых электропневматических репликах оружия, иногда изготовляют ключи.

Недостатком силумина является высокая пористость и грубая крупнозернистая эвтектика отливок, что сильно отражается на воспроизводимости (стабильности) прочностных свойств получаемых деталей. [1]

Силуми́н — сплавалюминия с кремнием. Химический состав — 4-22 % Si, основа — Al, незначительное количество примесей Fe, Cu, Mn, Ca, Ti, Zn, и некоторых других.

Лучшими литейными свойствами обладают сплавы Аl-Si (силумины). Высокая жидкотекучесть, малая усадка, отсутствие или низкая склонность к образованию горячих трещин и хорошая герметичность силуминов объясняются наличием большого количества эвтектики в структуре этих сплавов.

Плотность большинства силуминов 2650 кг/м3, т.е. меньше плотности чистого алюминия (2700 кг/м3). Они хорошо свариваются. Механические свойства зависят от химического состава, технологии изготовления (модифицирования, способа литья и т.д.), а также термической обработки. В двойных силуминах с увеличением содержания кремния до эвтектического состава снижается пластичность и повышается прочность. Появление в структуре сплавов крупных кристаллов первичного кремния вызывает снижение прочности и пластичности . Несмотря на увеличение растворимости кремния в алюминии от 0,05% при 200°С до 1,65% при эвтектической температуре, двойные сплавы не упрочняются термической обработкой. Это объясняется высокой скоростью распада твердого раствора, который частично происходит уже при закалке, а также большой склонностью к коагуляции стабильных выделений кремния. Единственным способом повышения механических свойств этих сплавов является измельчение структуры путем модифицирования.

Читать также: Как сделать дремель своими руками

АК##@@, где А — алюминий, К — кремний, ## — процентное содержание кремния в сплаве, @@ — другие химические элементы, содержащиеся в сплаве (если имеются). Встречается другая маркировка: АЛ##, где АЛ — алюминий литейный, ## — номер сплава.

В настоящее время практически во всех отраслях используется сплав из алюминия. Его применяют всюду, начиная от производства посуды, и до изготовления запчастей для автомобилей.

Группы сплавов

Существует несколько групп силумина, связанных с его применением:

  1. Эвтектический. Его маркировка АК12, относится к литейным сплавам, содержит 12% кремния. Для него характерна стойкость к коррозии, небольшая литейная усадка, значительная твердость, герметичность. Применяется для отливки аппаратуры, деталей техники, приборов сложной формы. Из-за хрупкости не рекомендуется отливать ответственные детали для работы под нагрузкой.
  2. Доэвтектический. Маркируется АК9ч, имеет высокие литейные технологические свойства, коррозийную стойкость и механическую прочность. Применяется для изготовления сложных деталей крупного и среднего размера. Сохраняет свойства при температуре до 200 градусов по Цельсию. Крупногабаритные детали из него работают под большой нагрузкой.
  3. Заэвтектический. Высоколегированный сплав АК21М2 отличается высокой жаропрочностью и износоустойчивостью. Используется для изготовления фасонных отливок. Идет для изготовления поршней, работающих в среде повышенных температур.

Свойства нормальных силуминов

Первая группа силуминов из алюминия — это эвтектические. Их прочностные параметры довольно малые, однако преимущество этого типа в другом. Она обладают отличными литейными параметрами. Материалы из такого сплава применяются в литье тонкостных изделий, которые в будущем будут применяться в среде повышенной вибрации или под действием ударных нагрузок.

Также важно отметить, что при литье этой группы сплавов, к ней могут быть предъявлены такие требования, как удлинение микроструктуры. Чтобы выполнить это требование, необходимо при операции литья в кокиль или же в форму модифицировать силумин натрием.

Читать также: Горячее копчение своими руками

Также важно отметить, что высокой устойчивостью к воздействию на сплав агрессивной среды обладают только те, которые характеризуются высокой чистотой состава. Другими словами, в таких материалах должно быть минимальное содержание разнообразных примесей, таких как железо и прочие.

Силумин — свойства, состав, температура плавления, применение

На магазинных прилавках все чаще попадаются изделия из силумина. Это могут быть сковородки, кастрюли, водопроводные краны и иные изделия. Этот материал получается искусственным путем, подробнее ответ на вопрос: силумин — что это, вы найдете в статье ниже.

Описание материала

Определение силумина несложно найти в википедии — это сплав на основе алюминия с добавлением кремния. При этом содержание дополнительного компонента колеблется в пределах от 4 до 22%, и основную часть составляет алюминий. Состав сплава силумин также содержит небольшое количество примесей иных металлов: меди, кальция, титана, железа, цинка, марганца и других.

Так как максимальное количество кремния до 22 %, то внешне его несложно отличить от настоящего металла. Он немного затемнен, поэтому напоминает чугун, но фактически распознать этот материал сумеет только человек с опытом.

Что такое силумин в реальной жизни, и где он встречается?

Характеристики силуминов

Одной из важнейших механических характеристик является микротвердость, для повышения которой в силуминах применяются следующие механизмы:

1) Улучшение структуры первичных кристаллов кремния (Уменьшение размеров, сфероидизация, равномерное распределение по объему сплава).

2) Уменьшение размера всех структурных компонент сплава, включая нерастворимые в матрице интерметаллиды (первичные кристаллы, эвтектики, вторые фазы)

3) Улучшение структуры эвтектики (Диспергирование, превращение дендритов в равноосные кристаллы)

4) Легирование магнием и медью

Для реализации этих механизмов в настоящее время применяются различные традиционные химико-термические методы:

1)Быстрое охлаждение расплава:

-применение конвективной теплопередачи (ультразвуковое распыление),

-контактного охлаждения (Способы «поршня и наковальни», «молота и наковальни»)

-литье в кокиль (литейный метод)

2)Увеличение числа зародышей для кристаллов кремния, а также измельчение частиц кремния путем химической модификации(чаще всего применяется в металлургии):

-Модифицирование натрием (0,006-0,012%), калием, литием, висмутом, сурьмой 0,1-0,3%, стронцием 0,01-0,05% (сурьма и стронций — модификаторы длительного действия), смесью солей (0,1% натрия и 2% смеси фтористого и хлористого натрия) в доэвтектических силуминах.

-Модифицирование фосфором 0,05-0,1% или серой в заэвтектических силуминах

Маркировка

Встречается другая маркировка: АЛ##, где:

  • АЛ — алюминий литейный,
  • ## — номер сплава.

Наиболее распространённые марки:

  • АК12 — 12 % кремния, эвтектический сплав.
  • АК9 — 9 % кремния.
  • АК7Ц9 — 7 % кремния, 9 % цинка.

Общие сведения

Люди, не знающие о сплавах металлов, вряд ли понимают, что такое силумин. Силумин представляет собой смесь, в состав которой входит алюминий и кремний. Дополнительным компонентом, входящим в состав сплава, является кремний. Его может содержаться 4–22%. Остальную часть занимает алюминий. Материал силумин может дополняться различными вкраплениями других металлов.

Химические и физические свойства

Основные свойства силумина напрямую зависят от его состава. От посторонних вкраплений и процентного содержания кремния, меняются характеристики сплава. Химические и физические свойства:

  1. Температура плавления силумина — 580 градусов.
  2. Плотность — 3гр/см3.
  3. Прочность силумина — это свойство определяет устойчивость сплава к активной эксплуатации и коррозийным процессам. На поверхности смеси образуется оксидная плёнка, которая защищает материал от воздействия факторов окружающей среды.
  4. Пластичность сплава. Этот показатель отвечает за литейные свойства материала. У любого металла существует предел текучести.

Ключевые преимущества сплава, которые выделяют покупатели продукции силумина — это невысокая стоимость, износоустойчивость и малый относительный вес.

Маркировка

Силумин маркируется согласно международной системе ИСО, в которой устанавливаются определённые требования для сплавов:

  1. АК 15 — буква «А» обозначает алюминий, а «К» — кремний. Цифра, указанная после аббревиатуры, обозначает процентное содержание дополнительного компонента.
  2. АЛ 9 — буква «А» обозначает алюминий, а «Л» — литий. Как и в первом случае, цифра после аббревиатуры это процент дополнительного материала в составе сплава.

Дополнительно к обозначению основного и дополнительного компонента может добавляться ещё один материал с наивысшим процентным содержанием в составе сплава. Например существуют маркировки на которых написано «АК 15 Ц7». В составе смеси содержится алюминий, кремний и цинк. Два последних компонента занимают 15 и 7%, а алюминий занимает остальной объём.

Виды силумина

Классифицируется материал по 3 видам:

  1. Доэктевтический. Характеризуется тем, что содержание кремния находится в пределах от 4 до 10% от основной массы. В этот состав также могут входить дополнительные элементы: марганец, медь или магний.
  2. 2 вид — относится к более износоустойчивым, при этом содержание кремния около 20%.
  3. Специальные сплавы с добавлением примесей иных металлов, к примеру, цинка или титана.

В зависимости от технических параметров в производственных процессах выполняются различные отливки.

Применение

Повышенный производственный интерес к силумину обусловлен главным образом обладанием такими свойствами как высокая жидкотекучесть, низкий удельный вес и низкой склонностью к образованию усадочных раковин.

По этим причинам силумин активно применяется в следующих сферах:

  • В самолетостроении силумин марок АЛ2 используется при изготовлении деталей, не подверженных механическим и термическим нагрузкам. Из АЛ9 и АЛ34 производят узлы более ответственного назначения. В частности, сюда относятся поршни галлейного охлаждения, насосы и прочее.
  • В судостроении силумин применяется в качестве обшивки стальных и чугунных конструкций. Возможно это благодаря устойчивости силумина к агрессивному воздействию морской воды.
  • В космической отрасли сплавы силумина используются в производстве приборов, детали которых требуют от материала наличие низкого коэффициента линейного расширения и низкого значения плотности.- В автомобилестроении активно применяется силумин АЛ34 для изготовления картеров двигателей внутреннего сгорания и других корпусных деталей, работающих при большом внутреннем давлении.
  • Силумин служит материалом для изготовления фитингов трубопровода. Смесители, переходники, ниппеля, накидные гайка — это неполный список деталей, где используются сплавы силумина.
Читать еще:  Станок сверлильный Энкор Корвет-45 с тисками, Москва

Ремонт изделий из силумина

Силумин – это сплав, обладающий повышенной хрупкостью, поэтому изделия из него при эксплуатации могут треснуть.

Для их восстановления применяют эпоксидный клей. Внешний вид восстановится, но использовать его при больших нагрузках не стоит. Для склеивания следует:

  • обезжирить то место, на которое будет наноситься клей, дать подсохнуть;
  • развести клей в соответствии с приложенной инструкцией и нанести на обезжиренную поверхность;
  • плотно соединить сломанные части и забыть о них на сутки.

Ремонт сваркой

В некоторых случаях поврежденное изделие лучше подвергнуть сварке. Эту процедуру проводят самостоятельно в домашних условиях или обращаются к специалисту. При проведении работ температура материала повышается, вследствие этого на сплаве появляется оксидная пленка, препятствующая соединению частей изделия. Для устранения этих негативных явлений для сварки используют аргон, обеспечивающий защиту от отрицательных факторов. Для работы необходимо:

  • подготовить неплавящиеся вольфрамовые электроды и припой для сварки конструкций из алюминия;
  • обезжирить поверхность;
  • изделие зафиксировать;
  • разогреть поверхность до 220 градусов по Цельсию. Для отвода тепла свариваемую деталь положить на стальную прокладку;
  • сварить шов, используя переменный ток;
  • произвести обработку швов для эстетики внешнего вида.

Изделие готово к эксплуатации при небольших нагрузках.

Производство силумина

Изготовлением силумина занимаются не только крупные предприятия металлургической промышленности, но и частные лаборатории. Усовершенствование технологического процесса постоянно модернизируется.

  1. Из руды добываются металлы для шихты, можно производить силумин из золы, которая остается после работ теплоэлектроцентралей. Зола восстанавливается способом электронизации и с помощью элемента — криолита. В шихте еще много иных примесей, которые не оказывают влияния на качественные характеристики сплава. Единственное — железо влияет на качество лигатуры, но если оно находится в пределах от 0,8 до 1,5%, то такое количество допускается и содержится в отходах после ТЭЦ, поэтому использование таких шлаков для изготовления продукции благотворно отражается на экологии.
  2. В природе тоже встречаются соединения алюминия и кремния в бокситовой руде, но, согласно технологии, сплавы этих компонентов производятся искусственным путем, что способствует улучшению качества готовых изделий.

Что такое латунь

Материал внешне напоминает золото, но это соединение меди и цинка. Для улучшения эксплуатационных свойств в состав добавляют никель, железо, олово, свинец и иные ингредиенты. Примесей около 10%, а цинка от 30 до 35%.

  • плотность 8500 кг/м;
  • температура плавления от 880 до 950С;
  • легко поддается обработке;
  • износоустойчивость;
  • вязкость;
  • в зависимости от содержания преобладающего металла, бывает теплопроводной или пропускающей электричество.

Производимая продукция: проволока, фольга, прутья, металлические листы, трубы, арматура. Из нее выполняют украшения, фоторамки и значки. Стоимость изделий относительно невысокая, а срок эксплуатации длительный, при этом не утрачивается товарный вид.

Сравнение силумина и латуни

Силумин или латунь что лучше? По сравнению с латунью силумин является более хрупким материалом, но по ценовым характеристикам он дешевле.

У кранов и вентилей из силумина непродолжительный срок службы, они быстро ржавеют и при возникновении технической аварии могут быстро сломаться, что не исключает затопление нижних этажей. Приборы учета энергетических ресурсов с использованием элементов из этого материала также могут не выдержать параметров высокого давления и быстро придут в негодность

Материал силумин не выдерживает высокую температуру воды, срок эксплуатации водопроводных кранов не превышает года, на них постепенно образовываются микротрещины, что приводит к поломке устройства.

Для систем водоснабжения выбирать лучше всего изделия из латуни, хотя они и дороже, но выдерживают горячую воду и высокое давление.

Как отличить силумин от латуни? Чтобы отличить эти два материала следует обратить внимание на цвет изделия, из которого они изготовлены: из латуни – желтоватого цвета, а из силумина – белого. Причем по весу первый тяжелее второго.

Конструктивные изделия из силумина можно выбирать для иных целей, в случаях, если основная нагрузка приходится на другие элементы.

Совет! При выборе смесителей лучше не экономить, от этого зависит безопасность личная и окружающих.

Изделия из силумина сегодня пользуются спросом, так как они недорого стоят, а их внешний вид вполне эстетичен, но при выборе рекомендуется владеть знаниями об их предназначении.

Силумин (сплав): состав, свойства

Группа литейных сплавов, основой которых является алюминий, содержащая кремний от 4 до 22%, называется силумином. Сплавы обладают высокой стойкостью к коррозии во влажной среде и морской воде. В состав силумина (сплава) также входит малое количество примесей марганца, цинка, титана, железа, меди и кальция. Они имеют хорошие литейные и механические свойства, их легко резать. Внешний вид материала больше напоминает чугун, и распознать его, не имея опыта работы с ним, сложно.

Основные свойства

По свойствам его часто сравнивают со сталью (нержавеющей). Следует отметить, что он по сравнению с последней имеет меньший удельный вес. Силумины – это сплавы алюминия с кремнием. Обладают следующими свойствами:

  • удельной прочностью. Показатели сплава и сталей близки по значениям, но, учитывая, что вес силумина меньше, конструкции из него выигрышнее;
  • устойчивостью к износу;
  • антикоррозийностью. На поверхности металла образуется защитная пленка, которая оберегает его от негативного влияния окружающей среды;
  • низким удельным весом, равным 2,8 г/см 3 ;
  • пластичностью. При заливке в формы из сплава получают детали, имеющие сложные конфигурации. Благодаря хорошей жидкотекучести процесс литья удешевляется;
  • невысокой температурой плавления. Она равна примерно 600 градусов по Цельсию, что значительно ниже, чем температура плавления стали. Это свойство также оказывает влияние на литье и удешевляет стоимость проводимых работ;
  • доступной ценой.

Перечисленные свойства силумина (сплава) показывают, что этот материал выгодно использовать при производстве различных изделий. Следует, однако, отметить, что он обладает повышенной хрупкостью. При падении деталь, изготовленная из силумина, может треснуть.

Маркировка

Силумины – это сплавы на основе алюминия. В них добавляют кремний и некоторые другие элементы для улучшения свойств. Для быстрого и точного подбора материала с определенным составом и процентным содержанием входящих элементов разработали маркировку сплавов.

Она включает в себя сочетание цифровых и буквенных символов. Буквами указывают входящие в состав компоненты, а цифрами – их процентное содержание, кроме алюминия. Буквы располагаются в порядке убывания процентного содержания элемента. Запись АК12Ц3 означает, что сплав содержит 12% кремния, 3% цинка, а все остальное – 85% — алюминий.

Виды силумина

Силумины в цветной металлургии делятся на:

  • Деформируемые (доэвтектические и эвтектические). При литье доэвтектические сплавы используют легированные только кремнием 4–10%. Иногда допускается небольшое количество примесей из меди и марганца. Эвтектика имеет около 13% кремния.
  • Литейные (заэвтектические). Они обладают повышенной жидкотекучестью, что обеспечивает изготовление отливок, имеющих сложную форму и тонкие стенки, низкую усадку, невысокую склонность образовывать трещины. Содержание кремния доходит до 20%.

Ремонт изделий из силумина

Силумин – это сплав, обладающий повышенной хрупкостью, поэтому изделия из него при эксплуатации могут треснуть.

Для их восстановления применяют эпоксидный клей. Внешний вид восстановится, но использовать его при больших нагрузках не стоит. Для склеивания следует:

  • обезжирить то место, на которое будет наноситься клей, дать подсохнуть;
  • развести клей в соответствии с приложенной инструкцией и нанести на обезжиренную поверхность;
  • плотно соединить сломанные части и забыть о них на сутки.

Ремонт сваркой

В некоторых случаях поврежденное изделие лучше подвергнуть сварке. Эту процедуру проводят самостоятельно в домашних условиях или обращаются к специалисту. При проведении работ температура материала повышается, вследствие этого на сплаве появляется оксидная пленка, препятствующая соединению частей изделия. Для устранения этих негативных явлений для сварки используют аргон, обеспечивающий защиту от отрицательных факторов. Для работы необходимо:

  • подготовить неплавящиеся вольфрамовые электроды и припой для сварки конструкций из алюминия;
  • обезжирить поверхность;
  • изделие зафиксировать;
  • разогреть поверхность до 220 градусов по Цельсию. Для отвода тепла свариваемую деталь положить на стальную прокладку;
  • сварить шов, используя переменный ток;
  • произвести обработку швов для эстетики внешнего вида.

Изделие готово к эксплуатации при небольших нагрузках.

Применение

Низкая стоимость в сочетании с технологичностью дает возможность сплав силумин, в состав которого входят алюминий с кремнием, широко применять в народном хозяйстве:

  • машиностроении – поршни, детали для корпуса, цилиндры, двигатели;
  • авиастроении – блоки цилиндров, поршни для охлаждения, авиационные узлы;
  • оружейном деле – коробки для стволов, узлы для пневматических винтовок;
  • газотурбинном оборудовании – генераторы, теплообменники;
  • изготовлении бытовых приборов – кастрюли, сковородки, казаны, коптильни;
  • скульптурной технике.

В составе силумина (сплава) могут присутствовать добавки цинка, титана, железа, калия, меди в небольших количествах. Все его марки обладают значительными литейными качествами, жидкотекучестью, и просто свариваются. Сплаву присущи износостойкость и прочность, но он является хрупким материалом. Изделия из силумина выдерживают большую нагрузку, но при падении могут расколоться. В этом заключается главный недостаток материала.

Группы сплавов

Существует несколько групп силумина, связанных с его применением:

  1. Эвтектический. Его маркировка АК12, относится к литейным сплавам, содержит 12% кремния. Для него характерна стойкость к коррозии, небольшая литейная усадка, значительная твердость, герметичность. Применяется для отливки аппаратуры, деталей техники, приборов сложной формы. Из-за хрупкости не рекомендуется отливать ответственные детали для работы под нагрузкой.
  2. Доэвтектический. Маркируется АК9ч, имеет высокие литейные технологические свойства, коррозийную стойкость и механическую прочность. Применяется для изготовления сложных деталей крупного и среднего размера. Сохраняет свойства при температуре до 200 градусов по Цельсию. Крупногабаритные детали из него работают под большой нагрузкой.
  3. Заэвтектический. Высоколегированный сплав АК21М2 отличается высокой жаропрочностью и износоустойчивостью. Используется для изготовления фасонных отливок. Идет для изготовления поршней, работающих в среде повышенных температур.

Заключение

Силумин – сплав, в составе которого алюминий является основным элементом. Добавка из кремния делает материал твердым и износоустойчивым. При получении силумина методом литья не образуется трещин. Нет ни одной отрасли народного хозяйства, где бы не использовались алюминиевые сплавы.

Силумин применяют для изготовления корпусов огнестрельного оружия, запчастей к автомашинам, мотоциклам, морским судам, посуды. Все сплавы алюминия с кремнием называют силуминами. И все они обладают разными свойствами. Это зависит от содержания в составе силумина (сплава) кремния, который может составлять 4–22% общего объема. Чем больше его в сплаве, тем он тверже, но в то же время становится и более хрупким.

Эвтектические силумины: алюминий и 12 % кремния

220121, а/я 184, г. Минск,
ул. Притыцкого, 62-4-208 Этот адрес электронной почты защищен от спам-ботов. У вас должен быть включен JavaScript для просмотра.

по всем вопросам:

+ 375 17 390-92-94, 354-45-01

  • О компании
  • Галерея
  • Контактные данные
  • Проекты и технологии
  • Продукция
  • Научная основа
  • Представительства
  • Атлас поставок
  • Справка

Сплавы системы алюминий-кремний (силумины) являются основой большинства литейных алюминиевых сплавов, широко применяемых как конструкционные материал для фасонного литья в машиностроении, авиастроении, строительстве, транспорте и других отраслях промышленности. Структура и механические свойства силуминов во многом определяются состоянием включений кремния, которые в литом состоянии представляют собой грубокристаллические включения. Улучшение структуры и механических свойств литейных промышленных сплавов производится путем модифицирования, определяющим благоприятное структурообразование силуминов. Самым распространенным модификатором доэвтектических и эвтектических силуминов является натрий, надежно обеспечивающий измельчение важнейшей структурной составляющей этих сплавов – алюминиево-кремниевой эвтектики. Аналогичное влияние на кристаллизацию оказывает стронций, другие щелочные и щелочноземельные элементы.

В последнее время силумины находят применение в качестве экономнолегированных поршневых сплавов, важнейшей характеристикой которых является однородность структуры при максимальном измельчении всех её составляющих. В связи с этим модифицирование структуры эвтектики одним из названных выше элементов практически утратило смысл, так как наряду с модифицированной эвтектикой в структуре обнаруживались дендритные включения αAl-твердого раствора и первичные выделения βSi-фазы. В конце прошлого столетия возникло новое направление, в основе которого лежит суспензионное литье. Его сущность заключается в том, что в жидкий металл вводятся ультрадисперсные тугоплавкие соединения типа оксидов, карбидов, нитридов и др., позволяющие получать тонко измельченную, однородную структуру сплавов с достаточно высокими механическими свойствами. Существуют и другие виды обработки расплава -ультразвук, горячая прокатка изделий и т.п. Тем не менее, эти технологии вызывают значительные трудности при их реализации в производственных условиях. Отказ от более простых и технологичных схем модифицирования обусловлен, очевидно, недостаточной изученностью процессов, протекающих при модифицировании силуминов.

В данной работе для выяснения механизма формирования структуры и свойств силуминов использовали метод компьютерного термического анализа (ТА) по кривой охлаждения пробы расплава с использованием разработанной в Белорусском национальном техническом университете микропроцессорной системы термического анализа [1].

Анализ процесса кристаллизации сплавов проводился путем определения температур фазовых превращений – температур ликвидус и эвтектического превращения. С этой целью по результатам ТА пробы расплава определяли производные температуры по времени первого и второго порядков и моменты времени, соответствующие их экстремальным значениям на участках выделения первичной и эвтектических фаз (рис.1).

Рисунок 1 – Кривая охлаждения пробы расплава (1); производные температуры по времени первого (2) и второго порядков (3)

Содержание кремния в сплавах находилось в пределах 9,0%, 12,5% и 20%, соответственно. Обсуждение полученных результатов проводилось с учетом фундаментальных исследований, изложенных в работах [2-4]. На рис.2 показаны характерные кривые охлаждения немодифицированных и модифицированных натрием силуминов с 9%, 12,5% и 20% кремния, а также заэвтектического сплава с добавкой 0,1% фосфора.

Рисунок 2 – Кривые охлаждения доэвтектического (а), эвтектического (б) и заэвтектического (в) силумина: 1 – немодифицированного; 2 – модифицированного 0,02% Na; 3 – модифицированного 0,1% P

На термограммах немодифицированных доэвтектических силуминов наблюдается два минимума. Первый минимум возникает вследствие переохлаждения при первичной кристаллизации α-твердого раствора кремния в алюминии, второй – при эвтектической кристаллизации с последующей рекалесценцией несколько ниже температуры плавления эвтектики. Иная картина наблюдается при модифицировании сплавов натрием. Вид кривых затвердевания модифицированной эвтектики отличается от кривых охлаждения немодифицированных сплавов. Во-первых, при наличии натрия отсутствует минимум, характерный для обычной эвтектики, а наблюдается округлый перегиб от участка кривой первичной кристаллизации к эвтектической остановке. Во-вторых, во всех модифицированных сплавах кристаллизация эвтектики протекает не при постоянной, а при понижающейся по времени температуре. Значительный перепад температуры начала и конца кристаллизации модифицированной эвтектики указывает на замедление скорости роста кристаллов кремния. Это связано с тем, что количество теплоты кристаллизации недостаточно для сохранения постоянной температуры. На рис.3 показаны микроструктуры исследуемых сплавов.

Рисунок 3 – Микроструктуры сплавов:
а) Al-9%Si, немодифицированный (x100);
б) Al-9%Si, модифицированный натрием (x100);
в) Al-12,5%Si, немодифицированный (x100);
г) Al-12,5%Si, модифицированный натрием (x100);
д) Al-12,5%Si, модифицированный фосфором (x100)

Видно, что у немодифицированного сплава эвтектические кристаллы кремния имеют форму пластин, которые в поле шлифа выглядят иглами. Форма кристаллов кремния во многом определяется его кристаллохимическим строением. Известно [5], что для кристаллов кремния, имеющих кристаллическую решетку типа алмаза, характерна ковалентная химическая связь между атомами, реализуемая в основном по плоскостям <111>. При росте из расплава даже в случае небольших переохлаждений эти плоскости получают преимущественное развитие, что приводит к образованию в структуре силуминов пластинчатых включений эвтектического кремния. Изучение пространственного расположения кристалла эвтектического кремния в немодифицированном силумине, выполненное автором работы [6] путем его послойного сошлифования, показало, что он представляет собой разветвленный дендрит (рис.4). При этом все ветви имеют четкую огранку. В структуре закристаллизовавшейся модифицированной эвтектики наблюдаются тонкодисперсные волокнистые включения кремния, а так же отдельные глобулярные включения [7]. Собственно эвтектика представляет собой композит, состоящий из αAl и βSi фаз.

Образование подобной структуры является определяющим фактором в улучшении механических свойств конструкционных сплавов типа АК9ч. Учитывая кооперативный рост фаз, естественно предположить, что на границах контакта кристаллизуемых включений образовались химические связи, обусловленные не только силами Ван-дер-Ваальса. В зависимости от взаимного расположения уровня Ферми, валентных зон, а так же состояния, в котором находятся валентные электроны, могут образовываться металлические, ковалентные или ионные связи. Образование гибридных связей во многом определяет свойство эвтектики. Следует отметить, что в зависимости от состава сплава, скорости охлаждения и других технологических параметров в структуре эвтектических силуминов наряду с модифицированной эвтектикой выпадают кристаллы αAl. (Рис.3,д)

Рисунок 4 – Модель кристалла эвтектического кремния в немодифицированном силумине [6]

Для более глубокого понимания процесса формирования включений кремния при кристаллизации эвтектики проводили исследования на заэвтектическом силумине с 20% Si. Для исследований использовали термический, металлографический, микрорентгеноспектральный методы анализа.

Из термограмм видно, что первичная кристаллизация заэвтектических сплавов сопровождается малозаметным тепловым эффектом вследствие сравнительного небольшого количества избыточного кремния. Характер кривых охлаждения в области кристаллизации эвтектики аналогичен кривым охлаждения в ранее рассмотренных случаях. Эвтектическая кристаллизация немодифицированного сплава протекает с заметным переохлаждением и плавным перегибом до конца затвердевания эвтектики.

Изучение микроструктур исследуемых сплавов позволило выявить следующее. Микроструктура кремния в немодифицированном заэвтектическом силумине в поле шлифа имеет грубокристаллическое дендритное строение (рис.4а). Под действием натрия первичные выделения кремния становятся компактными, приближаясь к сферической форме (рис.4б).

Рисунок 4 – Микроструктура сплава Al-20%Si (а) и распределение примесных атомов натрия и фосфора по сечению βSi – фазы (б и в соответственно). (x400) . [10]

Микрорентгеноспектральный анализ образцов силумина, модифицированного натрием, выполненный на установке JXA-5A, показал наличие примесных атомов натрия во включениях кремниевой βSi – фазы (рис.4б). Максимальное содержание примеси наблюдается в центре включения с постепенным снижением к поверхности кристалла.

В работе [9] автор рассматривает пути влияния примеси на форму роста кристаллов. Это влияние происходит в результате вхождения примеси в состав растущего кристалла, избирательно адсорбируясь по его определенным граням, развитие которых они тормозят, изменяя поверхностную энергию кристаллических граней по отношению к «среде». Первый путь, по мнению автора, является основным, это подтверждается результатами микрорентгеноспектрального анализа, а также измерением пикнометрической плотности кремния и параметра его решетки с примесью натрия (табл.1).

Таблица 1 – Влияние модифицирования на кристаллическую структуру первичного кремния [10]

Вопрос 29. Алюминий, кремний и их соединения как важнейшие составляющие неорганических вяжущих материалов

Вопрос 29. Алюминий, кремний и их соединения как важнейшие составляющие неорганических вяжущих материалов.

Алюминий, его соединения и свойства

Алюминий – самый распространенный металл на Земле. Его массовая доля в земной коре составляет 8%. Алюминий имеет плотность с=2,7 г/см3, температуру плавления Тпл. = 659оС, высокую пластичность и высокую электропроводность. На воздухе покрывается плотной и прочной окисдной пленкой Al2O3.

Основная масса его сосредоточена в виде природных соединений, в которых он связан с кислородом и кремнием, так называемых алюмосиликатов. Алюмосиликаты входят в состав многих горных пород и глин. Другими важными минералами алюминия являются боксит Al2O3∙nH2O, криолит Na3[AlF6], корунд Al2O3.

Читать еще:  Как сделать самодельный сверлильный станок из рулевой рейки?

Получают алюминий из Al2O3 электролитическим способом. Для этого необходим достаточно чистый Al2O3, так как из выплавленного алюминия примеси удалить очень трудно. Оксид Al2O3 не проводит электрического тока и имеет высокую температуру плавления (≈ 2050оС). Поэтому электролизу подвергают расплав оксида алюминия в криолите AlF3∙3NaF, содержащий 10% по массе Al2O3, плавящийся при 950оС и обладающий электропроводимостью.

В расплавленном криолите оксид алюминия диссоциирует на ионы:

Al2O3 ↔ Al3+ + AlO33−

Условия электролиза подбираются такими, чтобы на катоде разряжались катионы Al3+. При этом на аноде будут окисляться ионы AlO33−.

Уравнения электродных процессов:

Al3+ + 3 → Al

4AlO33− − 12 → 2Al2O3 + 3O2

4Al3+ + 4AlO33− 4Al + 2Al2O3 + 3O2

2Al2O3 4Al + 3O2

Образующийся кислород сжигает графитовые аноды:

С + O2 = CO2 или 2С + О2 = 2СО

Электронное строение атома алюминия …3s23p1 определяет характерную для него, постоянную степень окисления +3. Химические связи в соединениях алюминия с другими элементами имеют в основном ковалентный характер. Кроме того, в атоме алюминия на внешнем энергетическом уровне имеются свободные d-орбитали, благодаря чему он может образовывать сложные комплексные ионы с координационным числом равным 6, такие как [AlF6]3− или [Al(OH)6]3−.

Алюминий – металл высокой химической активности. На воздухе он пассивируется, то есть покрывается тончайшей, но очень прочной пленкой оксида Al2O3, предохраняющей его от дальнейшего окисления:

4Al + 3O2 = 2Al2O3

вследствие чего поверхность металла имеет матовый вид. Свойствами защитной пленки обладает только одна из полиморфных кристаллических модификаций Al2O3 со структурой корунда, которая не взаимодействует с водой. Эта пленка может быть удалена растворением в кислотах или щелочах, так как Al2O3 проявляет амфотерные свойства:

Al2O3 + 6HCl = 2AlCl3 + 3H2O

Al2O3 + 2NaOH = 2NaAlO2 + H2O

Образующийся в расплаве щелочи алюминат натрия NaAlO2 в водных растворах образует комплексную соль – тетрагидроксоалюминат натрия Na[Al(OH)4].

Химические свойства алюминия:

1. Взаимодействие с неметаллами

При обычных условиях алюминий реагирует с хлором и бромом; при нагревании реагирует с кислородом, йодом, углеродом, азотом.

2Al + 3Cl2 = 2AlCl3

4Al + 3O2 = 2Al2O3

2. Взаимодействие с водой

Из-за защитной оксидной пленки на поверхности алюминий устойчив в воде. Однако при удалении этой пленки происходит энергичное взаимодействие:

2Al + 6H2O = 2Al(OH)3 + 3H2

3. Взаимодействие с кислотами

Алюминий взаимодействует с хлороводородной и разбавленной серной кислотами:

2Al + 6HCl = 2AlCl3 + 3H2

2Al +H2SO4 = Al2(SO4)3 + 3H2

Азотная и концентрированная серная кислоты пассивируют алюминий: при действии этих кислот увеличивается толщина защитной пленки на металле, и он не растворяется.

4. Взаимодействие со щелочами

2Al + 6NaOH + 6H2O = 2Na3[Al(OH)6] + 3H2

Реакция со щелочами протекает благодаря легкости растворения в них оксидной пленки.

5. Восстановление оксидов металлов

Алюминий является хорошим восстановителем многих оксидов металлов, например:

2Al + Cr2O3 = Al2O3 + 2Cr

8Al + 3Fe3O4 = 4Al2O3 + 9Fe

Применение алюминия и его сплавов

Алюминий применяется как в чистом виде (для изготовления электрических проводов и фольги для конденсаторов), так и в виде сплавов с медью, марганцем, магнием, кремнием, титаном. Легирующие добавки вводят, как правило, для повышения его прочности. Основная масса алюминия идет на изготовление алюминиевых сплавов.

В технике широко распространены дуралюмин (содержит магний и медь), силумин и магналий с кремнием и магнием, соответственно.

Дуралюмины – легкие прочные и коррозионностойкие сплавы. Используются как конструкционный материал в авиа — и машиностроении.

Силумин – сплав алюминия, содержащий кремний. Силумин хорошо подвергается литью, из него можно изготавливать тонкостенные и сложные по форме изделия. Этот сплав используется в автомобиле-, авиа — и машиностроении, производстве точных приборов.

Магналин – сплавалюминия с магнием. Используется в авиа — и машиностроении, в строительстве. Магналин стоек к коррозии в морской воде, поэтому его применяют в судостроении.

Антифрикационные сплавы алюминия с оловом и медью применяются в автомобилестроении для изготовления подшипников коленчатого вала. Основное достоинство конструкционных алюминиевых сплавов – малая их плотность, высокая прочность а расчете на единицу массы, высокая стойкость против атмосферной коррозии, дешевизна и простота обработки. Важной областью применения алюминия является алитирование – насыщение поверхности стальных или чугунных изделий металлическим алюминием для придания им жаростойкости и предохранения от коррозии. Алитированные изделия не окисляются при нагревании до 1000оС.

Смесь порошков алюминия и оксида железа (Fe2O3 или Fe3O4), имеющая название термит, используется для сварки стальных изделий (трубопроводов, рельсов). При горении термитной смеси протекает реакция с большим выделением теплоты:

8Al + 3Fe3O4 = 4Al2O3 + 9Fe, ∆Нo = −1352 кДж

За счет выделяющейся теплоты температура может достигать 3500оС.

Оксид алюминия Al2O3 применяют для получения алюминия, как огнеупорный материал, в производстве керамики. Кристаллический Al2O3 – корунд служит абразивным материалом. Некоторые природные разновидности корунда (рубин, сапфир) являются драгоценными камнями, используются в ювелирном деле.

Криолит Na3[AlF6] применяют для получения алюминия и при изготовлении керамики и эмалей.

Глинозем (оксид алюминия Al2O3) – белый порошок, Тпл. = 2042оС, в воде не растворяется.

Природный минерал корунд (тоже Al2O3) очень твердый, поэтому используется как абразивный и огнеупорный материал.

Глинозем Al2O3 получают термическим разложением гидроксида алюминия:

2Al(OH)3 Al2O3 + 3H2O

В промышленности глинозем получают из бокситов, а также из каолинов. Большая часть глинозема используется для получения алюминия.

Алюминаты – соли слабых кислот. Они подвергаются гидролизу и существуют в растворе в избытке щелочи. При этом возможно образование ортоалюминатов типа K3AlO3.

Водные растворы алюминатов содержат комплексные анионы [Al(OH)4]−, [Al(OH)5]2− и гидроалюминаты [Al(OH)6]3−.

Алюминий встречается в виде соединений, называемых шпинелями.

MgAl2O4 – обыкновенная шпинель;

ZnAl2O4 – цинковая шпинель.

Квасцы являются комплексными соединениями типа MeAl(SO4)2 ∙ 12H2O,

где Ме – К, Na, NH4+.

Алюминаты растворяются в воде по-разному. Алюминаты щелочных металлов хорошо растворимы в воде, у алюминатов щелочноземельных металлов растворимость в воде значительно ниже. Алюминаты содержатся в неорганических вяжущих материалах. Например, трехкальциевый алюминат 3CaO ∙ Al2O3 входит в минералогический состав клинкера портландцемента. Однокальциевый алюминат CaO ∙ Al2O3 является главной составной частью клинкера глиноземистого цемента.

Кремний, его соединения и свойства

Кремний является вторым по распространенности элементов в земной коре (27% по массе).

Кремний образует две аллотропические формы: кристаллическую и аморфную. Кристаллический кремний имеет серо-стальной цвет и металлический блеск. Аморфный кремний представляет собой бурый гигроскопичный порошок, является более реакционноспособным, по сравнению с кристаллическим.

Кремний применяется, главным образом, в металлургии и полупроводниковой технике. В металлургии он используется для удаления кислорода из расплавленных металлов и служит составной частью многих сплавов. Важнейшие из них – сплавы на основе железа, меди и алюминия. В полупроводниковой технике кремний используется для изготовления фотоэлементов, усилителей и выпрямителей.

Электронная формула имеет вид: Si 1s22s22p63s23p2

Обладает полупроводниковыми свойствами.

Кремний может быть выделен восстановлением оксида кремния при высокой температуре такими металлами, как магний или алюминий, а также углеродом.

SiO2 + 2C Si + 2CO

SiO2 + 2Mg → Si + 2MgO

SiCl4 + 2Zn Si + 2ZnCl2

Кремний встречается в природе в виде диоксида кремния SiO2 (кремнезема). В природе он встречается как в кристаллическом, так и в аморфном виде.

Кристаллический диоксид кремния (кремнезем) находится в природе в виде песка и кварца. Он очень тверд, нерастворим в воде и плавится при температуре 1610оС, превращаясь в бесцветную жидкость.

Аморфный диоксид кремния распространен в природе гораздо меньше, чем кристаллический. На дне морей имеются отложения тонкого пористого аморфного кремнезема, называемого трепелом.

При сплавлении диоксида кремния с едкими щелочами или карбонатом калия и натрия получаются соли кремниевых кислот:

SiO2 + 2NaOH = Na2SiO3 + H2O

Аморфный кремнезем взаимодействует со щелочами и гашенной известью на холоде. На этом основано применение этих материалов в качестве гидравлических добавок к цементам.

Ca(OH)2 + SiO2 = CaSiO3 + H2O

Na2CO3 + SiO2 = Na2SiO3 + CO2

NaOH + SiO2 = Na2SiO3 + H2O

Кремнезем, находящийся в природе в виде песка, широко применяют в строительстве для производства стекла, керамики и цемента.

Кремнезем (SiO2) и его производные относятся к неорганическим полимерам.

Силикаты чрезвычайно распространены в природе. К природным силикатам относятся полевые шпаты, слюда, глины, асбест, тальк и многие другие минералы. Силикаты входят в состав горных пород: гранита, гнейса, базальта и т. д.

Общую формулу силикатов можно представить как xSiO2∙yR2O3∙zH2O,

где R – преимущественно алюминий.

Действие кислот на силикаты неодинаково. Чем активнее металл, тем легче протекает реакция:

CaSiO3 + HCl = CaCl2 + H2SiO3

При нагревании смесей многих силикатов с другими силикатами или диоксидом кремния получаются прозрачные аморфные сплавы, называемые стеклами.

Растворимое стекло получают путем сплавления диоксида кремния и карбоната натрия:

Na2CO3 + SiO2 = Na2SiO3 + CO2

SiO2 + NaOH = Na2SiO3 + H2O

Растворимое стекло, представленное в виде водных растворов называется жидким стеклом. Жидкое стекло очень быстро твердеет на воздухе, образуя поликремниевые кислоты. При этом выделяются высокодисперсные гели, обладающие вяжущими свойствами. Поэтому жидкое стекло применяют в строительстве, для пропитки тканей и других материалов с целью придания им огнестойкости.

Обычное оконное стекло состоит из силикатов натрия и кальция, сплавленных с диоксидом кремния. Состав такого стекла приблизительно может быть выражен формулой Na2O ∙ CaO ∙ 6SiO2. Исходными материалами для получения стекла служат белый песок, сода, известняк или мел. При сплавлении этих веществ происходит реакция:

Na2CO3 + CaCO3 + 6SiO2 → Na2SiO3 ∙ 6SiO2 + 2CO2

Для получения специальных стекол, натрий и калий заменяют на другие элементы. Частичная замена SiO2 на В2О3 приводит к получению боросиликатного стекла. Прибавление борного ангидрида увеличивает твердость стекла, а также стойкость к химическим воздействиям. Из такого стекла изготавливают высококачественную химическую посуду.

Кварцевое стекло содержит в своем составе 99% диоксида кремния и отличается высокой тугоплавкостью. Кварцевое стекло выдерживает резкую смену температур и поэтому его применяют для изготовления лабораторной посуды в химической промышленности.

Все виды стекол устойчивы к действию воды и кислот, но при очень длительном их воздействии может произойти вымывание ионов натрия со стеклянной поверхности (выщелачивание стекла).

Разрушить стекло может только плавиковая (фтористоводородная( кислота HF.

Силан SiH4 – бесцветный газ. Он может быть получен путем воздействия соляной кислоты на силицид магния Mg2Si

Mg2Si + 4HCl = 2MgCl2 + SiH4

Силан может самовоспламеняться на воздухе и сгорать с образованием диоксида кремния и воды.

SiH4 + 2O2 = SiO2 + 2H2O

Фторид кремния SiF4 образуется при взаимодействии фтороводорода с диоксидом кремния:

SiO2 + 4HF = SiF4 + 2H2O

Фторид кремния представляет собой бесцветный газ с резким запахом. В водных растворах фторид кремния подвергается гидролизу:

SiF4 + 3H2O = H2SiO3 + 4HF

Гексафторокремниевая кислота H2SiF6 может быть получена путем взаимодействия фтороводорода с фторидом кремния:

SiF4 + 2HF = H2SiF6

По силе гексафторокремниевая кислота близка к серной.

Фторосиликат натрия Na2SiF6 применяется в производстве стекол, эмалей, а также используется в качестве ускорителя твердения в производстве кислотоупорных замазок на основе растворимого стекла.

Диаграмма эвтектического типа Al-Si

На рисунке 11 приведена диаграмма Al-Si, сплавы этой системы, получили название силумины. В системе Al-Si существуют три фазы: L – жидкий неограниченный раствор атомов алюминия и кремния, a — твердый раствор кремния в алюминии с максимальной растворимостью 1,65% Si в решетке алюминия (a1,65%Si), b — твердый раствор алюминия в кремнии с максимальной растворимостью в кремнии 2% Al (b2%Al).Она уменьшается при понижении температуры до 20°С и достигает значений a0,067% и b0%Al, т.е. b-твердый раствор превращается в чистый кремний.

Рис. 11. Часть диаграммы Al-Si.

Основное трехфазное превращение в системе Al-Si – эвтектическое – при температуре 577°С: L11,7 Û a1,65 +b99,5 (цифры состава фаз записываются только по содержанию кремния, а содержание алюминия подразумевается как добавление до 100%, т.е. L11,7% si, 88, 3%Al).

Эвтектическому превращению предшествуют этапы первичной кристаллизации: L ®a (в области L + a) и L ®b (в области L + b).

При охлаждении сплавов ниже температуры эвтектики происходит вторичная кристаллизация aÛb вследствие изменения химического состава зерен a- фазы от 1,65% до 0,067% Si. “Лишние” атомы Si, выделяясь из решетки алюминия, образуют новую решетку b-твердого раствора (т.е. образуются очень мелкие кристаллы b II ); аналогичное изменение содержания кремния в решетке b-фазы от 99,5% до 100% Si вызывает образование новых мелких кристаллов a II .

Для определения конечной структуры сплава необходимо провести вертикальную линию через точку химического состава сплава и, определив критические температуры, записать этапы фазовых превращений.

Пример: сплав состава 5%Si, остальное Al:

1. Начало затвердевания на линии ликвидус при температуре

2. При температуре t=577 0 С=const протекает эвтектическая кристаллизация: L11,7 ® a Э 1,65 + b Э 99,5.

3. Ниже 577 0 до 20 0 С – выделение вторичных кристаллов вследствие изменения состава фаз a и b по линиям переменой растворимости:
a(1,65-0,067)% Si Ûb(99,5-100)%Si.

Конечная структура определяется с учетом результатов всех фазовых превращений: a I 0,067+(a Э 0,067 + b Э 100)эвтектика+a II 0,067+b II 100

Вторичные кристаллы отличаются от первичных размерами. Первичные кристаллы наиболее крупные, а вторичные имеют размеры, меньшие на 3-4 порядка. Кроме того, эти мелкие частицы, образовавшиеся при охлаждении в твердом состоянии, чаще всего растут, как на готовой подложке, на ранее образованных кристаллах, поэтому они часто не обнаруживаются под микроскопом.

Поскольку при полном охлаждении состав b-фазы изменился до b100%Si, т.е. в решетке кремния не осталось атомов алюминия, структура сплава состоит из a I 0,067+(a0,067 +Si)+a II 0,067+Si II . Такая структура образуется во всех доэвтектических сплавах, содержащих более 1,65% Si, но менее 11,7% Si.

В сплаве эвтектического состава (11,7%Si) отсутствует первичная кристаллизация, поэтому в структуре присутствует только (a0,067 +Si)эвтектика.

В заэвтектических сплавах содержащих от 11,7% Si до 99,5% Si протекает первичная кристаллизация L®b I , вместо L®a I , а затем кристаллизация эвтектики L®a+b и вторичная кристаллизация. Конечная структура сплава (с учетом преобразования твердого раствора b в чистый кремний): Si I +(a0,067+Si)+a II 0,067+Si II .

Фазовый состав всех этих сплавов одинаковый при комнатной температуре: a0,067 и Si. Но состав фаз при любой другой температуре определяется точками на концах коноды, проведенной при заданной температуре в двухфазной области для данного сплава. Например, у сплава с 50% Si при температуре 800°С конода указывает на состав фазы L25%Si и фазы b99,0%Si.

Определение весовых количеств двух сосуществующих фаз в конкретном сплаве определяется по правилу отрезков коноды, проведенной для данного сплава. Так, в том же сплаве с 50% Si при температуре 800 0 С количества фаз L и b определяется отрезками:

Для определения весовых количеств структурных составляющих в конечной структуре сплава используется конода при той температуре, при которой данная составляющая образовалась полностью.

Пример для того же сплава с 50% Si. Его структура Si I +(a0,067+Si)+a II 0,067+Si II . Структурные составляющие Si I и эвтектика (a+Si) полностью образовались при температуре эвтектики 577 0 С на коноде
(11,7-99,5)% Si. Поэтому:

QSiI=QbI и QL=Q(a+Si) ,

т.к. количество эвтектики равняется количеству жидкой фазы L, оставшейся после первичной кристаллизации b I при t=577 0 С.

Можно так же подсчитать и весовое количество вторичных кристаллов, которые полностью выделились при комнатной температуре, т.е. на коноде (100-0,067)% Si. Вторичные кристаллы выделяются вследствие изменения химического состава фаз по линиям переменной растворимости, т.е. от 1,65 до 0,067% Si для a фазы, и от 99,5 до 100% Si для фазы b. Количество вторичных фаз будет также зависеть от количества ранее образовавшихся фаз:

QSiII и QaII

На рисунке 12 приведены характерные структуры сплавов Al-Si.

а) б) в)
Рис. 12. Микроструктура силуминов с содержанием кремния: а) 4% Si (´280); б) 11,7% Si (´280); в) 20% Si (´100).

Последнее изменение этой страницы: 2017-02-06; Нарушение авторского права страницы

Эвтектические силумины: алюминий и 12 % кремния

Алюминиево-кремниевый сплав АК12 (старая марка – АЛ2), относящийся к силуминам, имеет хорошую коррозийную стойкость, а также повышенный уровень литейных и механических свойств. Ввиду таких уникальных технологических параметров, он успешно конкурирует с черными металлами, постепенно вытесняя их традиционных областей промышленности: автомобильного и текстильного машиностроения.

Основные свойства

По свойствам его часто сравнивают со сталью (нержавеющей). Следует отметить, что он по сравнению с последней имеет меньший удельный вес. Силумины – это сплавы алюминия с кремнием. Обладают следующими свойствами:

  • удельной прочностью. Показатели сплава и сталей близки по значениям, но, учитывая, что вес силумина меньше, конструкции из него выигрышнее;
  • устойчивостью к износу;
  • антикоррозийностью. На поверхности металла образуется защитная пленка, которая оберегает его от негативного влияния окружающей среды;
  • низким удельным весом, равным 2,8 г/см3;
  • пластичностью. При заливке в формы из сплава получают детали, имеющие сложные конфигурации. Благодаря хорошей жидкотекучести процесс литья удешевляется;
  • невысокой температурой плавления. Она равна примерно 600 градусов по Цельсию, что значительно ниже, чем температура плавления стали. Это свойство также оказывает влияние на литье и удешевляет стоимость проводимых работ;
  • доступной ценой.

Перечисленные свойства силумина (сплава) показывают, что этот материал выгодно использовать при производстве различных изделий. Следует, однако, отметить, что он обладает повышенной хрупкостью. При падении деталь, изготовленная из силумина, может треснуть.

Свойства силумина АК12.

Силумин марки АК12 имеет малую плотность, поскольку в его состав входит легкий кремний – плотность составляет 2,66 г/см3. Он обладает важными свойствами, которые с трудом удается получить у более прочных алюминиевых сплавов:

  • высокая жидкотекучесть;
  • низкая линейная усадка;
  • превосходная свариваемость.

Сплав АК12 дает малую усадку в процессе литья, практически не образует трещин. При этом отливки, за счет его малого интервала кристаллизации (близкого к нулю), обладают небольшой пористостью. Но из-за склонности алюминиево-кремниевого сплава к газонасыщению, изделия могут содержать концентрированные газовые раковины – закрытые открытые или полости с шершавой поверхностью. Именно из-за них возникают немалые трудности при изготовлении массивных и сложных по форме заготовок из АК12.

Коррозионная стойкость – второй после литейных качеств, но не менее важный параметр сплава АК12. В целом он обладает средним уровнем антикоррозийности, поэтому может использоваться в промышленности без защитного покрытия или с нанесенным на его поверхность слоем краски. Скорость коррозии силумина АК12 в морском и влажном воздухе во многом зависит от его состава.

Сплав АК12 превосходно сваривается любыми видами сварки, как аргоновой, так и точечной, давая довольно прочный сварочный шов.

Маркировка

Силумины – это сплавы на основе алюминия. В них добавляют кремний и некоторые другие элементы для улучшения свойств. Для быстрого и точного подбора материала с определенным составом и процентным содержанием входящих элементов разработали маркировку сплавов.

Она включает в себя сочетание цифровых и буквенных символов. Буквами указывают входящие в состав компоненты, а цифрами – их процентное содержание, кроме алюминия. Буквы располагаются в порядке убывания процентного содержания элемента. Запись АК12Ц3 означает, что сплав содержит 12% кремния, 3% цинка, а все остальное – 85% — алюминий.

Читать еще:  Что нужно знать при выборе воздушного компрессора

Стоимость

Что же касается цены на данный материал, она достаточно невысока, около 80 рублей за 1 кг. сплава. А вот цены на товары из этого сплава уже на порядок выше, но так же достаточно недорогие, если сравнивать с товарами из чистого металла.

перейти к разделам

Вас могут заинтересовать предметы:

Бюст Пушкина А. С.

Старинный бюст Пушкина А.С. эпохи СССР. Предмет небольшого размера. Имеет явные следы времени, потертости, вмятины, царапины. Этот бюст Пушкина являет…
1500 руб.

Бюст Гагарина Ю. А.

Бюст первого человека в космосе — Юрия Алексеевича Гагарина. Ю.А. Гагарин — советский летчик-космонавт, герой Советского Союза, 12 апреля 1961 года ст…
0 руб.

Виды силумина

Силумины в цветной металлургии делятся на:

  • Деформируемые (доэвтектические и эвтектические). При литье доэвтектические сплавы используют легированные только кремнием 4–10%. Иногда допускается небольшое количество примесей из меди и марганца. Эвтектика имеет около 13% кремния.
  • Литейные (заэвтектические). Они обладают повышенной жидкотекучестью, что обеспечивает изготовление отливок, имеющих сложную форму и тонкие стенки, низкую усадку, невысокую склонность образовывать трещины. Содержание кремния доходит до 20%.

Маркировка[ | ]

  • А — алюминий,
  • К — кремний,
  • ## — процентное содержание кремния в сплаве,
  • @@ — другие химические элементы, содержащиеся в сплаве (если имеются).

Встречается другая маркировка: АЛ##

  • АЛ — алюминий литейный,
  • ## — номер сплава.

Наиболее распространённые марки:

  • АК12 — 12 % кремния, эвтектический сплав.
  • АК9 — 9 % кремния.
  • АК7Ц9 — 7 % кремния, 9 % цинка.

Ремонт изделий из силумина

Силумин – это сплав, обладающий повышенной хрупкостью, поэтому изделия из него при эксплуатации могут треснуть.

Для их восстановления применяют эпоксидный клей. Внешний вид восстановится, но использовать его при больших нагрузках не стоит. Для склеивания следует:

  • обезжирить то место, на которое будет наноситься клей, дать подсохнуть;
  • развести клей в соответствии с приложенной инструкцией и нанести на обезжиренную поверхность;
  • плотно соединить сломанные части и забыть о них на сутки.

Ремонт сваркой

В некоторых случаях поврежденное изделие лучше подвергнуть сварке. Эту процедуру проводят самостоятельно в домашних условиях или обращаются к специалисту. При проведении работ температура материала повышается, вследствие этого на сплаве появляется оксидная пленка, препятствующая соединению частей изделия. Для устранения этих негативных явлений для сварки используют аргон, обеспечивающий защиту от отрицательных факторов. Для работы необходимо:

  • подготовить неплавящиеся вольфрамовые электроды и припой для сварки конструкций из алюминия;
  • обезжирить поверхность;
  • изделие зафиксировать;
  • разогреть поверхность до 220 градусов по Цельсию. Для отвода тепла свариваемую деталь положить на стальную прокладку;
  • сварить шов, используя переменный ток;
  • произвести обработку швов для эстетики внешнего вида.

Изделие готово к эксплуатации при небольших нагрузках.

Свойства нормальных силуминов

Первая группа силуминов из алюминия — это эвтектические. Их прочностные параметры довольно малые, однако преимущество этого типа в другом. Она обладают отличными литейными параметрами. Материалы из такого сплава применяются в литье тонкостных изделий, которые в будущем будут применяться в среде повышенной вибрации или под действием ударных нагрузок.

Также важно отметить, что при литье этой группы сплавов, к ней могут быть предъявлены такие требования, как удлинение микроструктуры. Чтобы выполнить это требование, необходимо при операции литья в кокиль или же в форму модифицировать силумин натрием.

Читать также: Как наточить ножи машинки для стрижки волос

Также важно отметить, что высокой устойчивостью к воздействию на сплав агрессивной среды обладают только те, которые характеризуются высокой чистотой состава. Другими словами, в таких материалах должно быть минимальное содержание разнообразных примесей, таких как железо и прочие.

Применение

Низкая стоимость в сочетании с технологичностью дает возможность сплав силумин, в состав которого входят алюминий с кремнием, широко применять в народном хозяйстве:

  • машиностроении – поршни, детали для корпуса, цилиндры, двигатели;
  • авиастроении – блоки цилиндров, поршни для охлаждения, авиационные узлы;
  • оружейном деле – коробки для стволов, узлы для пневматических винтовок;
  • газотурбинном оборудовании – генераторы, теплообменники;
  • изготовлении бытовых приборов – кастрюли, сковородки, казаны, коптильни;
  • скульптурной технике.

В составе силумина (сплава) могут присутствовать добавки цинка, титана, железа, калия, меди в небольших количествах. Все его марки обладают значительными литейными качествами, жидкотекучестью, и просто свариваются. Сплаву присущи износостойкость и прочность, но он является хрупким материалом. Изделия из силумина выдерживают большую нагрузку, но при падении могут расколоться. В этом заключается главный недостаток материала.

В СССР и сегодня

В Советском Союзе из силумина массово производили бюсты вождей и статуэтки, предназначенные для народного пользования. В наши дни силумин по достоинству оценили в Китае, там из него производят различные бытовые товары, как низкопробные, так и достаточно высокого качества. Благодаря своей лёгкости, силумин нашёл широкое применение в авиации и в машиностроении, главным образом его используют для изготовления деталей, таких как двигатели, цилиндры, поршни. Несмотря на ряд преимуществ, самый главный минус силумина состоит в его невысокой прочности. Силуминовые изделия очень легко разбить.

Группы сплавов

Существует несколько групп силумина, связанных с его применением:

  1. Эвтектический. Его маркировка АК12, относится к литейным сплавам, содержит 12% кремния. Для него характерна стойкость к коррозии, небольшая литейная усадка, значительная твердость, герметичность. Применяется для отливки аппаратуры, деталей техники, приборов сложной формы. Из-за хрупкости не рекомендуется отливать ответственные детали для работы под нагрузкой.
  2. Доэвтектический. Маркируется АК9ч, имеет высокие литейные технологические свойства, коррозийную стойкость и механическую прочность. Применяется для изготовления сложных деталей крупного и среднего размера. Сохраняет свойства при температуре до 200 градусов по Цельсию. Крупногабаритные детали из него работают под большой нагрузкой.
  3. Заэвтектический. Высоколегированный сплав АК21М2 отличается высокой жаропрочностью и износоустойчивостью. Используется для изготовления фасонных отливок. Идет для изготовления поршней, работающих в среде повышенных температур.

Модификация сплава.

К сожалению, сплав АК12 термическая закалка не приводит к повышению его прочностных характеристик. В связи с этим, его механические свойства модифицируют специальными добавками. Для этого алюминиево-кремниевый сплав расплавляют до жидкого состояния и обрабатывают щелочными металлами (натрием, литием, калием) или их солями. Модификатора требуется немного, буквально сотые доли процента, чтобы он связал частицы кремния, находящиеся в растворе, и затормозил их рост. В результате значительно повышается прочность и пластичность сплава АК12, а также его литейные свойства.

В последнее время промышленностью активно используется алюминиево-кремниевый сплав АК12, модифицированный соединениями стронция, которые практически так же влияют на сплав, как и соли щелочных металлов. Их вводят в виде лигатуры на базе алюминия, и, в отличие от натрия, стронций не склонен к угару и не повышает газоусадочную и усадочную пористость материала. Отливки, получаемые с его помощью, сохраняют свои модифицированные свойства даже после переплавки.

Как отличить латунный кран от силуминового. Учимся на чужих ошибках: Силумин выглядит как латунь, но обходится в сто раз дороже

Силумин

Начать стоит с того, что существует несколько различных сплавов, в которых используется алюминий. Однако именно этот считается наиболее востребованным среди прочих. Силумин — это следующая ступень после алюминия. Получают его при помощи сплава кремния, добавленного в этот химический элемент. Совмещение этих двух элементов обеспечивает полученный сплав повышенной твердостью, а также повышенной устойчивостью к износу деталей, полученных из сплава.

Содержание кремния в таких сплавах колеблется от 4 до 22%. Также стоит сказать, что могут добавляться еще некоторые элементы. К ним относят медь, цинк, титан, железо или кальций. Также известно, что в состав силумина входит от 5 до 14% силиция.



ГОСТ 1583-93: литейные алюминиевые сплавы

Отечественную классификацию литейных алюминиевых сплавов в настоящее время определяет ГОСТ 1583-93. Он включает системы с различными комбинациями алюминия с легирующими элементами Si, Cu, Mg, Mn и Zn:

  • двойные сплавы Al–Si, Al–Cu, Al–Zn и Al–Mg;
  • тройные сплавы Al–Si–Mg и Al–Si–Cu;
  • четверные сплавы Al–Si–Mg–Cu.

Каждый сплав в этом стандарте имеет двойное обозначение: первое – для чушек и второе (в скобках) – для отливок, например, АК12(АЛ2). Это связано с тем, что в свое время, в конце 1980-х, ГОСТ 1583-89 объединил и заменил в один три стандарта:

  • ГОСТ 1583-73 на литейные алюминиевые сплавы в чушках,
  • ГОСТ 2685-75 на литейные алюминиевые сплавы в отливках и
  • ГОСТ 1521-76 на силумин в чушках.

От ГОСТ 2685-75 и остались буквенно-цифровые обозначения типа АЛ2, АЛ4 или АЛ11. ГОСТ 1583-93 разрешает для отливок применять эти обозначения сплавов без дублирования обозначениями для чушек. Интересно, что ссылки на ГОСТ 2685-75, отмененный более 20 лет назад, все еще встречается, например, на сайтах некоторых литейных предприятий.

Свойства силумина

Важно, что силумин — это все сплавы, которые были получены на основе кремния и алюминия, но необходимо понимать, что не все конечные материалы обладают одними и теми же свойствами. Нужно знать, что с повышением процента содержания кремния, повышается итоговая прочность материала, но при этом растет и его хрупкость. К основным преимуществам, которые можно выделить у этого сплава относят:

  • Высокая прочность.
  • Малый физический вес.
  • Высокая устойчивость материала к износу.
  • Устойчивость также и к коррозии.
  • Одно из важных преимуществ — это цена силумина, которая считается довольно низкой. Допустим, кухонные принадлежности из этого материала стоят от 250 р. до 2000-3000 р.

Все эти преимущества в совокупности и смогли обеспечить высокую популярность данного материала.

Недостаток у этого материала лишь один — это его повышенная хрупкость. Если говорить о механическом воздействии, то силумин способен выдержать высокие нагрузки, однако если, к примеру, уронить изделие из этого сплава, то оно, скорее всего, треснет. Также стоит отметить, что температура плавления силумина не слишком высокая — всего 580 градусов по Цельсию.

Литая алюминиевая деталь?

Обычно считается, что применение алюминиевого литья для нагруженных деталей оправдано только тогда, когда сложная форма литой детали дает существенное преимущество в массе по сравнению с простой по форме, например, кованой, деталью.

Обычно литейщики-производственники работают только несколькими литейными сплавами, что оправдано более экономичным использованием литейного оборудования, сокращением запасов сырья и снижением риска смешивания различных сплавов. С точки зрения качества литья более разумно работать со сплавом, который является технологичным, чем с тем, который может быть на бумаге и показывает несколько лучшие свойства, но более труден технологически.

С точки зрения литейщиков эти сплавы являются частным случаем литейных сплавов и поэтому могут называться немного по-другому – алюминиевые литейные сплавы.

Маркировка

Так как силумин — это сплав алюминия и кремния, а также всего лишь одна из его разновидностей, то была разработана специальная маркировка, которая позволяет быстро и легко определить процентное содержание компонентов, а также, какие именно химические элементы использовались при изготовлении сплава. Для того чтобы поставить маркировку на сплав силумина, используют буквенные и цифровые обозначения. К примеру, АК12 или же АК9Ц7. Первая буква всегда указывает на содержание алюминия в сплаве, а вторая на содержание кремния. Цифры говорят о том, какое именно процентное соотношение этого химического элемента в силумине. В данном случае это 12%. Так как могут добавляться и другие элементы, их буква также указывается. Во втором примере показана маркировка алюминия — А, кремния — К 9% и цинка — Ц 7%.

Также важно отметить, что сплав обладает повышенной текучестью в расплавленном состоянии, а также хорошей свариваемостью. Если учитывать, что температура плавления силумина всего 580 градусов по Цельсию, то это можно отнести к списку преимуществ материала.

Виды силумина

Чаще всего говорят о том, что силумин — это сплав алюминия и кремний. Однако это не совсем верное утверждение. Такое название носят сплавы, в которых содержание такого элемента, как кремний, находится в районе 12-13%. Такую группу сплавов принято называть эвтектическими, нормальными или же обычными силуминами. Однако есть еще одна классификация этого материала.

  • Первый вид сплава называется доэвтектическим. Характерной особенностью этой группы является то, что содержание кремния в процентном соотношении всего от 4 до 10% от общего количества. Кроме того, могут быть добавлены такие элементы, как магний, марганец или медь.
  • Группа износостойких силуминов — содержание кремния повышается до 20% от общего количества сплава.
  • Для выполнения конкретно поставленных задач изготавливают специальные сплавы силуминов, к примеру, цинковистый.

Свойства нормальных силуминов

Первая группа силуминов из алюминия — это эвтектические. Их прочностные параметры довольно малые, однако преимущество этого типа в другом. Она обладают отличными литейными параметрами. Материалы из такого сплава применяются в литье тонкостных изделий, которые в будущем будут применяться в среде повышенной вибрации или под действием ударных нагрузок.

Также важно отметить, что при литье этой группы сплавов, к ней могут быть предъявлены такие требования, как удлинение микроструктуры. Чтобы выполнить это требование, необходимо при операции литья в кокиль или же в форму модифицировать силумин натрием.

Также важно отметить, что высокой устойчивостью к воздействию на сплав агрессивной среды обладают только те, которые характеризуются высокой чистотой состава. Другими словами, в таких материалах должно быть минимальное содержание разнообразных примесей, таких как железо и прочие.

Выбор литейных алюминиевых сплавов

К факторам, которые принимают во внимание при выборе литейного сплава для конкретного конструкторского решения, относятся следующие.

Примеси в алюминиевых сплавах

Каждый литейный алюминиевый сплав по ГОСТ 1583-93и для чушек, и для отливок имеет в целом одинаковый состав основных легирующих элементов. Требования же по содержанию примесей могут значительно отличаться для чушек и отливок, с одной стороны, и для применяемых способов литья – с другой. При этом ограничения по каждой из таких примесей как марганец, медь, цинк, никель, свинец, олово и кремний, как правило, одинаковы для чушек и отливок. Однако ограничения по их сумме, а также отдельно по содержанию железа различаются как для чушек и отливок, так и для способов литья: в песчаные формы, в кокиль, под давлением. Для чушек требования по примесям выше, чем для отливок. Для литья под давлением допускается максимальное содержание железа и суммы примесей, для литья в песчаные формы – минимальное.

Вторичные алюминиевые сплавы

Количество примесей, особенно железа, является одним из важных качеств литейного сплава. С понижением количества примесей в сплаве повышается его коррозионная стойкость и пластичность. Однако надо принимать во внимание и то, что более чистый сплав и стоить будет дороже. Вторичные литейные сплавы обычно изготавливают из лома по тому же ГОСТ 1583-93 и они могут иметь более низкий по сравнению с первичными сплавами уровень пластичности и коррозионной стойкости именно из-за большего количеств примесей. Однако существует множество изделий, для которых эти механические свойства и коррозионная стойкость вполне приемлемы, и поэтому вторичные сплавы широко применяются. Как видно из требований ГОСТ 1583-93 более «грязный» сплав может потребовать более сложного способа литья.

Прочностные свойства алюминиевых сплавов

В зависимости от требований к механическим свойствам будущей отливки сплав выбирают из следующих условных «прочностных» категорий:

«Прочные и пластичные». В эту группу входят наиболее важные упрочняемые старением сплавы, например, Al–Cu. С помощью различных видов термической обработки их свойства «регулируют» или на высокую прочность или на высокое относительное удлинение.

«Твердые». Литейные сплавы этой группы имеют определенную прочность при растяжении и твердость без особых требований к относительному удлинению. Прежде всего, это сплавы Al–Si–Cu.

«Пластичные». Сплавы с повышенной пластичностью – это, в основном, нормальные и низкокремнистые силумины.

Группы сплавов

Существует несколько групп, на которые подразделяется силумин. Это разделение осуществляется по применению этого материала для различных целей.

Эвтектический силумин, который имеет маркировку АК12, то есть всего лишь 12% содержания кремния, а также не упрочняется термической обработкой и не образуется усадочной прочности, рекомендуется использовать для изготовления герметичных деталей приборов или агрегатов невысокой нагруженности.

В качестве примера доэвтектического силумина можно взять сплав АК9ч. Для его изготовления уже применяется закалка при температуре в 530 градусов со временем выдержки от 2 до 6 часов. После этого идет процесс охлаждения материала в горячей воде и активизируют процесс старения при температуре в 175 градусов, который длится в течение 15 часов. Применение силумина этой группы осуществляется для изготовления нагруженных и крупногабаритных деталей.

Третья группа сплавов — это высоколегированный заэвтектический силумин, маркировка которого АК21М2. Принадлежность этого материала — поршневая группа сплавов. Этот материал предназначается для работы в среде с повышенными температурами, так как выделяется повышенной жаропрочностью, высоким коэффициентом износоустойчивости.

Термическая обработка литейных алюминиевых сплавов

Термическая обработка литейных алюминиевых сплавов, по сравнению с деформированными, имеет свои особенности. Это связано в первую очередь с различиями в химическом составе, а также более грубой и крупнозернистой структурой литых сплавов. Литые сплавы почти не подвержены естественному старению, поэтому максимальная прочность обычно достигается за счет искусственного старения в течение 10-20 часов при 150-180 °С. Упрочнение происходит за счет выделения из пресыщенного твердого раствора интерметаллических соединений CuAl2,Mg2Si, Al3Mg2 и т.д. Нередко уже одна закалка повышает прочность и пластичность за счет растворения интерметаллических соединений, которые в литом состоянии скапливаются на границах зерен. Старение еще больше повышает прочность, но чаще всего в ущерб пластичности.

Ремонт

Так как может случиться, что появятся трещины или же разломы на деталях из этого сплава, то есть возможность проведения ремонтных работ. Чаще всего для проведения этого типа работ применяют специальное вещество — эпоксидный клей. Однако в том случае, если деталь должна будет эксплуатироваться в среде с повышенными нагрузками, лучше всего использовать сварку. Однако необходимо учитывать состав сплава, так как далеко не все они способны выдержать температуру работы сварочного аппарата, некоторые из них могут просто расплавиться.

Сварка

Ремонт силумина в домашних условиях при помощи аргонодуговой сварки считается наиболее простым способ. Однако все признают, что лучшим решением для ремонта деталей все же будет обратиться к профессионалам, но и самостоятельная сварка также вполне реальна. Важно отметить, что работа аргонодуговой сварки должна осуществляться в среде инертных газов.

Чаще всего для достижения этой цели используют непосредственно аргоновый газ, однако в некоторых случаях возможно использование смеси аргона с гелием. Также важно отметить, что после проведения сварочных работ по ремонту деталей из силумина, все сварочные швы необходимо подвергнуть обработке. После этой процедуры швы будут практически незаметны.

Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector
×
×